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Electronic orders and phase transitions in a honeycomb Kondo lattice system
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We study the electronic orders in a honeycomb-Kondo lattice. For the ground state, we use variational quantum
Monte Carlo to find the transition from antiferromagnetic insulator to Kondo insulator is continuous, in contrast to
the discontinuous transition in mean-field theory. Moreover, the hybridization parameter between the conduction
electron and the Kondo spin is nonzero even within the antiferromagnetic phase. At finite temperatures, we
resort to dynamical mean-field theory, which not only captures local quantum fluctuations but also accesses the
thermodynamic limit directly. There are three phases, namely, antiferromagnetic insulator, Kondo insulator, and
paramagnetic phase. The transition from antiferromagnetic phase to paramagnetic phase is likely discontinuous,
while that from antiferromagnetic phase to Kondo insulator phase remains to be continuous at finite temperatures.
There is a crossover from the paramagnetic phase, where spin excitations are gapless, to the Kondo insulator phase,
where spin excitations are gapped. Our results indicate a significant effect of fluctuations beyond mean-field theory
in the honeycomb-Kondo lattice. Since the transition from the antiferromagnetic phase to the Kondo insulating
phase occurs at a sizable Kondo coupling, where the Kondo lattice model is inequivalent to the Anderson lattice
model, our results are complementary to that for a honeycomb-Anderson lattice.
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I. INTRODUCTION

Heavy fermion materials are a class of transition-metal
materials, discovered by Graebner and Ott in 1975 [1]. In
such materials, the effective mass of quasiparticles could be
heavier than that of bare electrons by two to three orders of
magnitude. Superconductivity was also discovered in heavy-
fermion materials, such as CeCu2Si2 [2]. At high temperatures,
heavy-fermion materials are not too different from normal
metals, since the local moment, on the f orbitals for example,
interact only weakly with the conduction electrons. At low
temperatures, however, the local moments tend to form spin
singlets with conduction electrons, known as the Kondo
singlet, resulting in narrow bands near the Fermi level and a
small gap of the order of meV between such bands. When
the conduction band is particle-hole symmetric, the Fermi
level lies in between the narrow bands, forming an insulator.
Such behaviors appear in, for example, Ce3Bi4Pt3 and CeNiSn,
and was called Kondo insulators (KIs) [3]. SmB6 is another
interesting example [4], and was recently further identified as
a topological Kondo insulator [5,6].

Theoretically, there are two types of models under concern.
The first is the Anderson lattice model (ALM) [7], describing
the itinerant conduction electrons and the periodic coupling
to electrons on more localized orbitals and hence subject
to strong local Coulomb repulsion. The other is the Kondo
lattice model (KLM) [8], which can be derived from the
ALM in the strong interaction limit. However, when they
are taken independently, the two models are not equivalent
in the limit of weak interaction in ALM and strong Kondo
coupling in KLM. To understand the experimental results, a
phenomenological two-fluid model has also been developed in
an attempt to describe the itinerant and localized behaviors of
electrons [9,10].
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The behaviors of KLM can be roughly understood by the
well-known Doniach picture [8,11]. There are two competing
effects that determine the ground state of KLM. The first is
the Kondo screening that tries to force the local moments
and conduction electrons to form spin singlets. The other
is the effective coupling between local moments via the
conduction electrons, known as the RKKY interaction [12].
The characteristic energy scale for Kondo screening is just
the Kondo temperature TK ∼ De−1/2Jρ , where D is roughly
the conduction bandwidth, J is the antiferromagnetic coupling
between local moments and conduction electrons (the Kondo
coupling), and ρ is the conduction density of states. On the
other hand, the energy scale of RKKY coupling is JRKKY ∼
χJ 2, where χ is the spin susceptibility in the conduction
band. Therefore, the RKKY coupling dominates for small J ,
and the system favors a magnetic ordering at a wave vector
where χ is largest. In contrast, when J becomes larger, Kondo
screening may become dominant and the system favors a
nonmagnetic state. Because of the strong coupling between
local moments and conduction electrons, the system settles
down in a heavy-fermion metallic state if the conduction
band is away from particle-hole symmetry, or a KI if the
particle-hole symmetry is present.

While the Doniach picture provides qualitative insights, the
understanding of KLM is far from complete. The existence
of magnetic order and in particular the critical nature of the
transition from magnetic to nonmagnetic states are important
issues to explore. In the one-dimensional KLM, e.g., it is
found that at half filling the KLM is always in an insulating
spin-liquid state [13,14]. In two dimensions, the phase diagram
is richer but less thoroughly understood. Because of the lack
of exact solutions, numerical studies are indispensable, such
as quantum Monte Carlo (QMC) [15,16], variational Monte
Carlo (VMC) [17–19], series expansion [20], density-matrix
renormalization group [21], and dynamical mean-field theory
(DMFT) [22,23], etc. The simple Hatree-Fock mean field
theory (HFMFT) is also an easy option. Although it is not
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FIG. 1. Illustration of the two-dimensional HKL. The red/blue
symbols indicate the A/B sublattice. The conduction electrons move
on the bottom layer, while the local moments are on the tops of the
vertical bonds.

expected to be reliable in low dimensions, it may indicate
correctly the types of possible orders. At or above the upper
critical dimension, it should provide qualitatively correct
results. For example, mean-field results (at zero temperature)
for a three-dimensional KLM [24] appear to be in qualitative
agreement with the Doniach picture. Therefore the KLM in
two dimensions appears particularly challenging in theory.

The two-dimensional honeycomb lattice is even more
special in that the dispersion is linear near the Dirac points.
At half filling the Fermi level is at the Dirac points, and the
low-energy density of states (DOS) is linear in energy. The
recently discovered graphene is in such a structure [25,26],
providing a platform to manipulate Dirac fermions in crystal.
Here we are interested in the correlation effects. In usual
metals, the instability of the normal state is a result of the con-
spiration of interaction and finite DOS at the fermi level. For
example, Kondo screening always happens at sufficiently low
temperatures, irrespectively of how small (but nonzero) Kondo
coupling is, a consequence of infrared logarithmic divergence.
With a linear DOS, infrared logarithmic divergence is expected
to be absent, and electronic instabilities may require finite
interactions. In fact, it is found that the Kondo spin cannot
be screened even down to zero temperature in this case [27].
It is therefore interesting to ask what the interaction would
cause if the local moments could be deposited periodically
on the lattice, forming a honeycomb-Kondo lattice (HKL).
Technically such a lattice can also be cooked up using cold
atoms. A schematic plot of HKL is presented in Fig. 1.

Qualitatively, the HKL can also be understood in the Do-
niach picture. The conduction electrons mediate (Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions at the momentum
connecting two Dirac points, which is antiferromagnetic
within the unit cell. The RKKY interaction is of the order
of χQJ 2, where χQ is the antiferromagnetic susceptibility of
the conduction band, which is finite even though the DOS is
linear near the Fermi level. (In a half-filled tight-binding square
lattice, the susceptibility is logarithmically divergent.) When
an antiferromagnetic order appears, the conduction band is
gapped, and the system may be called an antiferromagnetic
insulator (AFI). However, the nature of the transition from
AFI to KI states has to be investigated more carefully due
to the low dimensionality. In a zero-temperature HFMFT in
the continuum limit of the HKL [28], it is found that the
transition is discontinuous: there is no hybridization between

the local moment and the conduction electrons in the AFI
phase, but it appears abruptly in the nonmagnetic KI phase.
Since the HFMFT ignores quantum fluctuations as well as
spatial correlations of fluctuations, all of which are important in
low dimensions, investigations beyond HFMFT are necessary.
Indeed, finite-temperature quantum Monte Carlo calculations
for the honeycomb-Anderson lattice (HAL) show the transition
is continuous [29]. (We notice that by the Mermin-Wagner
theorem there is no genuine AF order at finite temperatures in
two dimensions [30], therefore AF order at finite temperatures
henceforth should be understood in the sense of strong AF
correlations.) Given the fact that the quantum Monte Carlo is
performed at finite temperatures and in finite-sized HKL, and
the fact that HKL in the limit of large Kondo coupling and HAL
in the limit of weak Hubbard repulsion are not equivalent, here
we provide complementary investigations for the HKL.

The main results of this paper are as follows. We perform
VMC calculations for the ground state of HKL. We find AFI
and KI phases with increasing J , and the transition from
AFI to KI is continuous, in contrast to HFMFT. Moreover,
the hybridization parameter between the conduction electron
and the Kondo spin is nonzero even within the AFI phase.
We further perform DMFT calculations at finite temperatures,
which not only captures local quantum fluctuations but also
accesses the thermodynamic limit directly. The transition from
the AFI to the paramagnetic (PM) state is likely discontinuous,
while that from AFI to KI remains continuous at finite
temperatures. There is a crossover from the gapless PM phase
to the gapful KI phase in terms of spin excitation.

The rest of the paper is arranged as follows. In Sec. II, we
perform lattice HFMFT for HKL model at zero temperature
for self-completeness and comparison. In Sec. III we present
VMC results, and in Sec. IV we discuss the DMFT results. We
summarize the results in Sec. V.

II. HFMFT FOR HKL

For self-completeness and for comparison to later results,
we perform HFMFT for the HKL directly on the lattice. The
Hamiltonian is written as

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + J
∑

i

siSi, (1)

where t is the hopping on nearest-neighbor bonds, J is the
Kondo coupling, ciσ annihilates a conduction electron at site
i with spin polarity σ , and si and Si are the spin operator
for a conduction electron and the f electron on Kondo sites,
respectively. The f electron on a Kondo site is subject to
single-occupancy constraint,

nf,i =
∑

σ

f
†
iσ fiσ = 1. (2)

We set t = 1 as the unit of energy henceforth. The honeycomb
lattice has two sublattices A (red) and B (green), as illustrated
in Fig. 1. In the mean-field ansatz, we assume a hybridization
order parameter

ξ =
∑

σ

〈c†iσ fiσ + H.c.〉, (3)
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FIG. 2. Mean field order parameters versus the Kondo coupling
J . If the magnetic order is suppressed, ξ appears at a smaller J

indicated by the arrow.

and magnetic order parameters

mc = 2ηi

〈
sz
i

〉
, mK = −2ηi

〈
Sz

i

〉
, (4)

on the conduction/Kondo site, where ηi = ±1 for sublattice
A/B reflecting the antiferromagnetic configuration within a
unit cell, and z indicates the z component of the spins. The
mean-field Hamiltonian reads

HMF = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + J

2

∑
i

ηi

(
mcS

z
i − mKsz

i

)

− Jξ

2

∑
iσ

(c†iσ fiσ + H.c.), (5)

which can be diagonalized easily in momentum space. The
order parameters are determined self-consistently using the
mean-field Hamiltonian. The single-occupancy constraint for
the f electrons is relaxed to average half filling, 〈nf,i〉 = 1.
Within the mean-field approximation, it is straightforward to
prove that once ξ �= 0 and/or mcmK > 0 (favorable because of
the antiferromagnetic Kondo coupling) the mean-field bands
are gapped. Hence such ordered states are insulating. We
include the two kinds of orders simultaneously in the calcula-
tions, and we optimize the order parameters by minimizing the
average energy EMF = 〈MF |H |MF 〉, where H is the original
Hamiltonian and |MF 〉 is the mean-field ground state. The
average can be obtained by simple Wick contractions.

Figure 2 shows the dependence of the order parameters
on the Kondo coupling J . For J � 2.27 the AFI state has
lower energy. Here mK = 1, meaning the Kondo spin is fully
polarized, while mc increases monotonically with J . For J �
2.27 the KI state is more favorable, characterized by a finite ξ .
As found in Ref. [28], the magnetic (mc,K ) and hybridization
(ξ ) order parameters do not appear simultaneously, and the
transition from AFI to KI is discontinuous. This is a first-
order quantum phase transition. Indeed, we find hysteresis
behavior near J = 2.27 if we cycle J adiabatically during
the self-consistent calculations. Moreover, if we suppress the

magnetic order, the hybridization order would emerge already
at J ∼ 1.2, as indicated by the arrow in Fig. 2.

III. VMC FOR HKL

In this section we perform a VMC study of the HKL model.
We take the following variational Hamiltonian:

Hx = −
∑
〈ij〉σ

(c†iσ cjσ + H.c.) +
∑

i

ηi

(
μcS

z
i − μKsz

i

)

−V
∑
iσ

(c†iσ fiσ + H.c.), (6)

with variational parameters x = (μc,μK,V ). This Hamilto-
nian determines a Slater-determinant ground state |G0(x)〉,
which is used in the trial ground state for the original
many-body Hamiltonian H :

|G(x)〉 = P |G0(x)〉, P ≡ �i(1 − eiπnf,i ), (7)

where P projects away from |G0(x)〉 any real-space basis
components violating single occupancy of the f electrons on
the Kondo sites. The variational parameters are optimized by
minimizing the energy (per electron),

E(x) = 1

2N

〈G(x)|H |G(x)〉
〈G(x)|G(x)〉 , (8)

where N is the number of sites for c (or f ) electrons. We
notice that μc,K breaks spin-rotational symmetry as mc,K

does in HFMFT. If V = 0, the conduction electrons and f

electrons are decoupled, and E(x) becomes identical to EMF .
However, the two sectors are coupled when V �= 0, and VMC
is nontrivial. For example, while V breaks the local U(1)
gauge symmetry fiσ → fiσ eiθi in |G0(x)〉, as ξ does in |MF 〉,
this symmetry is restored by the projection operator P in
|G(x)〉. In this sense, VMC equivalently integrates over all
quantum gauge fluctuations, and the variational parameter
V should be understood as a parameter that organizes the
spin-spin correlations in the variational ground state, rather
than a gauge-symmetry breaking order. (In fact only the
absolute value |V | matters in VMC.) In practice E(x) has to
be evaluated by Monte Carlo sampling since the dimension of
the many-body Hilbert space increases exponentially with the
size of the system. Notice that VMC is controlled statistically
but is subject to systematical error if |G(x)〉 deviates from the
exact ground state. For technical details of VMC, see, e.g.,
Refs. [31–33]. For comparison to HFMFT, we also calculate
the average spin moments,

mc = 2

N

∑
i

ηi〈G(x)|sz
i |G(x)〉

〈G(x)|G(x)〉 ,

mK = − 2

N

∑
i

ηi〈G(x)|Sz
i |G(x)〉

〈G(x)|G(x)〉 . (9)

We use these averages to characterize the VMC results, but we
work with μc,K (and V ) in the actual VMC calculations.

In order to benchmark the accuracy of VMC as well
as the finite-size effect, we first perform VMC and exact
diagonalization (ED) for a small-sized HKL with 2 × 2 unit
cells (N = 8). The inset of Fig. 3 shows the variational
ground-state energy from VMC (line with error bars) versus
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FIG. 3. Results in a HKL with 2 × 2 unit cells (N = 8). Main
panel: (mc,mK ) from VMC (open symbols), and (mc,mK,V ) and
Kondo screening amplitude AKS from exact diagonalization (filled
symbols) under a small exchange bias field acting on the Kondo spins.
Inset: Ground-state energy E per electron from VMC (line) and exact
diagonalization (symbols). See the main text for more details. The
statistical error bars in VMC results are well within the symbol size.

J , and the exact ground-state energy by ED (symbols). The
agreement between VMC and ED is perfect. In the main panel
of Fig. 3, we show (mc,mK ) from VMC (open symbols).
Clearly (mc,mK ) drops to zero continuously around J = 1.65,
and on the other hand, V is finite at all finite values of J . For
comparison, we also calculate (mc,mK ) by ED. We find they
vanish in the exact ground state of H in the small system.
However, if we add to H a small bias −h

∑
i ηiS

z
i , with

h = 0.01, spin moments are generated and shown as filled
symbols in the main panel. The magnetic response to the bias
is strong in the small-J regime, and a crossover to weak or
linear response is seen at higher values of J . The crossover
point is in agreement with the transition point in the VMC
result. We further calculate by ED the amplitude of Kondo
screening (KS),

AKS = −4

3
〈siSi〉, (10)

shown as filled stars in the main panel. It increases steadily
with increasing J . In the fully screened case it should saturate
to unity. We find AKS � −(4/3)〈sz

i 〉〈Sz
i 〉 = mcmK/3. This

is a manifestation of significant correlation of quantum spin
fluctuations on top of the ordered moments.

We now present VMC results on a larger HKL with 6 × 6
unit cells (N = 72). The main panel of Fig. 4 shows the
optimized energy E versus J when all of the variational
parameters are taken into account. For comparison, the inset
shows the corresponding energy EV (or Em) if only V (or mc,K )
is included in VMC, with E as the reference. We see that both
EV and Em are higher than E for J < 1.7, suggesting that
all variational parameters are nonzero in this regime in order
to optimize E. For J > 1.7, Em > E and EV = E, hence
magnetic order should be absent in this regime. Figure 5 shows
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FIG. 4. VMC results for a HKL with 6 × 6 unit cells. Main
panel: optimized average energy E (per electron) with respect to all
variational parameters (mc,mK,V ). For comparison, the inset shows
the corresponding optimized energy EV (or Em) if only V (or mc,K )
is taken into account in VMC, with E as the reference. The statistical
error bars are well within the symbol size and hence not shown in the
inset.

explicitly the order parameters from VMC. With increasing J ,
mK decreases monotonically, while mc increases first and then
decreases. Both magnetic moments decrease continuously to
zero at J = 1.7. This marks the continuous quantum phase
transition from AFI to KI. Importantly, V is nonzero even in
the AFI phase, suggesting partial Kondo screening coexisting
with the magnetic order. The continuous transition as well as
the coexistence of partial Kondo screening are qualitatively
different from the HFMFT results. In fact, such features
are also found in KLM on square lattices [15,16,18,34].
Combining our results for HKL, we conclude they are general
features of particle-hole symmetric KLMs. We stress that the
overall features in Fig. 5 are consistent with the results in
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FIG. 5. Order parameters from VMC on a HKL with 6 × 6 unit
cells (N = 72). The statistical error bars are well within the symbol
size and hence are not shown.
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Fig. 3, implying weak finite-size effect. The underlying reason
can be traced to the fact that the system is always gapped,
satisfying the so-called close-shell condition that is important
for the stability of VMC.

IV. DMFT FOR HKL

Finally we perform DMFT for the HKL at finite tempera-
tures. Although DMFT is not exact, since it ignores spatial
correlation of fluctuations, it does capture local quantum
fluctuations and accesses thermodynamic limit directly. For the
HKL, DMFT proceeds as follows. First we assume an effective
quantum impurity problem consisting of a conduction site
coupled to a Kondo impurity site. We assume the conduction
site is described by a bare local Green’s function g0σ (iωn),
characterized by the hybridization function �σ (iωn) via

g−1
0σ (iωn) = iωn + �σ (iωn). (11)

Here ωn is the Matsubara frequency. The coupling to the Kondo
site causes a dressed Green’s function gσ (iωn) which can be
written as

g−1
σ (iωn) = g−1

0σ − �σ (iωn), (12)

where �σ (iωn) is the self-energy. The Green’s function
gσ (iωn) is obtained by the strong-coupling version of the
continuous-time quantum Monte Carlo (CTQMC) [35–37].
By the assumption of antiferromagnetic order on HKL,

gA
0σ (iωn) = gB

0σ̄ (iωn) = g0σ (iωn),

�A
σ (iωn) = �B

σ̄ (iωn) = �σ (iωn), (13)

where σ̄ = −σ , and A/B indicates the local functions on the
A/B sublattice. Thus we only have to solve one impurity
problem in practice. Furthermore, by particle-hole symmetry,
we have

g0↓(iωn) = −g∗
0↑(iωn), �↓(iωn) = −�∗

↑(iωn). (14)

This can be utilized to improve the statistics further. After
�σ (iωn) is obtained, we obtain the unit-cell-wise local Green’s
function by the Hilbert transformation,

Gσ (iωn) =
∫

d2k
(2π )2

(
iωn − �σ Xk

X∗
k iωn + �∗

σ

)−1

. (15)

Here G is a 2 × 2 matrix acting on the sublattice basis, the
integration is over the reduced Brillouine zone, and Xk is
the tight-binding dispersion of the c electrons. We extract the
diagonal element gσ (iωn) = G11

σ (iωn) and update g0σ (iωn)
and �σ (iωn) via

g−1
0σ (iωn) = g−1

σ (iωn) + �σ (iωn) → iωn + �σ (iωn). (16)

The process is iterated until convergence is achieved in
gσ (iωn) or �σ (iωn). Since CTQMC uses directly �σ (τ ),
the Fourier transformation of �σ (iωn), we end the itera-
tion if the difference between successive �(τ )’s is smaller
than 10−4. In the meantime, we obtain the averages mc =
2〈sz〉 and mK = −2〈Sz〉 on the conduction and Kondo
sites, respectively. For technical details on DMFT, see, e.g.,
Refs. [38–41].

Figure 6(a) shows the DMFT results at the inverse temper-
ature β = 10π . We see mc,K are finite only at finite J and
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FIG. 6. DMFT results for HKL. (a) mc,K and AKS vs J at
the inverse temperature β = 10π . The dashed line highlights the
discontinuous transition from PM to AFI phase. (b) Phase diagram in
the T -J parameter space. The lines are provided to guide the eye.

below J = 2.1. The difference to the case of zero temperature
is due to thermal fluctuations. We notice that the convergence
of the DMFT iteration is difficult to achieve for smaller J ,
implying the transition from paramagnetic (PM) state to AFI
state is likely first order. However, the convergence is smooth
at higher J , and the transition is continuous at J = 2.1 where
mc,K vanishes continuously. We also calculate AKS in DMFT
to have an idea of the extent of Kondo screening. We see that
AKS is nonzero for all finite J , and we find it is much higher
than the ordered part, AKS � −(4/3)〈s〉 · 〈S〉 = mcmK/3. As
in VMC, this implies that there are significant spin fluctuations
on top of the average moments (if any), and we also take this
as an indication of partial Kondo screening in the AFI phase.
By systematic calculations at various temperatures, we end
up with a phase diagram shown in Fig. 6(b). The transition
between AFI and PM phases is discontinuous (at least for
J � 1), while that between KI and PM is continuous. We
should point out that the PM phase and the KI phase are not
different in symmetry, but the spin excitations are gapped in
the KI phase. Hence the transition from PM to KI is just a
crossover. Finally we observe that T ∼ J 2 on the left phase
boundary (where J is small). This can be understood from
the fact that the energy gain from magnetic ordering is of
order J 2, and on the other hand the entropic free-energy gain
in the disordered phase is proportional to T . These factors
combine to explain the line shape of the left phase boundary
qualitatively, and possibly also the discontinuous nature of
the phase transition. Since DMFT ignores spatial correlation
of fluctuations, the discontinuous transition discussed here
deserves further investigations by, e.g., dynamical cluster
approximation or QMC. However, we notice that a similar
discontinuous transition was pointed out in the QMC result
for the HAL model [29], showing that it is unlikely an artefact
of DMFT.
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V. SUMMARY

We investigated the electronic orders and phase transitions
in the HKL model. The HFMFT at zero temperature reveals
the AFI and KI states and the discontinuous transition, in
qualitative agreement to that in Ref. [28]. VMC calculations
show however the transition is continuous, and moreover,
the hybridization parameter between the conduction electron
and the Kondo spin is nonzero even within the AFI phase.
Finally the DMFT calculations at finite temperatures also
show the transition between AFI and KI is continuous, and
there is a transition from the AFI to PM phase which is likely
discontinuous and the phase boundary may be understood in

terms of entropic effect. There is a crossover from the gapless
PM to gapful KI phase in terms of spin excitations. Since
the transition from AFI to KI occurs at a sizable J , where
the HKL and HAL are not exactly equivalent, our results are
complementary to Ref. [29] for the HAL.
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