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Many-body localization in spin chain systems with quasiperiodic fields
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We study the many-body localization of spin chain systems with quasiperiodic fields. We identify the lower
bound for the critical disorder necessary to drive the transition between the thermal and many-body localized
phase to be Wc > 1.85, based on finite-size scaling of entanglement entropy and fluctuations of the bipartite
magnetization. We also examine the time evolution of the entanglement entropy of an initial product state where
we find power-law and logarithmic growth for the thermal and many-body localized phases, respectively, with
a transition point Wc ∼ 2.5. For larger disorder strength, both imbalance and spin-glass order are preserved at
long times, while spin-glass order shows dependence on system size. Quasiperiodic fields have been applied in
different experimental systems, and our study finds that such fields are very efficient at driving the many-body
localized phase transition.
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I. INTRODUCTION

The interplay of random disorder with many-body interac-
tions has attracted a lot of recent research activity [1–10]. The
many-body localized (MBL) quantum phase [6–10] of matter
is distinctly different from both Anderson localized phase in
noninteracting systems and the ergodic (thermal) phase for
interacting systems with weaker disorder. The ergodic phase
follows the eigenstate thermalization hypothesis (ETH) which
describes how an isolated self-interacting quantum system can
thermalize under its own internal dynamics in agreement with
quantum statistical mechanics [11–13]. A system in the MBL
phase, on the other hand, fails to thermalize even for its highly
excited eigenstates on any time scale, resulting in new statistics
for such systems [1–10]. Many remarkable properties of the
MBL phase have been established [2–10,13–49] based on
extensive theoretical studies. The existence of both the ergodic
and MBL phases dictates a novel dynamic quantum phase
transition between them [1–3,22,23,30,45,50–57]. Random
disorder introduces rare Griffiths regions [23,24,50,51,58–61]
which may have singular contributions in driving such a phase
transition, but there is still a limited quantitative understanding
of their effects. Quasiperiodic fields [62] have a period
incommensurate with the lattice constant; thus they break
translational invariance and introduce disorder in a more
controlled way when compared to random fields.

In a recent work, it was shown that interacting quasiperiodic
models can have an MBL phase [32], and signatures of
this phase have been experimentally observed in recent
cold-atom experiments [63–67]. However, most numerical
studies of the MBL transition have focused on models of
spin chains with random fields [3,24,30,55,56]. Very recently,
the dynamic quantum phase transition has been analyzed
[68–71] for systems with quasiperiodic potentials. By ana-
lyzing the intrasample and intersample fluctuations with a
close comparison between quasiperiodic and random fields,
Khemani et al. [68] have demonstrated the possibility of two
universality classes for the quantum phase transition [56,68].
Other studies explore the interplay of MBL in quasiperiodic
potentials and the single-particle mobility edge [69,72,73].
Time evolution of many-body systems has been studied for
spin chains with randomly distributed fields [30,74] and

quasiperiodic fields [71], which can be used to address the
dynamics of the thermal to MBL phase transition [6,50,75].
After a global quantum quench, the power-law growth of
bipartite entanglement entropy is observed for thermal states
while logarithmic growth is found for MBL states where local
memories of an initial product state persist for all time [70,74].

In this paper we report on eigenstate and time-dependent
studies of spin chains with quasiperiodic fields. Through
exact diagonalization (ED) and Lanczos-Krylov space-time
evolution calculations, we find a dynamic quantum phase
transition from the ergodic phase to the MBL phase that is
similar to spin chains with random disordered fields. However,
systems with quasiperiodic fields appear to be more efficient at
localizing quantum states which is demonstrated by a smaller
critical disorder, Wc ∼ 1.85 (as a lower bound), compared to
similar estimates for systems with random fields [24] (where
the critical disorder field strength is around 3.5 [24]) in
agreement with the work of Khemani et al. [68]. We also
evolve a randomly selected initial product state and study
how entanglement entropy and other observables behave as a
function of time. Similar to random field systems, we find that
bipartite entanglement entropy experiences power-law growth
in the thermal phase and logarithmic growth in the MBL phase.
Interestingly, we also observe quasiperiodic oscillations of
spin imbalance on short timescales. Preservation of imbalance
and spin-glass order at long times is characteristic of the
MBL phase, commensurate with stronger disorder. Our results
suggest a critical quasiperiodic field strength of Wc ∼ 2.5 and
provide a quantitative understanding of the MBL phase for
spin systems with quasiperiodic fields.

II. THEORETICAL MODEL AND ERGODIC TO
MANY-BODY LOCALIZED PHASE TRANSITION

We study the Heisenberg spin-1/2 chain with a quasiperi-
odic field

H = J

L−1∑

i=1

Si · Si+1 + W

L∑

i

cos(2πci + φ)Sz
i . (1)

where Si is the spin operator for site i, J is the nearest
neighbor coupling constant which we set to J = 1, W is
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the strength of the quasiperiodic field, c is an irrational wave
number chosen to be c = √

2, and φ is a random phase used
to create different quasiperiodic field configurations. L is the
number of sites (system length). This model is similar to the
one studied recently in [68], which included second nearest
neighboring transverse spin couplings. In this paper, however,
we focus on the time evolution of initial product states for
systems with quasiperiodic fields. We use an open-boundary
condition which allows for a larger window to observe the time
evolution of physical quantities [74] before they saturate due
to finite-size effects.

We perform ED calculations to obtain energy eigenstates
around the energy E at a target energy density ε [24] for
systems with a different number of sites L = 10–18 in the
total Sz = 0 sector. Specifically, for each quasiperiodic field
configuration, we first calculate the ground state energy E0 and
the maximum energy Emax, which are used to define the target
energy density ε = (E − E0)/(Emax − E0). We first locate
the critical point for the MBL phase transition based on the
entanglement entropy and the fluctuations of the half-system
magnetization [24]. The Von Neumann entanglement entropy
of a system partitioned in the middle, with reduced density
matrix ρA, is given by S = − Tr(ρA ln ρA). We average the bi-
partite entanglement entropy over 30 (L = 10) to 200 (L = 18)
eigenstates near target energy E characterized by energy
density ε = 0.5, and over 1000 quasifield configurations by
choosing random φ between (0,2π ). As shown in Fig. 1(a),
we plot the ratio of entanglement entropy over the number
of system sites S/L for different systems at energy density
ε = 0.5 from L = 10 to 18 as a function of quasiperiodic field
strength W . As W → 0 we see S/L increases with L which
approaches the Page value [S/L ∼ 0.5 ln(2) for large L limit]
[76] following the volume law of the ergodic phase. For larger
W , S/L approaches zero indicating area law entanglement
and nonergodic behavior where the MBL state is realized.
With varying W , all data points approximately cross each
other around a critical value Wc ∼ 1.85. We compare the
entanglement entropy behavior with the bipartite fluctuations
F of the subsystem magnetization Sz

A [24,77], which is
defined as F = 〈Sz

A
2〉 − 〈Sz

A〉2 as shown in Fig. 1(b). We see
that F/L increases on the small W side, while it becomes
vanishingly small on the larger W side. The F/L curves
for different L approximately cross each other around the
critical field strength Wc ∼ 1.85, consistent with the behavior
of the entanglement entropy. In fact, we see that there is an
approximately proportional relationship between S and F for
all of the W region. We also note that the crossing points
between larger L curves move towards the larger W side. This
feature was also observed in a different model for quasiperiodic
systems as well as for random disorder systems [56,68], which
indicates the Wc we observed is a lower bound for the critical
point of the dynamic quantum phase transition.

We now analyze the finite-size scaling properties of the
MBL transition for the quasiperiodic field model. Crossing
the quantum phase transition, we expect that the entanglement
entropy ratio S/ST and the fluctuations of the half system
magnetization over the system length F/L should be a
function of L/ξ ∼ L(W − Wc)ν , where the correlation length
ξ has power-law divergence at the transition point with an
exponent ν. Note that ST = 0.5[L ln(2) − 1] is the saturated

(a)

(b)

FIG. 1. (a) The ratio of entanglement entropy over the number
of system sites S/L for L = 10–18 at the energy density ε = 0.5
as a function of the strength of the quasiperiodic fields W . (b)
The fluctuations of the half-system magnetization over L for L =
10–18. Both graphs display crossing around Wc ∼ 1.85, suggesting
a quantum phase transition at that point. For larger system sizes, the
crossing point drifts towards larger W .

thermal value for the entanglement entropy of a finite size
system [68,76]. As shown in Figs. 2(a) and 2(b), we find
that these quantities for all system lengths can indeed be
collapsed into one curve in a form f ((W − Wc)L1/ν) by
using the proper critical Wc ∼ 1.85–1.95 and the scaling
exponent ν ∼ 1.1 ± 0.1, which give the best collapsing effect.
The obtained exponent ν is in agreement with the results of
Khemani et al. [68], although the fitting for the F/L shows a
much larger finite-size effect. A similar crossing point is also
obtained using the adjacent gap ratio [24] (with slightly larger
finite-size effect), indicating a transition between the Gaussian
orthogonal ensemble statistics and Poisson statistics consistent
with the thermal and MBL phases, respectively.

Time evolution of quantum states

We study the nonequilibrium quantum dynamics of the
quasiperiodic systems after a global quantum quench. Here
we start by selecting a product state |�(0)〉 = |σ1,σ2, . . . ,σL〉
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(a)

(b)

FIG. 2. (a) Finite-size scaling collapse for (a) entanglement
entropy S/ST with ST as the Page value [76], and (b) the fluctuations
of the half-system magnetization data in the quasiperiodic model
for the system sizes L = 10–18. The critical disorder strength Wc ∼
1.85–1.95 and scaling exponent ν ∼ 1.1 are used to best collapse the
data.

with an average energy close to the target energy determined
by the energy density ε = 0.5 at the time t = 0 after the
quench, where σi = ± represents the spin-z component ±1/2
(with h̄ = 1) at site i. The state at time t can be obtained
as |�(t)〉 = e−iH t |ψ(0)〉 = e−iH�t |ψ(t − �t)〉. We calculate
the time evolution of an initial state |�0〉 based on a projection
of the Hamiltonian to the Krylov space spanned by |�0〉,
H |�0〉 , . . . ,Hn |�0〉. We calculate all eigenstates in this
space to obtain the time-evolution operator [24]. Using a
reasonably small time step δt ∼ 0.2/J allows for highly
accurate results for the quantum state with a small n = 30–60.
All time-evolution results are being averaged over more than
500 quasiperiodic field configurations.

We first discuss the general behavior of the entanglement
entropy as a function of time. On the small W side shown
in Fig. 3(a), we find that the entropy S(t) exhibits power-law
growth in time t before it reaches the saturated value L

2 ln 2 at
the long time limit in agreement with the ETH. On the larger
W side, we find a much slower growth, which can be fit with a
logarithmic growth function as shown in Fig. 3(b) for W = 3–5.
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FIG. 3. (a) In this log-log plot, for systems with W < Wc we
observe power-law growth of entropy S(t) which saturates at the
L = 16 Page value. (b) Semilogarithmic plot of S(t) with W > Wc

indicating logarithmic growth of S(t). The error bars of data are at
the same order as the size of symbols.

We now analyze the finite-size scaling behavior of S(t) for
L= 12–20. For small W = 1 as shown in Fig. 4(a), we find
that the initial growth (t ∼ 1) of S(t) is very rapid and system
size independent. For the intermediate time regime, S(t)
experiences power-law growth as demonstrated by the linear
behavior in the logarithmic plots until the finite-size effect sets
in. With the increase of L, we find a wider time interval for the
power-law growth of S(t). Interestingly, we see very similar
behavior and a smaller window for power-law growth of S(t)
for W = 2. The power-law growth indicated by the straight
line in the Fig. 4(b) is clearest for larger system size L = 20.
This is a strong indication that the W = 2 is in the thermal
phase consistent with the moving of the crossing point toward
larger W with the increase of L observed in Fig. 1. We then
look into S(t) at W = 3 as shown in Fig. 4(c) where we observe
that for small t , S(t) grows rapidly while the initial product
state evolves to a superposition state for t ∼ 1, which is then
followed by some oscillations of S(t). With further increase of
t , we find a logarithmic growth of S(t) for a time range of more
than two orders of magnitude. The range of t for logarithmic
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FIG. 4. (a) For system sizes ranging from 12 to 20, at W = 1, we observe that S(t) increases rapidly until t ∼ 1. When 1 < t < 50, S(t)
for all L data fit into a straight line demonstrating robust power-law growth. For larger t , we see that S(t) saturates toward L

2 ln 2, consistent
with the thermal entropy of the ergodic phase. (b) At W = 2, for smaller system sizes, we observe that S(t) grows slower than predicted by
the power law; on the other hand, L = 20 results behave as expected for a thermal state and the growth of its entropy over time follows the
power law. (c) At W = 3, we notice that all S(t) plots fit to a straight line in the semilogarithmic plot, indicating logarithmic growth for the
MBL state.

growth of S(t) becomes larger with the increase of W . These
results confirm an MBL phase with similar behavior to the
random field case studied by Luitz et. al [24].

Now we turn to spin correlations during the time evolution.
We start from the product state |�(0)〉 where the Sz

i on each
site i is ±1/2 while the total Sz of all sites is zero. We define
the following time correlator for σz as

I (t) = 4

L

L∑

j=1

〈�(0)|Sz
j (0)Sz

j (t)|�(0)〉 , (2)

which detects the total imbalance of spin-z component. As
shown in Fig. 5(a), we find a systematic change of the
properties of I (t) as W is varied. For smaller W = 0.5 and
1, we see that the long time behavior of imbalance I (t) is
dominated by power-law decay t−ζ , and at the large t limit
Sz

i on a site becomes uncorrelated with the initial condition
and I (t) approaches zero. For intermediate W = 1.5 and 2, a
similar power-law behavior is obtained with a much smaller
decay power ζ , indicating the longer time scale required to
approach equilibrium spin correlations for these thermal states
near the transition point to the MBL phase. On the MBL side
with W = 3 and 4, we see that the I (t) is near constant at
large t limit with a near vanishing decay exponent (ζ ∼ 0). In
Fig. 5(b), we show the decay exponent ζ as a function of W ,
where we find that the critical point for the transition to the
MBL phase is close to Wc ∼ 2.5 consistent with the conjecture
that Wc ∼ 1.85 is only the lower bound of the critical point,
though for given range of system sizes L = 10–18 it does give
the best collapsing of the finite sizes entropy and fluctuation
data (for highly excited eigenstates) as shown in Fig. 2.

For comparison, we also study spin-glass order [30] for
the MBL phase. The spin flip from the Heisenberg term will
create domain walls. If the domain walls are confined together,
a spin-glass order can develop. We define the spin-glass order
parameter

χ = 1

L

L∑

i,j=1

〈�(t)|4Sz
i S

z
j |�(t)〉2 , (3)

(a) (b)
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FIG. 5. (a) Imbalance I (t) for an L = 16 system with W = 0.5–6.
At small values of W , we notice the I (t) of the system decays rapidly;
however, when W is increased beyond W > 2, I (t) ceases decaying
and remains at a certain level. This is consistent with the MBL
behavior where the initial values of the local observables for each
site i is preserved. (b) Fitting parameter ζ for the power-law decay
exponent as a function of W . (c) Spin-glass order as defined in Eq. (3).
At small values of W , correlations between spins are short ranged and
χ (t) decays to 1 over time; at large values of W , χ (t) remains close
to its initial value even at very long time, further corroborating our
assertion of a quantum phase transition.
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FIG. 6. (a) Imbalance I (t) for an L = 12–20 systems at W = 3.
I (t) is insensitive to system size L. It shows initial oscillation at
shorter times, and it stays at a nonzero value at the long time limit. (b)
Spin-glass order χ (t)/L saturates to a finite nonzero value indicating
the divergent behavior with L.

which can diverge with L in the spin-glass ordered phase. As
shown in Fig. 5(c), we see behavior very similar to I (t). For
smaller W = 1–2, we see that χ (t) decreases with t in power-
law fashion, while it maintains a large value in the long time
limit for larger W > 2. Our results indicate a jump of the spin-
glass order at the thermal to MBL transition. In Fig. 6, we see
that both I (t) and χ (t)/L show very weak size dependence at
W = 3 and remain nonzero at long time and large system size
limits, which fully establish the robustness of the MBL phase.

III. SUMMARY AND DISCUSSIONS

We have studied many-body localization and quantum
phase transitions in spin chain systems in the presence of
quasiperiodic fields. Based on the entanglement entropy and
the fluctuation of the half-system magnetization studies, we
find the lower bound of the critical field strength Wc for the
dynamic quantum phase transition from the thermal phase to
the MBL phase driven by the quasiperiodic fields to be on the
order of Wc ∼ 1.85. Interestingly, for W just above Wc, we
find that the entanglement entropy following a global quench
grows with time under the power law, consistent with the
behavior of the thermal phase. From the scaling behavior of the
spin imbalance and spin-glass order, we identify the divergent
spin-glass order for W � 3. Overall, the finite-size effect in
such a quasiperiodic system turns out to be not too important
as the scaling behavior in the intermediate regime near the
transition appears to be showing either thermal behavior
(W ∼ 2) or MBL characteristics (W ∼ 3), suggesting the
best estimate of the transition point to be Wc ∼ 2.5. Our
results provide quantitative understanding of the effect of
quasiperiodic fields, which are more efficient in driving MBL
physics than random fields due to the importance of the rare
Griffiths regions in random field models. Our results are also
consistent with experimental observed MBL phenomena [63]
for one dimensional fermionic systems with quasiperiodic
fields through the Jordan-Wigner transformation. In such
experimental systems, while the fermionic interaction term
enhances delocalization similar to the effect of spin-spin inter-
action, many-body localization is stabilized by the quasifield. It
would be very interesting to further identify the phase diagram
for quantum states at different energy densities and reexamine
the possibility of the existence of the mobility edge [71] in such
systems based on large scale density matrix renormalization
studies. Another interesting direction is to explore the MBL
phase transition in ladder systems with coupled spin chains
[52], which provides information about the MBL physics in
two dimensions.
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