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When a fermionic quantum Hall system is projected into the lowest Landau level, there is an exact particle-hole
symmetry between filling fractions ν and 1 − ν. We investigate whether a similar symmetry can emerge in bosonic
quantum Hall states, where it would connect states at filling fractions ν and 2 − ν. We begin by showing that
the particle-hole conjugate to a composite fermion “Jain state” is another Jain state, obtained by reverse flux
attachment. We show how information such as the shift and the edge theory can be obtained for states which are
particle-hole conjugates. Using the techniques of exact diagonalization and infinite density matrix renormalization
group, we study a system of two-component (i.e., spinful) bosons, interacting via a δ-function potential. We first
obtain real-space entanglement spectra for the bosonic integer quantum Hall effect at ν = 2, which plays the role
of a filled Landau level for the bosonic system. We then show that at ν = 4/3 the system is described by a Jain
state which is the particle-hole conjugate of the Halperin (221) state at ν = 2/3. We show a similar relationship
between nonsinglet states at ν = 1/2 and 3/2. We also study the case of ν = 1, providing unambiguous evidence
that the ground state is a composite Fermi liquid. Taken together our results demonstrate that there is indeed an
emergent particle-hole symmetry in bosonic quantum Hall systems.
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I. INTRODUCTION

Pariticle-hole symmetry arises in many electronic systems,
such as graphene and Weyl semimetals, where electrons and
holes behave alike. As electron-electron interactions (i.e.,
Coulomb repulsion) respect particle-hole symmetry, only the
band structure and chemical potential must be tuned to achieve
symmetry. Recently, there has been a resurgence of interest in
the role of particle-hole symmetry in quantum Hall systems,
for which the symmetry exists naturally without any fine
tuning. The magnetic field quenches the kinetic energy and
particle-hole becomes an exact microscopic symmetry within
a single Landau level. The role of particle-hole symmetry
at half-filling, in particular the possible Dirac nature of the
composite fermions (CF) [1–8], has forced a reevaluation
of the established theory of the composite Fermi liquid
phase. While the Dirac CFs would immediately lead to a
particle-hole symmetric CF Fermi liquid at ν = 1/2, it seems
that such a feature might also hold true for nonrelativistic
CFs [9]. Thinking about particle-hole symmetry has also
revealed deep connections between the quantum Hall effect
and other topological phases (including topological insulators
and gapless spin liquids) [2,3,5,10,11], as well as with “duality
webs” often discussed in high-energy physics [12–15].

It is natural to consider the potential extension of such ideas
to the bosonic case, where the microscopic constituents no
longer obey the Pauli exclusion principle. There has been much
experimental progress in realizing the quantum Hall effect in
cold atoms [16–19] and optical cavities [20,21]. The fermionic
implementation of particle-hole symmetry—the interchange
of filled and empty orbitals—cannot be applied to bosonic
systems in any obvious way. Unlike fermions, for which

interchanging the creation and annihilation operators preserves
their anticommutation relations {f,f †} = 1, the fundamental
commutation relation for bosons [b,b†] = 1 is violated upon
this exchange. Nevertheless, some of the recently developed
ideas for the fermionic particle-hole symmetric CF Fermi
liquid state can be extended to the bosonic case at ν = 1.
Two of us [22] have recently suggested that this symmetry
could be emergent in the bosonic FQHE, at low energy and
long wavelength, close to filling fraction ν = 1 (see also
Refs. [7,23]).

To see how this could be possible, consider that for
fermions the particle-hole symmetry in a single Landau
level can be thought of as a condensation of hole excitations
from the ν = 1 integer quantum Hall state into a fractional
state (such as the Laughlin state). To extend this symmetry
to bosonic systems, it was suggested to use the same
construction, substituting the ν = 1 integer quantum Hall
state with the bosonic integer quantum Hall effect (bIQHE)
at ν = 2. The bIQHE is the prototype of a bosonic symmetry
protected topological phase in two dimensions (see Ref. [24]
for a short review). The physical properties of this state have
been studied in Refs. [25–28]. Following the proposal of
Ref. [26], numerical evidence of this phase has been recently
found in various microscopic models [29–35].

In this paper, we provide convincing evidence of an
emergent particle-hole symmetry in a spinful bosonic quantum
Hall system. For that purpose, we use a combination of
exact diagonalization on the sphere and torus geometries and
iDMRG calculations on the infinite cylinder geometry [36].

We first review in Sec. II the microscopic spinful bosonic
quantum Hall system that we consider and the construction
of the bosonic Jain singlet CF states that are relevant for this
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FIG. 1. A schematic phase diagram for both spinless fermions
and spinful bosons, both in the lowest Landau level and with a typical
short-range interaction. For spinless fermions, the exact particle-hole
symmetry relates the vacuum (ν = 0) to the integer quantum Hall
effect (ν = 1) and the Laughlin ν = 1/3 state to its particle-hole
conjugate at ν = 2/3. At half-filling, a composite fermion Fermi sea
arises. The emergent particle-hole symmetry in a spinful bosonic
quantum Hall system leads to a similar phase diagram where the
fermionic integer quantum Hall effect at ν = 1 is replaced by
the bosonic integer quantum Hall effect at ν = 2. The Halperin
(221) state is the analog of the Laughlin state and its particle hole
conjugate is described by the bosonic spinful CF state �

[−2,−2]
CF . The

p.h. invariant filling factor under this emergent symmetry is now at
ν = 1 instead of ν = 1/2 for spinless fermions, but it develops a
similar phase described by a spinful composite fermion Fermi sea.
While we mainly focus on spin singlet states (S = 0), the particle-hole
conjugation can be extended to a state with a finite spin (S �= 0) such
as the ν = 1/2 Laughlin state.

setup. We use the entanglement spectrum [37] (ES) as a method
to characterize the various topological orders. Through the
bulk-edge correspondence, the ES allows to extract the edge
excitations from the bulk wave function. For this reason, we
discuss the edge mode structure of the bosonic Jain singlet CF
states. In Sec. III, we then explicitly show how the procedure of
Ref. [22] can be used to construct the particle-hole conjugate
of a bosonic state. Using this method, we are able to find a
relationship between the shift of a quantum Hall state on the
sphere and its particle-hole conjugate, a relationship, which
we will later use to identify particle-hole conjugate states.

A number of filling fractions take on special meaning when
particle-hole symmetry is present. Examples of these states in
the fermionic case are given in the top part of Fig. 1: (a) a state
at ν = 1 with respect to which the particle-hole symmetry is
performed, (b) a pair of states at ν and 1 − ν (e.g., 1/3 and
2/3), which are related by particle-hole symmetry, and (c) a
state at ν = 1/2, which may be its own particle-hole conjugate
[1,5,6,9,38].

In the bottom part of Fig. 1, we show the equivalent picture
for bosons. At ν = 2, we expect to find the bIQHE phase.
In Sec. IV, we present a iDMRG study of this phase in
our continuum model. The hypothesis tested in this work is
whether there is an emergent symmetry for bosonic systems
which connects states at filling fraction ν and 2 − ν. In Sec. V,
we demonstrate this correspondence for the Halperin (221)

state at ν = 2/3 and the �
[−2,−2]
CF state at ν = 4/3. Section VI

extends this correspondence to nonspin singlet states with
the example of ν = 1/2 and 3/2. Finally, at ν = 1, we find
unambiguous evidence that spinful boson physics at this filling
factor is indeed a composite Fermi liquid (CFL) [39].

II. MICROSCOPIC MODEL AND BOSONIC
SPINFUL CF STATES

In this work, we consider two species of bosons, projected
to the lowest Landau level and interacting with the following
potential:

H = 1

2

∫
d2r d2r′ ∑

σ,σ ′=↑,↓
ρσ (r)ρσ ′(r′)Vσσ ′(r − r′), (1)

where ρσ (r) is the boson density. The index σ = {↑,↓} stands
for the two different species which can be thought of as any
two-component internal degree of freedom, layer index, etc.
For sake of simplicity, we will use the name spin for this
degree of freedom. We restrict ourselves to potentials Vσσ ′(r)
independent of the spin indices, i.e., exhibiting an SU(2)
symmetry and drop the spin index for the interaction. Most
of our work focuses on the repulsive hardcore interaction
V (r) = δ(2)(r). It is both the simplest and most realistic
interaction since the s-wave scattering correctly describes cold
gases of alkali atoms such as 87Rb. Also, previous works have
found a bIQHE [29–31] at ν = 2 for this interaction, and some
evidence which points to a CFL [40] at ν = 1. Therefore it
makes sense to use it as a starting point for our numerical
study. We express more generic interactions in terms of the
Haldane pseudopotentials [41] Vi . The hardcore interaction
corresponds to the case where only the V0 pseudopotential is
nonzero. The stability of a phase can be probed by adding some
longer range interaction such as the V1 pseudopotential.1

For a spinful bosonic FQH system, several model wave
functions are relevant to explain possible emerging topological
phases. The Halperin state [42] is the generalization of the
Laughlin state to multicomponent particles. Moreover, the
hardcore interaction is the model interaction for the Halperin
(221) state, a spin singlet state which occurs at filling factor
ν = 2/3. On the sphere geometry, each model state appears
at a specific filling factor ν and at a particular shift δ relating
the number of particles N and the number of flux quanta N�

through

N� = ν−1N − δ. (2)

For the Halperin (221) state, the shift is δ = 2. A series of
non-Abelian spin singlet [43] (NASS) states can be built at
filling ν = 2k

3 (and δ = 2) by symmetrizing k copies of the
Halperin (221) state. They are the natural extension of the
Read-Rezayi series [44] to the spinful case and are described
by the SU(3)k algebra.

1In principle, a phase diagram like that of Fig. 1(b) can also be
realized for a single-component (spin-polarized) system. We have
attempted to study such a system at a variety of fractions, but have
been unable to find numerical evidence for the bIQHE or CFL phases,
or evidence of an emergent particle-hole symmetry.
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Jain’s composite fermions [45] construction can be gen-
eralized to obtain a series of spin singlet CF wave functions
either for fermions [46–49] or bosons [30]. These states can be
written in a similar fashion to the spinless case. The following
wave functions correspond respectively to direct and reverse
flux attachment:

�
[n,n]
CF ({z}) = PLLL[�n({z↑}) �n({z↓}) J ({z})], (3)

where {z↑} (respectively, {z↓}) are the complex coordinates of
the particles with a spin up (respectively, down). J ({z}) is the
Jastrow factor for all particles. If n is positive, �n is the Slater
determinant representing n filled Landau (or Lambda) levels
for the CFs. If n is negative �n represents |n| filled Landau (or
Lambda) levels with an opposite magnetic field. The Jain state
�

[n,n]
CF appears at ν = 2n/(2n + 1) and has a shift δ = 1 + n.

Note that the Halperin (221) state is identical to �[1,1]. �[−1,−1]
CF

is a plausible candidate wave function [26] for the bIQHE at
ν = 2 with a relatively good overlap for small system sizes
on the sphere geometry [30]. We can also consider a different
number of Lambda levels for the spin up and the spin down, i.e.,
�

[±n↑,±n↓]
CF at filling ν = (n↑ + n↓)/(n↑ + n↓ ± 1) and shift

δ = 1 ± n2
↑+n2

↓
n↑+n↓

. These states are still SU(2) eigenstates but are
not spin singlets if n↑ �= n↓.

The edge mode theory of these singlet CF states is described
by their (2|n| × 2|n| dimensional) K matrices

K [n,n] =

⎛
⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞
⎟⎟⎠ + sgn(n)I2|n|×2|n|, (4)

where the first term is a 2|n| × 2|n| matrix of which every
element is 1, and I2|n|×2|n| is the 2|n| × 2|n| identity matrix
(see Appendix A for a derivation). The charges carried by the
edge modes can be described by the charge vector, specified
separately for up and down spins:

τ↑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
...
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, τ↓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where each vector has n nonvanishing entries. Such a K matrix
allows us to deduce the number of edge modes and their
chirality. For n > 0, we find 2n propagating (complex) edge
modes. For n < 0, we find a single propagating edge mode (the
charge mode) and 2|n| − 1 counter-propagating edge modes.
This edge mode structure can be conveniently extracted from
the bulk wave function through the entanglement spectrum
[37] and more particularly through the real-space entanglement
spectrum [50–52] when counter-propagating edge modes are
present. We show a few examples for concreteness: for n = 1,
we have

K [1,1] =
(

2 1
1 2

)
, (6)

which is nothing but the Halperin (221) state at ν = 2/3. For
n = −2, we have

K [−2,−2] =

⎛
⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎠, (7)

which describes the Jain state at ν = 4/3. For n = −1, we
have

K [−1,−1] =
(

0 1
1 0

)
, (8)

which is simply the bosonic integer quantum Hall state, as
expected.

III. EMERGENT PARTICLE-HOLE SYMMETRY

In a spinless fermionic system, particle-hole symmetry can
be trivially implemented by swapping the occupation of filled
and empty orbitals. When focusing on the filling factors ν < 1,
p.h. symmetry is a robust description of the fractional quantum
Hall (FQH) physics, though it can be broken by perturbations
such as Landau level mixing [53–56]. This latest ingredient
is important to understand the emergence of the non-Abelian
states, e.g., the Pfaffian [57] and anti-Pfaffian [58,59] states
at filling factor ν = 5/2 [60–63], or the absence of a Hall
conductance quantization [64,65] at ν = 13/5 despite the clear
experimental signatures of an incompressible state at ν = 12/5
[63,66–68].

The approach of swapping filled and empty orbitals clearly
breaks down when we consider a bosonic system since bosons
can condense in a single orbital. Recently, Ref. [22] has
proposed a different route to define a particle-hole conjugation
for bosonic states. Indeed, the particle-hole conjugate of a
fermionic state can be thought of as a condensate of the hole
excitations of a filled Landau level into a fractional state. In
first-quantized notation, this transformation can be written as

�̃(w1, . . . ,wM ) =
∫

dz1 · · · dzN �(z1, . . . ,zN )∗

×�IQH(w1, . . . ,wM ; z1, . . . ,zN ), (9)

where �IQH is the filled lowest Landau level with M particles
at coordinates w1, . . . ,wM and N (quasi)holes at positions
z1, . . . ,zN . The wave function � is the state whose particle-
hole conjugate we want to obtain. Substituting the filled
Landau level �IQH with a generic fractional quantum Hall
state will instead lead to towers of hierarchy states, such as
the Haldane-Halperin hierarchy [41,42,69] or the hierarchy
[70] on top of the Moore-Read state [57]. This construction
is directly connected to the CF description of quantum Hall
[71–74].

The expression (9) is valid both for fermions and bosons as
long as �IQH and � have the same statistics. A suitable �IQH

could thus serve as the seed of a generalized particle-hole
conjugation for bosons. As suggested in Ref. [22], a natural
candidate for �IQH is the bosonic integer quantum Hall (bIQH)
wave function �bIQH at ν = 2, the analog of a fermionic filled
Landau level. This leads to a new particle-hole conjugate state
�̃B , at filling fraction ν̃ = 2 − ν, for any state �B at filling
fraction ν.
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A natural question is: in what sense can one think of the
transformation (9) as a symmetry? For a generic microscopic
Hamiltonian (without fine tuning), one clearly does not expect
it to be an exact symmetry—it certainly will not transform
the exact ground state at filling ν to the exact ground state
at 2 − ν. However, it was argued in Refs. [7,9,22], that if the
microscopic interaction stabilizes a composite Fermi liquid
(CFL) phase at ν = 1, this particle-hole symmetry will emerge
as a low-energy, long-wavelength property close to ν = 1.
In particular, the ground state at filling fraction ν close to
1 will be related to the ground state at 2 − ν through the
particle-hole transform. Therefore the appearance of a CFL
at ν = 1 implies particle-hole symmetric behavior, at least
near ν = 1. Conversely, if particle-hole symmetric behavior
is observed away from ν = 1, then a CFL is likely (but not
necessarily) stabilized at ν = 1.

Note that we have omitted the internal degree of freedom
indices in Eq. (9). They should be taken into account for spinful
bosons. In particular, �bIQH as built from the CF construction
(i.e., �

[−1,−1]
CF ) is a spin singlet state. So �B and �̃B have the

same total spin. We can deduce the filling factor and the shift
on the sphere from Eq. (9) by noting that the number of flux
quanta is the same on either sides of the equation. Denoting ν

and δ (respectively, ν̃ and δ̃) the filling factor and the shift of
�B (respectively, �̃B), we obtain the following relations:

ν̃ = 2 − ν and ν̃δ̃ = −νδ. (10)

We immediately see that these relations are also satisfied
when considering the spinful CF states �B = �

[n,n]
CF and

�̃B = �
[−(n+1),−(n+1)]
CF . More generally, this relationship holds

for �B = �
[n↑,n↓]
CF and �̃B = �

[−(n↑+1),−(n↓+1)]
CF . The situation

is similar to spinless CF states for fermions where a CF state
with n + 1 filled Lambda levels and reverse flux attachment is
the particle-hole conjugate of the CF state with n filled Lambda
levels and direct flux attachment.

The relation between bosonic spinful CF state with direct
and reverse flux attachments through the particle-hole conjuga-
tion goes beyond Eq. (10). Indeed, the K matrices of the �

[n,n]
CF

and �
[−n−1,−n−1]
CF states are particle-hole conjugate to each

other. We illustrate this with the example of the n = −2 state
at ν = 4/3 (the argument can be straightforwardly extended
to general n). Take the K matrix in Eq. (7), and redefine
the last two components of the Chern-Simons gauge fields
as ã3 = a3 + a1 + a2, ã4 = a4 + a1 + a2. The K matrix then
takes the form

K =

⎛
⎜⎝

−2 −1 0 0
−1 −2 0 0

0 0 0 1
0 0 1 0

⎞
⎟⎠, (11)

with transformed charge vectors

τ↑ =

⎛
⎜⎝

0
−1

1
0

⎞
⎟⎠, τ↓ =

⎛
⎜⎝

−1
0
0
1

⎞
⎟⎠. (12)

This is exactly the particle-hole transformed version of the
Halperin (221) state at ν = 2/3: the upper block of the K

matrix is a bare conjugate of the (221) state, while the lower
block is a bosonic integer quantum Hall state.

IV. BOSONIC INTEGER QUANTUM HALL EFFECT

The physical properties of the bIQHE have been studied in
Refs. [25–28]. In particular, the Hall conductivity was shown
[25] to be quantized and equal to an even integer. There is
reasonable numerical evidence of the bosonic IQHE in both
continuous bilayer models [29–31] and lattice models [32–35].
The edge physics of the bIQHE consists of a charged chiral
edge mode and a counterpropagating neutral mode as given
by the K matrix of Eq. (8). Despite being nonchiral this edge
structure is protected so long as charge conservation symmetry
is preserved and is reflected in the entanglement spectrum of
the bIQHE ground state [29,34].

To our knowledge, the only iDMRG study of this phase
was done on a lattice model [34]. As a warm-up for our
iDMRG approach of the continuous bilayer model, we have
studied the emergence of the bosonic IQHE at filling factor
ν = 2. The use of iDMRG allows us to reach larger system
sizes, and to provide an analysis of the entanglement spectrum
less prone to finite-size effects than previous studies of this
phase in a continuous model. Unless otherwise noted, all
entanglement spectra in this work correspond to a real-space
entanglement cut, to be able to unveil the counterpropagating
edge modes. For iDMRG, these were obtained using the
method of Ref. [75]. When plotting entanglement spectra in
our spinful model, we must specify both the difference in
charge between the left and right sides of the cut (	N ) and the
difference in spin (	Sz). We plot the spectrum for 	N = 0 and
	Sz integer is shown in Fig. 2, and it has the predicted counting
[34] that can be deduced from the K matrix given in Eq. (8)
(see Appendix B). In particular, for a given charge sector
the presence of one propagating and one counter-propagating
mode implies that we should expect a counting of 1,1,2, . . . to
both the left and the right in each charge sector. Furthermore,
the K matrix can be used to determine the relationship between
different charge sectors [29,34]. In brief, the momentum of the
lowest-lying entanglement level in a given charge sector can
be obtained from the formula:

k0 =
∑

i

λi

2
(�vi �q)2, (13)

where λi , �vi are the eigenvalues and eigenvectors of the
K-matrix and �q is a vector representing the charge of an
entanglement sector. More details can be found in Appendix B.
For the K matrix of Eq. (8) the above formula implies that the
spectrum at Sz = 1 should start at momentum one less than
Sz = 0, just as we observe.

In addition to the iDMRG study, we have also performed an
exact diagonalization study on the sphere, considering slightly
larger systems sizes than Refs. [29,30]. This study corroborates
the emergence of the bIQHE at ν = 2 and we provide this
information in the Appendix C.

V. NATURE OF THE ν = 4/3 PHASE

If an emergent bosonic particle-hole symmetry exists, we
should expect that it relates FQH states with filling fractions
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FIG. 2. Real-space entanglement spectrum at ν = 2 as a function
of the momentum along the cylinder perimeter 2πkx/L obtained
from an iDMRG simulation at perimeter L = 16 and bond dimension
5400, using the charge sector with equal amounts of charge on either
side of the cut (i.e., 	N = 0) and the differences of spin 	Sz = 0 and
	Sz = 1. The spectrum at 	Sz = 0 as the counting 1,1,2, . . . on both
the left and right sides, indicative of both a left-moving a right-moving
mode, and as expected for a bosonic IQHE. The additional states on
the right side with 	Sz = 1 are also consistent with this state. We
circle the low-lying states which clearly match the predictions of the
effective theory, at larger entanglement energy the states are too close
together to determine whether they agree with predictions. The slight
loss of SU(2) is a consequence of the bond dimension truncation.

ν and 2 − ν. In this section, we argue that the spinful bosonic
states at ν = 2/3 and ν = 4/3 are indeed related by this
symmetry. At ν = 2/3 a Halperin (221) state is the exact
ground state of a Hamiltonian with only V0 interaction between
spins of different species and those of the same species.

Under the emergent particle-hole symmetry, the Halperin
(221) state transforms into a �[−2,−2] state as argued in
Sec. III. We therefore want to find out whether the �

[−2,−2]
CF

is the ground state at ν = 4/3. Its main competitor is the
k = 2 NASS state mentioned in Sec. II. Previous exact
diagonalization studies could not access large enough system
sizes to definitively rule out either candidate, though they
found slightly larger overlaps for the �[−2,−2] state [30] but
also potentially the NASS topological degeneracy on the torus
[76,77]. We have used iDMRG methods to determine that
�[−2,−2] is indeed the ground state. This determination comes
from two pieces of evidence: the shift and the entanglement
spectrum [78,79].

While we consider an infinite cylinder, the shift δ can
be computed [36] from the momentum polarization [78,79],
which has the following dependence on cylinder circumfer-
ence L (we set the magnetic length to one):

momentum polarization = −δ
ν

16π2
L2 + O(1). (14)

We plot the momentum polarization versus L2 for a number of
different spinful bosonic cases in Fig. 3. By dividing the slope

FIG. 3. Momentum polarization for a number of system sizes and
filling fractions, obtained using iDMRG. When plotted against L2 as
suggested by Eq. (14), the slope of the data gives −νδ. This allows
us to check Eq. (10). We see that the equation is satisfied for the
particle-hole conjugate pairs (2/3,4/3) and (1/2,3/2). Further we
see that the shift at ν = 2 is 0, as expected.

of such data by the filling fraction, we obtain the expected
values of δ = 0,2 for ν = 2,2/3, respectively. For ν = 4/3,
we obtain δ = −1, consistent with the �[−2,−2] state but not
the NASS state, which has shift 2.

In Fig. 4, we show the real-space entanglement spectrum
for the �

[−2,−2]
CF state, obtained both from the model wave

function on a sphere for N = 16 bosons (a) and from iDMRG
on an infinite cylinder (b). For the model wave function, we
specify the total number of bosons N as well as the charge

FIG. 4. Real-space entanglement spectrum at ν = 4/3 (a) from
a model wave function on a sphere with N = 16, NA = 8, and (b)
from an iDMRG simulation at L = 17, 	N = 0, and bond dimension
5400. In both cases, there is an equal amount of charge on either side
of the entanglement cut. Both spectra have the same counting a low
entanglement energies, a counting consistent with the �

[−2,−2]
CF state.

Despite being on different geometries which could affect the shape of
entanglement spectrum, we find a remarkable agreement between the
model state on a finite sphere and the iDMRG on an infinite cylinder
with the hardcore interaction.
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sector NA and the total spin Sz,A of one subsystem. Compared
to specifying the charge imbalance 	N as in the iDMRG
approach, this shifts all momenta by the same amount but
otherwise does not affect our analysis. The two spectra exhibit
the same counting at low entanglement energies, where they
also agree with the predictions from the edge theory. Similarly
to the bIQHE, the counting can be deduced from the K

matrix given by Eq. (7). In particular, we expect a counting of
1,1,2, . . . to the right and 1,3,9, . . . to the left, and we expect
the spectrum at 	Sz = 1 to be twofold degenerate and start at
momentum one less that the 	Sz = 0 data. We find that the
low-lying levels in Fig. 4 indeed match these predictions.

VI. PARTICLE-HOLE SYMMETRY
BETWEEN ν = 1/2 AND ν = 3/2

The states, so far, considered in this work are all spin sin-
glets. We can test whether the bosonic particle-hole symmetry
also applies to states beyond this specific class. In this section,
we consider the particle-hole conjugate of a state at filling
fraction ν = 1/2, where the electrons are all constrained to
be spin-polarized. For the hardcore interaction, the Laughlin
state is the exact and unique fully polarized state at this filling
factor. It can be written in the CF state language as �

[1,0]
CF .

A natural candidate proposed in Sec. III for the particle-hole
conjugate of the ν = 1/2 Laughlin state is the �

[−2,−1]
CF . Note

that this state is partially spin polarized (exactly as expected).
It was also discussed in Ref. [30].

A subtlety of ν = 3/2—compared to ν = 4/3—is that
�

[−2,−1]
CF does not describe the absolute ground state of

the hardcore interaction, but rather the ground state in a
given polarization sector. The polarization sector of �

[−2,−1]
CF

corresponds to a filling ν = 1 in one layer and ν = 1/2 in
the other layer. This situation would be relevant with the
addition of a Zeeman field (which is odd under particle-hole
transformation) to bias the system towards having different
fillings in the different layers. Keeping this in mind, we
simply focus on the relevant polarization sector and search
for evidence of �

[−2,−1]
CF using similar methods to the previous

section. We performed iDMRG calculations at ν = 1/2 and
3/2. In Fig. 3, we have shown the resulting momentum
polarization for ν = 1/2 and 3/2, and they satisfy Eq. (10)
as expected. Furthermore, in Fig. 5, we show the real-space
entanglement spectra for the ν = 3/2 case, with the spectrum
of the model wave function on a sphere in (a) and the iDMRG
results in (b). We see that the low-lying part of the spectra
are very similar. The form of the spectra can be determined
from Eq. (13), however, this analysis is complicated since
the rank of the K matrix (here 3) is larger than the number
of conserved quantities (here 2, namely, 	N and 	Sz).2 We
provide in Appendix B an extensive discussion showing that
the real-space entanglement spectrum does indeed follow from
the K matrix associated with the �

[−2,−1]
CF CF state.

We can wonder if slightly tuning the interaction could
partially polarize the system ground state at this specific filling

2This is also a problem at ν = 4/3, but in that case the lowest-lying
states are not affected.

FIG. 5. Real-space entanglement spectrum at ν = 3/2 (a) from a
model wave function on a sphere with N = 17,NA = 8, and (b) from
an iDMRG simulation at L = 16,	N = 0 and bond dimension 5400.
Both spectra have the same counting a low entanglement energies, a
counting consistent with the �

[−1,−2]
CF state.

factor. For example, we can add some V1 pseudopotential
as an additional knob while preserving the SU(2) symmetry.
For ν = 1 [80] and ν = 4/3 (see Appendix C), the previous
description holds true for V1 � 0.3 beyond which the system
spontaneously fully polarizes. At ν = 3/2, our exact diago-
nalization results on both the sphere and the torus geometries
show the existence of an intermediary regime with partial
polarization. The only option for the absolute ground state
to have the same polarization as �

[−2,−1]
CF would thus be a

narrow region in this regime.

VII. EVIDENCE OF THE EMERGENT CF
FERMI SEA AT ν = 1

The phase diagram of interacting bosons at filling factor
ν = 1 hosts a large variety of phases [39,80] depending on the
interaction. For spinless bosons, previous studies [30,80–85]
have shown strong evidence that the two-body hardcore
interaction leads to an emerging Moore-Read state. Among
the other possible phases are two decoupled copies of the
Laughlin ν = 1/2 state [i.e., the Halperin (220) state] or
the coupled Moore-Read state [86]. Restricting to the pure
SU(2) symmetric hardcore interaction, Ref. [40] has provided
hints using exact diagonalization on the sphere geometry of a
possible CFL emergence.

Finding a particle-hole symmetric state at ν = 1 would pro-
vide further evidence that an emergent particle-hole symmetry
exists. A CFL naturally exhibits a particle-hole symmetry
if the CF are Dirac fermions [1,5,6]. However, if the CF
are nonrelativistic fermions (or equivalently are described
by the Halperin-Lee-Read [87] approach), the particle-hole
symmetric nature of the CF Fermi sea has recently raised
opposite views [9,38,88]. It was also argued in Ref. [22] that for
two-component bosons at ν = 1, if both the SU(2) symmetry
and particle-hole symmetry are preserved, the system cannot
be gapped (even with topological order). Therefore a CFL state
at ν = 1 is highly anticipated if particle-hole symmetry indeed
holds.
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To numerically study in an unbiased way the physics
at ν = 1, we can rely on the iDMRG or finite size exact
diagonalizations on the torus geometry. We first present
the results obtained by exact diagonalization on the torus
geometry. We have computed the low energy spectrum of
the ν = 1 system for the hardcore interaction with up to
N = 14 bosons. In order to experiment with different discrete
symmetry groups, we adjust the angle θ between the spanning
vectors of the torus. We choose θ = π/3 and π/2 (square
torus) to obtain the C6v and C4v symmetries, respectively.

Considering the composite fermions as free particles, we
can predict the degeneracy and momentum sectors of the
ground state for specific numbers of particles (see Fig. 6).
This picture provides a description of the ground state at
commensurable sizes as well as its charged quasiparticle or
quasihole excitations. The same description can be applied to
spinless fermions at ν = 1/2 and it predicts the degeneracy
and momentum sectors of the ground state, up to an overall
(π,π ) shift [89]. This predictive description in terms of free
CF, as well as the analogy with the fermionic case where a CFL
is expected are strong arguments in favor of a bosonic CFL.

Charged excitations provide a very crisp illustration of the
finite size CF Fermi sea construction. For θ = π/3, the C6v

symmetry imposes a unique ground state when, for instance,
the number of spinful CF is N = 14 [see Fig. 6(a)]. Removing
one composite fermion will generate a quasihole state [see
Fig. 6(b)], which is sixfold degenerate. Similarly, adding one
composite fermion will create a quasiparticle excitation with
degeneracy 6 in the S = 1/2 sector [see Fig. 6(c)]. Our exact
diagonalization data support this image as shown in Figs. 6(d)–
6(f). The position of the origin in reciprocal space depends on
the parity of the number of particles (like for spinless fermionic
systems): the singlet ground state at N = 14 lies in momentum
sector (π,π ), while the six states at N = 13 are centered around
(0,0). In principle, we could apply a similar approach for the
low energy neutral excitations but there finite size effects are
more important and remain to be understood. Similiar results
for the square torus are given in Appendix D.

We can apply an iDMRG analysis similar to that of Ref. [6]
to the bosonic CFL at ν = 1. Our method is to search for singu-
larities in the momentum-space guiding center structure factor:

Dσσ ′(�q) = 〈: ρσ (�q)ρσ ′(−�q) :〉 e|�q|2/2. (15)

This quantity has a singularity whenever �q corresponds to a
process which hops a composite fermion from one part of
the Fermi surface to another. The indices σ , σ ′ represent spin
species. An example of such data, for L = 8, is shown in Fig. 7.
Since we work on a cylinder of finite radius in the y direction,
only certain discrete values of qy are allowed. By fixing qy

and measuring the qx at which singularities occur, we can map
out the composite fermion Fermi surfaces. We have found that
D↑↑ and D↓↓ are identical while D↑↓ has singularities in the
same locations. This implies that there is an identical Fermi
surface in both layers, consistently with the prediction that
the CFL is a spin singlet. Elsewhere in this work, we used
a V0 pseud-potential interaction, but we find that with such
an interaction the DMRG does not converge, therefore for
our DMRG study at ν = 1, the bosons interact via a Coulomb
repulsion. Shorter range interactions always induce more finite
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FIG. 6. (Left) Filling up the Brillouin zone with free spinful
composite fermions to form a Fermi sea on a torus with twisting
angle θ = π/3 [(a)–(c)]. This picture predicts a unique ground state
for N = 14 (a). Removing one composite fermion on the outer shell of
the Fermi sea creates a quasihole excitation (b). Adding a composite
fermion to one the sites with the shortest distance to the center of the
Fermi sea creates a quasielectron excitation (c). For the quasielectron
excitation, we depict the equivalent positions in reciprocal space in
light blue. (Right) The lowest energies in each momentum sector for
the hardcore Hamiltonian at N = N� on a torus with twisting angle
θ = π/3 [(d)–(f)]. The lowest energies are indicated by a red box.
(d), (e), and (f) involve respectively N = 14, 13, and 15. Plots (e) and
(f) are centered (black cross) around (0,0) and plot (d) is centered
around (π,π ).

size effect for the CFL [40], including for spinless fermions
[90]. Thus using the Coulomb interaction is merely a trick to
improve the convergence rather than a drive to another phase.

On a cylinder geometry, the composite fermions do not
need to have the same boundary conditions as the microscopic
degrees of freedom, and therefore in order to map the Fermi
surface we need to determine which boundary conditions are
present. We can do this by appealing to Luttinger’s theorem,
which implies that the lengths of the “wires” in the inset of
Fig. 7 must add up to the total electron density. If we have two
identical Fermi surfaces at ν = 1, this density is L/2. Only
one set of boundary conditions (BC) can satisfy Luttinger’s
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FIG. 7. Guiding center structure factor for a system with L = 8,
with qy = 0 as defined in Eq. (15). In our system with periodic BC
in the y direction, only discrete value of qy are possible. We remind
that D↑↑ = D↓↓. The singularities in the figure correspond to the size
of the Fermi surface at different values of qy . The inset shows an
example of a circular Fermi surface with two “wires”, the lengths of
the wires are given by the location of the singularities.

theorem, since if we have periodic BC the longest wire appears
once at ky = 0, while if we have antiperiodic BC it appears
twice at ky = ±π/L. We plot the sums of the wire lengths for
a number of system sizes in Fig. 8(a), assuming both periodic
and antiperiodic BC. We see that the data for L = 8,9 obey
periodic BC, while at L = 11 − 15 we have antiperiodic BC.3

Once the boundary conditions have been determined, we
can plot the locations of the singularities and compare them
to the expected circular Fermi surface with kF = 1. The qx

of these singularities are determined from data such as Fig. 7,
while the qy are determined from the boundary conditions. The
data are plotted in Fig. 8(b), where we see good agreement with
the expected circle. Deviations from a perfect circle are finite-
size effects related to the need to satisfy Luttinger’s theorem.

The error bars on the DMRG data for the CFL at ν = 1 are
larger than those in Ref. [6] due to the higher computational
cost of simulating a two-component bosonic system instead of
a single-component fermionic one. Additional iDMRG results
are discussed in Appendix D.

VIII. CONCLUSION

The effects of particle-hole symmetry in the lowest Landau
level are a subject of much activity, both historically for
Laughlin states as well as recently for the composite Fermi
liquid and various non-Abelian states at ν = 1/2. In this paper,
we have provided numerical evidence that a particle-hole
symmetry is emergent for spinful bosons in the lowest Landau
level. By using a modern numerical technique including exact
diagonalization and iDMRG, we were able to show that the

3Which BC are preferred is a question of energetics, though from
the fermionic case [6], we expect it to be periodic in L as the system
tries to avoid having a wire near the edge of the Fermi surface.

FIG. 8. Using the singularities in Fig. 7 to determine the shape
of the Fermi surface. In (a) we determine whether the composite
fermions have periodic boundary conditions (PBC) or antiperiodic
boundary conditions (APBC), by plotting the sums of the singularities
assuming both cases, and seeing which sum matches Luttinger’s
theorem, which constrains this sum to be equal to the electron density,
which is L/2. In (b), we use the appropriate boundary conditions to
plot all the locations of the singularities in momentum space. We
find good agreement between the locations of the singularites and the
expected Fermi surface with kF = 1.

low energy physics at ν = 4/3 is related to the Halperin (221)
state by the particle-hole symmetry, settling once and for all the
nature of the phase at ν = 4/3. This symmetry also extends to
nonspin singlet states such as the ν = 3/2 partner of Laughlin
ν = 1/2 state. At the particle-hole invariant filling factor
ν = 1, we find evidence for a composite Fermi liquid which
has a Fermi surface with kF = 1 in each spin component.

A natural question is how robust this symmetry is. While in
the fermionic case the symmetry is exact for all two-body
interactions, for bosons the symmetry applies only at low
energies and is not guaranteed to work for any interaction.
Nonetheless, we find that slightly modifying the hardcore
interaction by including additional pseudopotential does not
affect our results significantly (see Appendix C), suggesting
that it might be stable to a range of two-body interactions.
The validity of our finding for nonsinglet states suggests that
breaking the SU(2) symmetry would not necessarily lead the
particle-hole symmetry to disappear. However, we have found
no signature of a particle-hole symmetry if we strictly focus on
the fully polarized sector, i.e., for single component bosons.
We know that the particle-hole symmetry is not present at
ν = 1 since the Moore-Read state which breaks it, is a valid
description of the low energy physics at ν = 1. We also have
observed some signatures of the Read-Rezayi state at single-
component ν = 3/2, which is clearly not the particle-hole
conjugate of the Laughlin state at ν = 1/2. Moreover, we
did not find any clear evidence of a bIQHE at ν = 2 (it can
emerge on a lattice model with strictly hardcore interaction
[91]). All these elements are consistent with the intuition that
the emergence of particle-hole symmetry is much more natural
if a composite Fermi liquid phase is stabilized at ν = 1.

Now that the particle-hole symmetry for bosons has been
established, a number of the current questions about particle-
hole symmetry in the fermionic case can also be asked of the
bosonic one. A microscopic understanding of the emergent
particle-hole symmetry would be helpful to such analysis,
especially for addressing the role of particle-hole symmetry
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in the bosonic CFL. It would also pave the way to finding
interactions whose low energy physics is described by phases
such as the anti-Pfaffian or particle-hole symmetry Pfaffian. A
candidate theory [22] for a CFL with emergent particle-hole
symmetry in this system has two species of Dirac composite
fermions at finite density, and the associated Fermi surface
Berry phase of π . Demonstrating this numerically is an
interesting future challenge. These interesting problems will
be developed in future works.
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APPENDIX A: K MATRICES OF COMPOSITE
FERMION STATES

In this appendix, we derive the K matrix for the Jain state
�

[n,n]
CF . The result can be extended straightforwardly to any

�
[n↑,n↓]
CF .
Consider a two-component bosonic system, in a Jain state

where the composite fermions ψ↑,↓ fill 2n Landau levels. At
the level of effective field theory, before we integrate out the
composite fermions, the system should be described by the
following effective Lagrangian:

L = L0[ψ↑,ψ↓,aμ] − 1

2π
b da − 1

4π
b db, (A1)

where a,b are emergent U(1) gauge fields. Notice that b has a
self Chern-Simons (CS) term at level −1, which is trivial from
the topological quantum field theory (TQFT) point of view. So
one can integrate it out and leave a as the only emergent gauge
field, with a self CS term at level +1. This is the usual form of
action seen in the literature. However, one should be careful
about the chiral central charge: the level-1 CS term is almost
trivial except for its contribution to the chiral central charge.
Since we care about chiral central charge, let’s keep b for now.

Now we integrate out � fermions in Eq. (A1), keeping
in mind that each occupied Landau level �i introduces an
emergent gauge field ai with CS level (−1) that couples with
a through − 1

2π
a dai . Also notice the usual definition of K-

matrix has an additional minus sign throughL = − 1
4π

a K da.
We then get a (2n + 2) × (2n + 2)-dimensional K matrix,

K̃ [n,n] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 · · · 1
1 1 0 0 · · · 0
1 0 sgn(n) 0 · · · 0
1 0 0 sgn(n) · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · sgn(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A2)

where the first column represents the gauge field a, the second
column represents b, and the rest represent ai (1 � i � 2n).

However, the above K̃ matrix is not quite ready for
immediate use (say, for edge states). This is because the first
component [gauge field a in Eq. (A1)] is not an ordinary
U(1) gauge field: it couples only to fermions (more precisely,
fields that carry odd gauge charge are fermionic) rather than
scalar bosons as in usual K-matrix theory. This means that
one cannot directly use it to get the edge Luttinger liquid:
for ordinary gauge field, the “vacuum” outside of the system
can be thought of as a condensate of scalar charges—but this
will not be an option if the only charge-1 field is fermionic.
In formal term this kind of U(1) gauge field is called spinc

connection. Therefore it is more convenient to integrate out
this spinc connection. Here, this is possible because the
term 1

2π
a d(b + ∑2n

i=1 ai) is a trivial TQFT, in which the a

gauge field serves merely as a Lagrange multiplier. Integrating
out a simply sets b + ∑2n

i=1 ai = 0. Now substituting b =
−∑2n

i=1 ai back into the K̃ matrix gives exactly the result
in Eq. (4).

APPENDIX B: K MATRIX AND REAL-SPACE
ENTANGLEMENT SPECTRUM

The relation between the K matrix and the real-space
entanglement spectrum was previously discussed for the
bIQHE at ν = 2 in Refs. [29,34]. When a model wave function
contains multiple Lambda levels, then the dimension of the
K matrix is larger than the number of conserved quantities
that one can specify numerically. Very few studies have been
performed relating the edge structure and the entanglement
spectra [92,93] in this case, and those that exist are limited
to two Lambda levels and direct flux attachment. In this
appendix, we exemplify the connection between the K matrix
and real-space entanglement spectrum, when we have two
Lambda levels and reverse flux attachment. We will focus on
the case of the fraction ν = 3/2 of Sec. VI and the CF state
�

[−2,−1]
CF . Its K matrix is given by

K [−2,−1] =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠. (B1)

The rows (or columns) of K [−2,−1] are related to the
variation of the CF number per Lambda level and per spin
component that we denote 	N1,↑ and 	N1,↓ for the lowest
Lambda level and 	N2,↑ for the second Lambda level.
	Ni represents the difference in the number of a type of
bosons on, say, the left side of an entanglement cut to the
number of bosons that would be in that region if bosons
were distributed uniformly. Such a definition is necessary in
iDMRG, where total number of bosons is infinite, but in the
exact diagonalization data on a finite system, we can replace
	Ni by Ni , which is just the total number of bosons in a
region. The definitions are equivalent (up to an overall shift
in the momentum of all entanglement levels). The K matrix
indicates that we have one propagating mode with eigenvector
2 and associated U(1) charge 	Q. Up to a normalization
constant, 	Q is precisely the �v0 �q of Eq. (13). We also find two
counterpropagating modes with eigenvalues −1 and associated
U(1) charges (�vi �q) 	s and 	λL. Through the diagonalization
of the K [−2,−1], we get the following expression for the three
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TABLE I. The different distributions for 	N1,↑, 	N2,↑, and
	N1,↓ in the lowest energy sectors.

	N1,↑ 	N2,↑ 	N1,↓ 	Q 	s 	Sz 	λL k0

0 0 0 0 0 0 0 0
1 0 −1 0 +3/2 +1 +1 1
0 1 −1 0 +3/2 +1 −1 −2

1 0 0 1 +1/2 +1/2 +1 2
0 1 0 1 +1/2 +1/2 −1 1
0 0 1 1 −1 −1/2 0 0

U(1) charges:

	Q = 	N1,↑ + 	N2,↑ + 	N1,↓, (B2)

	s = 1
2 (	N1,↑ + 	N2,↑) − 	N1,↓, (B3)

	λL = 	N1,↑ − 	N2,↑. (B4)

Here, 	Q is the usual total electric charge carried by the
propagating mode. The two other charges are associated to
the two counterpropagating edge mode, 	λL is the charge
imbalance for spin up between two lambda levels. 	s is related
to the variation of the spin projection 	Sz:

	Sz = 1
2 (	N1,↑ + 	N2,↑ − 	N1,↓)

= 1
3 (4	s + 	Q). (B5)

In each sector, we can easily deduce the lowest energy E0

that can be obtained for the system

E0 = 1
6vQ	2

Q + 1
3vs	

2
s + 1

4vλL	2
λL, (B6)

where vQ, vs and vλL are the velocities of each mode that we
don’t need to determine for this discussion. The associated
momentum, calculated from Eq. (13), is given by

k0 = 1
3	2

Q − 1
3	2

s − 1
4	2

λL + (2	N1,↑ − 	N2,↑). (B7)

The last term is a correction due to the reference of momentum
for particles in the second Landau level (and is different
if we use Ni instead of 	Ni). Indeed, for direct flux, the
lowest angular momentum that can be reached in the mth
Landau level is −m. This can also be understood when writing
composite fermions states using conformal field theory. There
the operator representing a CF in the second Landau level is
a descendant of vertex operator combining both the first and
the second Landau level [94–96] (see, in particular Eq. 21 in

TABLE II. Overlap between the hardcore interaction ground state
for spinful bosons �V0 and the spinful Jain CF state �

[−1,−1]
CF . The

largest Hilbert space dimension using only the Sz and Lz quantum
numbers and the two discrete symmetries Lz ↔ −Lz and Sz ↔ −Sz

is 1.2 × 106.

N |〈�V0 | � [−1,−1]
CF 〉|2

6 0.9655
8 0.8197
10 0.9463

12 0.8902
14 0.7886
16 0.8321

TABLE III. Overlap between the hardcore interaction ground
state for spinful bosons �V0 and the spinful Jain CF state �

[−2,−2]
CF and

the NASS state �NASS. The overlap is defined as |〈�V0 | � [−2,−2]
CF 〉|2

on the sphere geometry. Note that the two model wave functions for
a given number of bosons do not occur at the same number of flux
quanta due to a different shift. The largest Hilbert space dimensions
using only the Sz and Lz quantum numbers and the two discrete
symmetries Lz ↔ −Lz and Sz ↔ −Sz are 1.2 × 107 (for the NASS
state) and 2.1 × 108 (for the CF state).

N |〈�V0 | � [−2,−2]
CF 〉|2 | 〈�V0 |�NASS〉 |2

8 0.9957 0.8457
12 0.9711 0.8429
16 0.9268 0.8054

Ref. [94]). The exact form of the term is chosen to explain the
data, as we show below.

With this description in hand, we can explain the lowest
energy structure of the real-space entanglement spectrum
(RSES) since it should mimic the one of the edge mode.
We describe in Table I the first few sectors, the different
distributions for 	N1,↑, 	N2,↑, and 	N1,↓. The RSES only
allow to resolve the charges 	Q and 	Sz (and thus 	s).
Therefore each RSES shows all the accessible 	λL sectors.
We can focus first on 	Q = 0. We see that there is a
single option for the lowest energy at 	Sz = 0 at momentum
K0 = 0. For 	Sz = +1, we have two options that lead to
the same energy since they have the same 	2

λL. But these
two cases have a different momenta, respectively, K0 = +1
and K0 = −2 due to the linear term in Eq. (B7). This is
exactly what we observe in the RSES. Switching to 	Q = 1,
we have the same alternation between a single lowest state
at 	Sz = −1/2 and two lowest states at 	Sz = +1/2. Note
that the finite size system at N = 17, Eq. (B7) predicts the
correct momenta for the lowest lying entanglement energies
for NA = 8 with Sz,A = 0, 1, 2 (Fig. 5) and NA = 7 with
Sz,A = −1/2, 1/2, 3/2, 5/2 (Fig. 9).

A similar analysis can be performed to understand the
entanglement spectra at ν = 4/3, though in that case since
the K matrix is four-dimensional there are two additional
charges which need to be summed over, corresponding to

TABLE IV. Overlap between the hardcore interaction ground
state for spinful bosons �V0 in the spin total spin sector S and
the spinful Jain CF state �

[−2,−1]
CF . The overlap is defined as

|〈�V0 | � [−2,−1]
CF 〉|2 on the sphere geometry. The �

[−2,−1]
CF state has

a fractional shift δ = − 2
3 , leading to particle numbers that are not

multiple of 3. The largest Hilbert space dimensions using only the Sz

and Lz quantum numbers and the discrete symmetry Lz ↔ −Lz is
1.17 × 108.

N |〈�V0 | � [−2,−1]
CF 〉|2

8 0.9130
11 0.8900
14 0.6309
17 0.7576
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FIG. 9. Same as Fig. 5, but (a) has NA = 7 and (b) has 	N = 1.
We again see the expected counting, and the relationship between
the various charge sectors is in agreement with the predictions in the
lower half of Table I.

the differences in Lambda level occupation for each spin
species.

APPENDIX C: OVERLAPS IN FINITE SIZE

The overlaps with respect to several Jain CF �
[−n,−n]
CF states

were already discussed in great detail in Ref. [30]. In this
appendix, we remind the reader of some of the results obtained
in that article and provide some additional data by going
to slightly higher system sizes. These CF model states are
generated by performing the faithful projection onto the lowest
Landau level. While rigorous, this approach has the major
disadvantage to scale as N ! where N is the number of bosons
limiting its scope to small systems almost independently of
their Hilbert space dimension.

We start with the CF model state for the bIQHE at ν = 2,
i.e., �

[−1,−1]
CF . The overlaps with the hardcore interaction

ground state are given in Table II. More interestingly, at
ν = 4/3, we can compute the overlaps for both the NASS
state and the �

[−2,−2]
CF . Since we are considering the sphere

and since these two states have a different shift, we cannot
compute an overlap between them directly. The overlaps with
the hardcore interaction ground state for these two model states
are shown in Table III. As can be observed, the �

[−2,−2]
CF has
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FIG. 10. Overlap between the ground state �V0,V1 of the Hamil-
tonian using only the two pseudopotentials V0 = 1 and V1 and the
NASS state (left) or the spinful Jain CF state �

[−1,−1]
CF (right). The

calculations were performed on the sphere geometry for both N = 12
(black line) and N = 16 (purple line) bosons.

0
0.1
0.2
0.3
0.4
0.5

0 0.05 0.1 0.15

Δ

1/N

ν = 4/3
ν = 2/3

FIG. 11. Neutral gaps 	 for the hardcore interaction at ν = 4/3
on the sphere geometry at shift δ = −1. Only three sizes are available
N = 8, 12, and 16 (red dots), preventing any finite size extrapolation.
The horizontal black line is a guide for the eye showing the
thermodynamical extrapolation of the neutral gap above the Halperin
(221) state for the hardcore interaction [97].

slightly higher overlaps, without completely ruling out the
NASS state. Nevertheless, the trend is in agreement with our
iDMRG results that clearly favor the CF state. Note that for
the NASS state, computing overlaps on the cylinder seems to
indicate that the overlap is improved when considering thinner
cylinders. This is consistent with the iDMRG that the NASS
could emerge for small perimeters and also previous evidence
of the NASS state on the torus geometry [76]. In particular, we
used iDMRG to study both the momentum polarization and
real-space entanglement spectra for cylinders with momenta
L � 10. Though the small sizes limit the quality of our data,
we find a positive shift and a chiral entanglement spectra,
both of which are more consistent with a NASS state than the
�

[−2,−2]
CF state.
We can move away from the hardcore interaction by

adding some V1 pseudopotential and see how these overlaps
are modified, giving some hint about the stability of these
candidate phases. We focus on ν = 4/3. The overlaps as a
function of V1 are shown in Fig. 10. The picture is unchanged,
namely the two candidates are comparably stable with respect
to V1 with a slight edge for the CF state. In particular, the
transition to a fully polarized state occurs around V1 � 0.4
irrespective of the shift. This value of V1 also leads to the
system full polarization for ν = 1 [80].

0
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0.8

1

0 0.1 0.2 0.3 0.4

FIG. 12. Overlap between the ground state �V0,V1 of the Hamil-
tonian using only the two pseudopotentials V0 = 1 and V1 and
the spinful Jain CF state �

[−2,−1]
CF in the spin sector S = N

3 . The
calculations were performed on the sphere geometry for both N = 14
(black line) and N = 17 (purple line) bosons.
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FIG. 13. (Top) Filling up the Brillouin zone with free spinful composite fermions to form a Fermi sea on a square torus [(a)–(c)]. For N = 8,
(a) there is a unique ground state provided there is a half-flux shift in the position of the origin [denoted by a cross in (a)–(c)]. Removing one
composite fermion on the outer shell of the Fermi sea creates a quasihole excitation (b). Adding a composite fermion to one the sites with the
shortest distance to the center of the Fermi sea creates a quasielectron excitation (c). For the quasielectron excitation, we depict the equivalent
positions in reciprocal space in light blue. (Bottom) The lowest energies in each momentum sector for the hardcore Hamiltonian at N = N�

on a square torus [(d)–(f)]. The lowest energies are indicated by a red box. [(d)–(f)] involve respectively N = 8, 7, and 9. Plot (d) is centered
(black cross) around (0,0) and plots (e) and (f) are centered around (π,π ).

For spinless fermions, the particle-hole symmetry is valid
for the whole spectrum. This implies that the gaps (both charge
and neutral) are identical. It is interesting to see if the bosonic
PH symmetry, though not microscopic as in the fermionic
case, can still relate the gaps of states at, e.g., ν = 2/3 and 4/3.
Here we will focus on the neutral gap. For ν = 2/3 and the
hardcore interaction, it was numerically evaluated to 	 � 0.45
in Ref. [97]. For ν = 4/3, the situation is more complicated.

FIG. 14. Predicting the ground-state momentum sector for N = 9
spinful bosons on a square torus. The origin is depicted by a cross and
lies at momentum ( N

2 , N

2 ) in units of 2π

N
. The numbers in parenthesis

indicate the position of a CF relative to the origin in units of 2π

N
.

Due to the competing NASS phase on the torus geometry,
we have to focus on the sphere geometry where a suitable
choice of the shift can prevent this competition. Moreover,
only three system sizes are numerically doable, preventing

FIG. 15. Extracting central charge from the slope of the entan-
glement entropy vs ln ξ (for correlation length ξ ). The dashed lines
show the predictions of c = 5 and c = 6 for L = 8–9 and c = 7
and 8 for L = 11–15. Data were taken for bond dimensions in
the range 800–5400. The entanglement entropy was extracted using
an orbital-space entanglement cut (unlike the real-space cut used
elsewhere in this work).
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any thermodynamical extrapolation. The results are shown
in Fig. 11. A plausible value for the extrapolated neutral gap
would be 0.3 � 	 � 0.4, which is slightly smaller than the
one at ν = 2/3. Therefore it seems that, at least in this case, the
bosonic PH symmetry does not extend beyond the low-energy
properties.

Finally, we address the case of ν = 3/2. The Jain CF state
�

[−2,−1]
CF is a partially polarized state with a total spin S = N

3
for N bosons. This candidate is not relevant when considering
the absolute ground state of the hardcore interaction but has
some substantial overlap with the ground state in the total
spin sector corresponding to this model state. These overlaps
are given in Table IV for the sphere geometry. Note that
the lower overlap value for N = 14 might be due to some
aliasing. Tuning the V1 pseudopotential plays two roles here.
It might improve the overlap, and also shows the stability
of the model in the polarization sector S = N

3 . As can be
observed in Fig. 12, the V1 = 0 is the optimum case and
adding some V1 has a minor effect on the overlap until the
system fully polarizes around V1 � 0.3. Second, we might
wonder if adding some V1 could drive the system absolute
ground state into the wanted total spin sector. What we have
observed using exact diagonalizations both on the torus and
the sphere geometry is that is mostly occur close to the
transition toward a fully polarized system. For example, in the
cases shown in Fig. 12, the absolute ground state has S = N

3
between V1 � 0.2 and V1 � 0.3 for N = 14. However, we
never found such polarization at the V1 resolution we have used
for N = 17.

APPENDIX D: ADDITIONAL CFL EVIDENCE

The CFL construction described in Sec. VII also works for
the square torus. On this geometry, we can place the origin

of the CF dispersion relation on an accessible point of the
Brillouin zone as we did for the θ = π/3 torus. But unlike the
C6v symmetry, the C4v symmetry also allows for a half-flux
shift of the origin in both directions [see Fig. 13(a)]. The first
option predicts a unique ground state for N = 10, which is not
observed, while the second configuration [Fig. 13(a)] predicts
a unique ground state for N = 8, which we observe in our exact
diagonalization data in Fig. 13(d). Removing (respectively
adding) one boson and one flux quantum—i.e., one CF—yields
a ground state with a degeneracy 4 (respectively, 8) [see
Figs. 13(b) and 13(c)]. These states appear in our exact
diagonalization data as exactly degenerate ground states (they
are related by the C4v symmetry) centered around the (π,π )
point in the N = 7 and N = 9 spectra as shown in Figs. 13(e)
and 13(f). In Fig. 14, we explain how the momentum sector of
the N = 9 ground state is predicted.

We have also tried to extract the central charge from the
iDMRG by plotting the entanglement entropy against ln ξ ,
ξ being the correlation length. Such data should be linear
with slope c/6. As discussed in Ref. [6] the central charge
should be given by the total number of wires −1. Based on our
conclusions about boundary conditions in the main text, we
would therefore expect a central charge of 5 for L = 8–9, and
7 for L = 11–15. We compare these predictions with iDMRG
data in Fig. 15. The data clearly exhibit a jump of two units for
the central charge as soon as the system can accommodate an
additional wire. For L = 8–9, the data matche this prediction
(i.e., c = 5) without completely ruling out a value such as
c = 6. For larger L, the slope of the lines seems slightly
larger than our predictions. We believe this is because we
have not reached large enough bond dimensions. However,
the clear change in slope, exactly where we have found that
the boundary conditions change, is a strong confirmation of
our analysis in the main text.
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