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A major challenge in creating a quantum computer is to find a quantum system that can be used to implement
the qubits. For this purpose, deep centers are prominent candidates, and ab initio calculations are one of the most
important tools to theoretically study their properties. However, these calculations are highly involved, due to
the large supercell needed, and the computational cost can be even larger when one goes beyond the Kohn-Sham
scheme to correct the band gap problem and achieve good accuracy. In this work, we present a method that
overcomes these problems and provides the optical transition energies as a difference of Kohn-Sham eigenvalues;
even more, provides a complete and accurate band structure of the defects in a semiconductor. Despite the
original motivations, the presented methodology is a general procedure, which can be used to systematically
study the optical transitions between localized levels within the band gap of any system. The method is an
extension of the low-cost and parameter-free DFT-1/2 approximate quasiparticle correction, and allows it to be
applied in the study of complex defects. As a benchmark, we apply the method to the NV− center in diamond.
The agreement with experiments is remarkable, with an accuracy of 0.1 eV. The band structure agrees with the
expected qualitative features of this system, and thus provides a good intuitive physical picture by itself.
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I. INTRODUCTION

One of the most exciting engineering problems of current
days is to develop a quantum computer. A quantum computer
is a computation system that makes direct use of quantum
phenomena, such as entanglement and superposition, to
perform operations on data. Their fundamental building blocks
are called qubits, in analogy to the bits present in digital
computers. Quantum computers could enable us to solve
complex and time-demanding problems in a much faster way.
This performance difference is not due to an eventual faster
clock speed, but due to the different kind of operations that
quantum computers will be able to perform with the data stored
in qubits [1].

A major challenge in creating a quantum computer is to
find a quantum system that could be used to implement the
qubits. Most systems interact strongly with their surroundings,
causing decoherence and consequently loss of information.
In this scenario, deep centers are prominent [2]. They are
point defects in a semiconductor or an insulating crystal
that bind electrons to a localized region. Consequently, most
characteristics of their electronic states resemble the ones
of single atoms or molecules. Additionally, deep centers
are fixed in space by the surrounding crystal, in contrast to
some other proposals that require additional systems, like the
magneto-optical traps for ultracold atoms.

A deep center in diamond, known as negatively charged
nitrogen-vacancy center (NV− center) [3], has been strongly
considered for such applications, since it has many desirable
characteristics: its spin can be optically polarized, manipulated
with microwaves, optically measured in an on-demand fashion
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at the single defect level, and also have a huge coherence time,
achieving the order of milliseconds [4].

Although NV− centers in diamond have all the desirable
characteristics for a qubit, diamond as a host is not ideal,
since it makes device construction and design with current
technology really challenging due to its high mechanical
resistance and small chemical reactivity [4]. Therefore it is
desirable to find deep centers with NV-like properties in
semiconductor hosts that are more technologically mature,
and a systematic search has been initiated [5].

To predict theoretically whether a system is suitable to
implement a qubit, first-principles calculations based on
density functional theory (DFT) are often used. However, in
order to achieve enough accuracy, the calculations are usually
highly involved because one needs to use a large supercell
and one must go beyond the Kohn-Sham scheme to better
describe it, due to the underestimation of the quasiparticle
band gap in standard DFT calculations. Hence it is desirable
to develop a fast method that can be employed on this
systematic search for NV− like systems. A good choice is the
LDA-1/2 (LDA minus half), developed by Ferreira, Marques,
and Teles [6,7], which introduces approximate quasiparticle
corrections and has accurate predictions, while keeping the
same computational cost of the standard LDA approach. The
method also works with the more modern GGA functionals, in
which case it is called GGA-1/2. Hence, to avoid unnecessary
particularization, we call it DFT-1/2.

In this paper, we extend the DFT-1/2 method to calculate
the optical transition energies between the defect levels. We
demonstrate that it is possible to determine the optical tran-
sition energies directly from the Kohn-Sham band structure,
against the usual procedure of taking the difference between
two total-energy calculations. Our proposal is benchmarked
by applying it to the NV− center in diamond, whose transition
energies have already been experimentally determined. The
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method allows for a systematic search for deep centers, since
it has as a final result a complete band structure, which we
can use to accurately analyze the system both qualitative
and quantitatively. Moreover, despite the specific nature of
its initial motivation, this method is a general procedure, and
can be used to study any system with optical transition energies
between levels within the band gap.

II. RETROSPECT FOR THE NV− CENTER IN DIAMOND

Point defects are usually stable in different charge configu-
rations, depending on the Fermi level position. The NV center
has two different charge configurations, NV0 and NV−, and
only the latter has the desired properties to be used as a qubit
[3]. Fortunately, nitrogen doping places the Fermi level inside
the range where the negatively charged defect is stable [8].

The NV center consists in a substitutional nitrogen atom
adjacent to a carbon vacancy, presenting a C3v point symmetry.
An instructive and useful model is to consider the defect as an
effective molecule [9,10]. This approach, known as “molecular
model for defects” consists in making symmetry adapted linear
combinations of the dangling bonds around the vacancy to
construct molecular orbitals. It has the implicit assumption that
the electrons bound to the defect are localized around it and
are not “spilling over” from the vacancy into the entire crystal
[9,11]. The states are labeled using the Mulliken symbols.
Lower case letters indicate the single-particle states, while
capital letters label the many-body states.

Since each dangling bond from the three carbon atoms
surrounding the vacancy contributes with one electron, and
the overlapping nitrogen lone pair has other two electrons, we
conclude that the neutral NV center would have five electrons
and, consequently, the NV− would have six, which would be
accommodated in the defect energy levels.

We note that the defect has states within the band gap
that are spin dependent, a consequence of the fact that this
defect breaks the spatial inversion symmetry of the crystal.
The electronic occupation for the ground state of the NV−

center is shown in Fig. 1. It can be obtained by filling the
lowest energy states with the corresponding spin state (spin
up on the left side, spin down on the right side). This leaves
us with four spin-up and two spin-down electrons, hence the
spins in the ground state do not cancel out and we have a total

FIG. 1. Schematic representation of the defect states and their
occupation on the ground state of the NV− center in diamond. Spin-up
levels are on the left of the figure, while spin-down levels are on the
right. There are two distinct levels with a1 symmetry, which are
labeled in crescent order of energy with a number on the left. The
double-degenerate level e is indicated with a broken line.

FIG. 2. Schematic configuration coordinate diagram for the NV−

center. The curves represent the energy of the defect as a function of
the displacement of the atoms, measured by a generalized coordinate
q, for both its many-body electronic ground and excited states. The
minima of these curves correspond to the relaxed geometry of each
case. The vertical transitions (green and red arrows) correspond to the
peaks in the optical absorption and emission curves, respectively. The
transition between the minima is called the zero-phonon line (ZPL),
and is the same for both the emission and absorption. The Stokes
(ES) and anti-Stokes (EaS) shift energies are also indicated.

effective spin S = 1, i.e., the ground state is a triplet. This fact
is of central importance in the application of the NV− center
as a qubit, since it is the spin that is used to store the quantum
information.

When electromagnetic radiation of 2.18 eV (569 nm, green
light) is applied [12], as depicted in Fig. 2, there is a resonant
excitation to the first excited state. This can be understood
in light of Fig. 1 as promoting the spin down electron in
the state 2a1↓ to one of the excited states ex↓ or ey↓. Note
that this is the first possible optical excitation of the system,
since changes in spin are forbidden at the first order. Another
important fact concerning this transition is that it is possible
to excite the system without exciting electrons neither from
the valence band to the defect nor from the defect to the
conduction band, because the defect levels are far apart from
the valence-band maximum (VBM) and the conduction-band
minimum (CBM). If the levels were shallower, it would be
possible to excite electrons into or outside the defect levels,
what would compromise its operation as a qubit.

Considering the multielectronic system, both the ground
state and the excited state are triplets. However, the excited
state transforms as the E symmetry representation, in contrast
with the ground state, which transforms as A2. This difference
in symmetry of the wave function impacts the geometry of
the defect. After a transition, the structure relaxes to the new
equilibrium geometry, and since the movement of the ions
is orders of magnitude slower than the electronic excitation,
it is a good approximation to consider that the absorption
and emission corresponds to vertical transitions (Fig. 2). The
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photon emission then occurs in the geometry of the excited
state, and the difference in energy between the excited state
and the ground state in this configuration is 1.76 eV (704 nm,
red light) [12]. The difference in energy between the excited
and ground states in their respective relaxed geometries is
called the zero phonon-line (ZPL), and is also indicated in
Fig. 2. This considerable difference in the wavelength enables
to easily separate the photons of the pumping laser from the
photons emitted by the center by using a dichroic mirror (which
reflects one wavelength and transmits the other), as in confocal
microscopy.

It is important to mention that the DFT approach and the
defect molecular model are complementary to each other.
These two theoretical methods have their complementary
strengths and weaknesses, and only their combined application
can give us a good picture of the observed phenomena [3].

III. THE DFT-1/2 LOCAL CORRECTION
TO DEFECT LEVELS

The most important tools to support the search for suitable
deep centers for quantum computing applications are the
ab initio computational techniques based on DFT, since they
allow us to determine macroscopic properties based only on
the system’s atomic composition and approximate geometry.
Many attempts have been made to find such defects to find
such kind of defects in several semiconductors, as in some
silicon-carbide polytypes [4,8], wurtzite aluminum nitride
[13], and zinc-blende gallium nitride [14].

Two major concerns can make first-principle calculations
of defects a difficult task. First, the usually employed periodic
boundary conditions to study solids require a large supercell
to minimize the interaction between the defect and its images.
Second, the Kohn-Sham band gap is underestimated when
compared to experiments [15,16], which also impairs reliable
calculations of defect levels above the valence band [17]. The
method, which correct Kohn-Sham eigenvalues, such as hybrid
functionals [18,19] and the GW approach [20], usually raise
the computational cost [21]. The DFT-1/2 method is a good
alternative due to its nice accuracy and low computational cost.

LDA-1/2 and GGA-1/2 have already been successfully
used to study point defects [22,23] by applying a formalism
developed by Rinke et al. [17]. In these cases, the interest
was to study the defect formation and transition energies,
both quantities related to the electronic ground state in several
charge states, such that what was changing was the number of
electrons binded to the defect as a function of the Fermi level
position. In the present case, the charge of the defect is always
the same and our interest is to study the energies associated to
the optical excitation of an electron between intradefect energy
levels.

The DFT-1/2 method generalizes the Slater’s transition
state technique for solids, introducing approximate quasiparti-
cle corrections, which lead to accurate band gap calculations.
The details of the method are given in Refs. [6,7]. In this work,
we present an overview to contextualize the reader who is not
familiar with the method. The approach relies on the Janak’s
theorem [24] and on the approximately linear dependence of
the Kohn-Sham eigenvalues with its own occupation. It is
possible to use these two facts to show that, in the case of atoms

and molecules, the value of the highest occupied eigenvalue
with half-ionization is the system ionization energy with a
remarkable agreement with experimental data [25].

In semiconductors and insulators, the quasiparticle band
gap is defined as the energy difference between the ionization
energy and the electronic affinity. Thus this scheme allows
us to compute the band gap as the difference between the
Kohn-Sham eigenvalues, by introducing a half-hole on the
VBM and a half-electron on the CBM.

Since Bloch states are delocalized, they do not accurately
describe neither the hole on the valence band nor the electron
on the conduction band [7]. Therefore, instead of changing the
occupations of the levels, this contribution in energy is added to
the potential of the atoms itself. It is assumed that this potential
has the same format of the atomic self-energy potential VS ,
which can be simply computed as the difference between the
neutral atomic potential and the half-ionized atomic potential
[6]. Considering that the localized hole state will be close to
the VBM and the localized electron state will be close to the
CBM, we must find which atomic orbitals contribute to each
of these levels and in what proportion (the orbital character
of the levels). This is quantified by the projection of these
Kohn-Sham orbitals onto the atomic orbitals. A schematic
representation of this scenario is given on Fig. 3(a).

In what follows, we describe an extension of the method
for defect levels, which resembles in many aspects the scheme
for the bulk [Fig. 3(b)]. Due to the increased complexity of
the orbital character of the levels, a more precise notation is
necessary. Indeed, this is also a formalization of some ideas that
already have been introduced in recent publications [26–28].

We must add the potential that corresponds to the removal of
half-electron from the occupied level (labeled α). In the usual
and simple cases for the bulk, the Kohn-Sham state ψα(kVBM)
is composed only of the valence level p orbital of the ion.
However, in the case of the defect, we can have a set of atoms
contributing to this level, in which case we must remove a
smaller fraction of electron from each of them, proportionally
to their contribution. Hence, for each atomic orbital φ of each
atom X, we subtract a fraction ξX,φ of an electron given by

ξXφ = charXφ[ψα(�)] × 1
2 , (1)

FIG. 3. (a) Schematic representation of a Kohn-Sham band
structure with the Valence Band Maximum and Conduction Band
Minimum with half-occupation, as considered on the DFT-1/2
method; and (b) Extension of the DFT-1/2 scheme for defect levels
within the band gap.
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where charXφ[ψ(k)] corresponds to the proportion of the
atomic orbital φ of atom X to the orbital character of the
Kohn-Sham state ψ at point k. Similarly, we must add
the potential that corresponds to the addition of half-electron
to the unoccupied level (labeled β). The fraction ζXφ to be
added to the orbital φ of atom X is given by

ζXφ = charXφ[ψβ(�)] × 1
2 . (2)

The projection on atomic orbitals is usually a standard
output of DFT codes, and is computed as the projection of the
wave functions onto spherical harmonics within spheres of an
atomic species-dependent radius around each ion. Considering
the fact that some small contributions of atoms far from the
defect are going to be neglected, it is important to normalize
the orbital characters of the considered atoms with respect to
their sum, ensuring that∑

Xφ

ξXφ =
∑
Xφ

ζXφ = 1

2
. (3)

The self-energy potentials are considered spherically sym-
metric, so the dependence on r will be omitted on our notation.
We compute the components V

Xφ

S of the self-energy potential
VS as

V
Xφ

S,α = VX(f0) − VX(f0 − ξXφ), (4)

V
Xφ

S,β = −[VX(f0) − VX(f0 − ζXφ)], (5)

where f0 is the occupation of the orbital φ of atom X on
the ground state, and VX(f ) is the potential of atom X with
occupation f . Adding the components, we find

V
Xφ

S = VX(f0 − ζXφ) − VX(f0 − ξXφ). (6)

Before adding the potentials to the Kohn-Sham potential,
we must multiply them by a trimming function 	Xφ(r) to
avoid the divergence that would arise from the sum of the 1/r

coulombic tails of these potentials [6,7]. 	 is a smooth steplike
function, defined as

	(r) =
{[

1 − (
r

CUT

)8]3
if r � CUT

0 if r > CUT
, (7)

which depends on a parameter called CUT. This parameter
have to be determined variationally, by following the same
procedure as in the bulk case, i.e., by extremizing the
difference between the considered levels [6,7]. Thus the
trimmed potential is

V̂
Xφ

S = 	XφV
Xφ

S . (8)

It is common to have situations in which the CUT depends
only on the atom. In these cases, it is useful to define

V̂ X
S = 	X

∑
φ

V
Xφ

S , (9)

and then we would have a single correction to the potential per
atomic species, with a single value of CUT to be determined
variationally.

The most noticeable difference between the usual
DFT-1/2 and the procedure here introduced is that in the latter

exactly half electron is transferred between the defect levels,
being divided amongst the atoms which contribute to them. In
solids, the total number of transferred electrons scales with the
number of atoms in the cell, since the corrections are applied
as if each atom contributed independently to the composition
of the VBM and the CBM.

IV. COMPUTATIONAL DETAILS

The calculations have been performed within the DFT com-
bined with the generalized gradient approximation of Perdew-
Burke-Ernzerhof (GGA-PBE) exchange-correlation potential
[30] using the Viena ab initio simulation package (VASP)
[31,32]. The electronic wave functions have been expanded
using the projected augmented wave (PAW) method [33,34].

In order to build a good approximation for the supercell
structure, first the structure of a single cubic unit cell has been
relaxed. The next step is to replicate it side by side to build
a 3 × 3 × 3 supercell, with a total of 216 atoms, and a new
structural relaxation has been carried out. Then, the defect has
been created by arbitrarily removing one of the atoms of the
supercell and replacing one of the carbon atoms neighboring
the resulting vacancy by a nitrogen (Fig. 4). The number of
electrons has been increased by one, since we are interested
in the negatively charged NV center. As the last step before
applying the DFT-1/2 corrections, a spin-polarized structural
relaxation has been performed for both the electronic ground
state and first excited state by setting the corresponding energy
levels occupations, to obtain and store the respective resulting
atomic positions. It is noteworthy that, according to Fig. 1, the
first excited state corresponds to promote the highest occupied
spin-down state (2a1↓) to the lowest unoccupied spin-down
states (ex↓ and ey↓), with half electron in each one of the
states, to symmetrize the occupation.

In the geometry optimization of the pure cells, i.e., cells
that do not include the defect, the volume and shape of the
cell and all the atoms have been allowed to relax until the
magnitude of all forces is smaller than 10−3 eV/Å. In order
to save computational effort and relying on the fact that only
the nearest atoms should be affected by the defect, the volume
and shape of the cell have been fixed for the relaxation of the
supercells with the defect, and the same stopping criteria as
before has been used.

Following the Monkhorst-Pack scheme [35], the Brillouin
zone (BZ) has been sampled by a 19 × 19 × 19 grid of k points
for the single cubic cell and by only the gamma point for
the supercells. The plane-wave basis set has been considered
within a cutoff energy of 530 eV. The electronic convergence
criterion has been that the total (free) energy and the band
structure energy change between two steps are both smaller
than 10−7 eV. In the simulation of the negatively charged
defect, a positive uniform background charge has been added.
The numeric errors of our calculations have been estimated to
be smaller than 50 meV.

V. APPLYING THE LOCAL CORRECTION TO THE NV−

CENTER IN DIAMOND

The usual procedure to calculate the optical transition
energies of defect levels is to take the difference in total energy
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FIG. 4. (a) 215-atom supercell used to simulate the defect avoiding spurious interactions among images. (b) NV− center and its surrounding
atoms, representing the vacancy as a gray shadow. In both images, brown, bluish-gray, and red circles represent, respectively, the host carbon
atoms, the nitrogen atom, and the three carbon atoms neighboring the vacancy. The images have been produced with help of the VESTA

software [29].

between each electronic configuration. Because this concerns
excitations, one needs to go beyond the Kohn-Sham scheme,
by carrying out, e.g., HSE calculations, to avoid the usual band
gap problem and to obtain a more accurate result for these
energies [17]. The inconvenient is the increase in the compu-
tational cost. Therefore it would be of interest to apply the less
demanding DFT-1/2 formalism. However, as implemented,
this method does not compute a physically meaningful total
energy, but the optical transition energies can be accurately
obtained as the difference between their corresponding Kohn-
Sham eigenvalues, as demonstrated in Appendix.

We must obtain the difference between the state 2a1↓ and
the double-degenerated state e↓ in each geometry, according
to Fig. 1. We may write

EAb = ε(e↓; qgnd) − ε(2a1↓; qgnd), (10)

EEm = ε(e↓; qexc) − ε(2a1↓; qexc), (11)

where ε(ψ ; q) corresponds to the eigenvalue of the state ψ

as a function of the configuration coordinate q, which in
the current case correspond to the most stable geometries
in each one of the two electronic configurations, as indicated
in Fig. 2. Note that it is only possible to unambiguously define
these functions because the position of the eigenvalues are
considered independent of the occupation of these levels, as
explained in Appendix. Otherwise, they would be functions of
the occupation as well.

With the relaxed geometries for both the ground and excited
states, we first separate the atoms in three types: the carbon
atoms of the bulk (CBulk), which are responsible for the valence
and conduction bands, the nitrogen atom, and the carbon atoms
which are the carbon vacancy next neighbors (CDefect), whose
dangling bonds contribute to the localized defect levels. Since
these types contribute differently to the band structure, they
must be analyzed separately.

For the CBulk atoms, the same corrected potential as the
one used in the diamond unit cell is applied: due to the
perfectly covalent bonds between the carbon atoms, the band
gap of diamond is corrected by subtracting one quarter of
electron from the 2p orbital of the CBulk atoms, as indicated in
Ref. [6]. The CUT of 2.5 bohr is determined by maximizing
the band gap, which gives a gap of 5.01 eV, as shown in
Fig. 5(a).

To apply the local correction to the defect, the character
of the levels involved in the first optical excitation, for both
geometries, is determined by using the band character obtained
by standard PBE calculation. Accordingly, the percentage of
the character contribution is obtained by considering solely
the nitrogen atom and the carbon atoms that are the vacancy
next-neighbors (CDefect). Table I presents the orbital character
of the defect levels.

For each orbital, in each geometry, the potential of half
electron, weighted by the character of the 2a1↓ level, must
be removed, while the potential of half electron, weighted
by the character of the two states e↓, must be added. These
results are also displayed in Table I. The CUT parameters for
these corrections are determined by maximizing the difference
between the levels e↓ and 2a1↓, and we obtain the same values
for the excited and ground states, which are CUT=2.50 bohr
for CDefect and CUT=3.00 bohr for N. The curves obtained in
this optimization procedure are displayed in Figs. 5(b)–5(e).

The maximum values obtained on Figs. 5(c) and 5(e)
correspond, respectively, to the corrected absorption and
emission energies. The values are displayed in Table II,
together with other results and experimental data. With their
respective corrected potentials, the electronic structure is
calculated for each geometry, and the corrected band structures
are displayed in Fig. 6. The energy differences between the
defect levels correspond to the optical transition energies, as
indicated by the curved arrows. The similarity of these results
with the initial and simple picture of the position of the energy
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FIG. 5. CUT determination for the DFT-1/2 corrections. The corrections have been performed sequentially for each geometry, in the
following order: CBulk, N, CDefect. (a) Band gap of pure diamond as a function of the CUT for the 0.25 electron removal from the CBulk atoms’ 2p

orbital. (b) Transition energy on the ground state’s geometry as a function of the CUT of the nitrogen atom, with CBulk corrected. (c) Transition
energy on the ground state’s geometry as a function of the CUT of the CDefect atoms, with CBulk and N corrected. (d) Transition energy on
the excited state’s geometry as a function of the CUT of the nitrogen atom, with CBulk corrected. (e) Transition energy on the excited state’s
geometry as a function of the CUT of the CDefect atoms, with CBulk and N corrected.

levels (Fig. 1) is remarkable. A discussion about Table II
and about the band structures shown in Fig. 6 is given in
Section VI.

Besides the vertical transition energies, the ZPL energy
is also of experimental interest. We cannot simply use
the difference between the Kohn-Sham eigenvalues of two
different geometries to calculate it, since it would not take
into account the energy difference due to the displacement
of the ions. Nonetheless, we can indirectly calculate EZPL.
This is possible because the values for the total energy of the
two geometries in their electronic ground state are correctly
calculated by the standard DFT. Hence, we can obtain the
anti-Stokes shift as

EaS = E(fgnd,qexc) − E(fgnd,qgnd), (12)

where E(f,q) is the energy as a function of the electronic
configuration f and the geometry q, and use it together with

TABLE I. Orbital character of the defect levels and fractions of
electron to be removed from and added to each potential (denoted by
ξ and ζ , respectively).

Ground state Excited state

Xφ 2a1↓ ξXφ ex↓+ey↓ ζXφ 2a1↓ ξXφ ex↓+ey↓ ζXφ

C2s 0.6% 0.00 3.1% 0.02 0.6% 0.00 2.2% 0.01
C2p 17.7% 0.09 30.2% 0.15 21.7% 0.11 31.1% 0.16
N2s 4.6% 0.02 0.0% 0.00 4.9% 0.02 0.0% 0.00
N2p 40.7% 0.20 0.3% 0.00 28.1% 0.14 0.3% 0.00

the vertical transitions to determine the remaining desired
energies as

EZPL = EEm + EaS (13)

ES = EAbs − EZPL, (14)

as one can readily see from Fig. 2.
Finally, the steps to be followed to apply the DFT-1/2

method for defect levels, introducing local corrections, can
be summarized.

TABLE II. Vertical absorption (EAb), vertical emission (EEm),
zero-phonon line (EZPL), Stokes shift (ES) and anti-Stokes shift
(EaS) energies calculated by different methods, compared to the
experimental data [12] (all values in eV).

EAb EEm EaS EZPL ES

GGA
(total energy) 1.90 1.55 0.16 1.71 0.19

GGA
(eigenvalues) 1.86 1.55 0.16* 1.72† 0.15‡

GGA-1/2
(eigenvalues) 2.18 1.68 0.16* 1.85† 0.33‡

HSE06 [37]
(total energy) 2.21 1.74 0.22 1.96 0.26

Exp. [12] 2.18 1.76 0.19 1.95 0.24

*Calculated using Eq. (12).
†Calculated using Eq. (13).
‡Calculated using Eq. (14).
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FIG. 6. Supercell band structures, around the gap region and along some special high symmetry directions in the cubic BZ, for the structural
geometries of the NV− center in the (a) ground state and (b) excited state. The blue and red lines represent, respectively, the spin-up and
spin-down energy levels. The occupied states related to the defect are indicated by ↑ and ↓ arrows. Both results have been obtained with bulk
and local corrections. The direct band gap is a consequence of the supercell band folding.

(1) Perform the structural relaxation of the unit cell;
(2) Determine the VBM and CBM orbital characters;
(3) Build the supercell and perform a new structural

relaxation;
(4) Set and build the defect in the supercell, perform

the structural relaxation with the electronic ground state
occupancy and determine the orbital character of the selected
defect levels;

(5) Perform the structural relaxation with the electronic
excited state occupancy and determine the orbital character of
the selected defect levels;

(6) Calculate the system total energy in the electronic
ground state in the excited state geometry, and determine the
anti-Stokes shift (EaS) using Eq. (12);

(7) Determine the CUT parameter for the bulk atoms by
maximizing the band gap;

(8) Determine the CUT parameter for the defect atoms by
maximizing the energy difference between the selected defect
levels, and determine the energies of the vertical transitions
(EAb and EEm); and

(9) Determine the remaining energies (EZPL and ES) using
Eqs. (13) and (14), respectively.

(10) Optional: calculate the corrected band structures.

VI. RESULTS AND DISCUSSION

The diamond band gap value of 5.01 eV obtained with
GGA-1/2 approach shows a remarkable improvement over the
value of 4.1 eV obtained with standard GGA, when compared
to the exprimental value of 5.47 eV [36]. Even though the result
has a considerably better agreement with the experimental
value, it is still slightly underestimated, not as good as the
corrections to other materials [7]. This is due to the fact that
the VBM and CBM of diamond’s band structure have almost
the same orbital character and the usual procedure [6,7] is not
able to appropriately correct the conduction band.

The corrected band structures of Fig. 6 present all the
expected general features for the NV− center in diamond:
the defect 1a1 energy levels are resonant inside the valence
band; the relative positions of the spin up and spin down levels
are correct; and the first possible valence band excitation is

high energetic enough, avoiding an electron transition from
the valence band to the defect 2a1↓ energy levels when the
pumping laser is shined.

Although the e↓ energy levels appear to be closer to the con-
duction band than expected, due to the slightly underestimated
band gap, the transition energies analysis is not impaired. On
the other hand, since the gap underestimation is a diamond
particular case, as explained above, the method is expected
to display still better performance when applied to other
semiconductors, like the III-V ones, in which the application
of the DFT-1/2 method presents very accurate results [7].

The usual procedure to obtain the optical transition energies
via DFT is to take the difference between the total energy
values of the excited and ground states. The correction method
proposed here allows these quantities to be extracted directly
from the Kohn-Sham eigenvalues. To verify this claim, Table II
presents results obtained with the usual total energy approach
and with the eigenvalues approach, without the quasiparticle
corrections. Even though these values are not supposed to
correspond to the experimental values, they should agree with
each other, and in fact, they do within a precision of 0.04 eV.

The results obtained when using the DFT-1/2 approximate
quasiparticle corrections are in close agreement with the
reported HSE results and experimental data. It is observed
that, in the GGA-1/2 results, the relative error of the Stokes
and anti-Stokes shifts are greater than that of the other energies,
as expected, since both shifts values result from the difference
between two values very close to each other.

In our development, it has been argued that standard DFT
approach may provide a good estimate of the anti-Stokes shift,
and this is supported by the results from Ref. [37] that reports
both GGA-PBE and HSE calculations of the anti-Stokes shift
for a larger supercell (4 × 4 × 4) than the one used here, and
they indeed shown that GGA slightly outperformed HSE.

VII. CONCLUSION

The Kohn-Sham eigenvalues, with quasiparticle correc-
tions, have been related to the experimental transition energies
by introducing a new procedure, that allows the application
of the low computational effort method DFT-1/2 to correct
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the relative position of the deep defect energy levels. Since
this method sharply reduces the computational cost when
compared with other methods, it allows a systematic search for
new defects in semiconductor hosts for several applications,
including the search for new solid state qubits. In particular, the
NV− center in diamond has been considered as a benchmark
of the method, and also as an example of its application. In
this test case, an accuracy of 0.1 eV have been reached in
comparison with experimental data.
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APPENDIX: OBTAINING DIFFERENCES IN TOTAL
ENERGY THROUGH EIGENVALUES

Consider a situation in which we want to obtain the energy
of an electronic transition between the localized states ψα and

ψβ through the use of a supercell DFT calculation. Defining
the total energy E in terms of partial occupations,

E = T + U [n] + Exc[n], (A1)

n(�r) =
∑

i

fi |ψi(�r)|2, (A2)

where n is the electron number density, ψi is the ith Kohn-
Sham orbital and fi its occupancy, T is the kinetic energy,
U is the classical Coulomb energy, and Exc is the exchange-
correlation functional.

Considering all but ψα and ψβ levels’ occupations are fixed,
we have E = E(fα,fβ ). The Janak’s theorem states that

∂E

∂fi

= εi, (A3)

where εi is the ith Kohn-Sham eigenvalue. In a large supercell,
the excitation of a localized electron is a small perturbation on
the Kohn-Sham operators. Thus the position of the eigenvalues
remain unchanged and we can immediately integrate to obtain

E(1,fβ ) − E(0,fβ ) = εα,∀fβ (A4)

and

E(fα,1) − E(fα,0) = εβ,∀fα. (A5)

We can express the transition energy of interest as

�Etrans = E(0,1) − E(1,0) = εβ − εα, (A6)

i.e., the transition energy can be computed as the difference
between the Kohn-Sham eigenvalues.
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