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Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
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We formulate an analytical recursive method to generate the wave function of doped short-range resonating
valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical
quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite
entangled. Importantly, our results show that within specific doping concentration and model parameter regimes,
the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground
states of the Hubbard model with large on-site interactions, in the limit that yields the t-J Hamiltonian.
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I. INTRODUCTION

One of the best known and simplest theoretical frameworks
for investigating strongly correlated doped quantum spin
ladders is the t-J model, which is obtained in the limit
of large on-site interaction from the Hubbard model [1–4].
At half-filling, without doping, the system reduces to a
Heisenberg ladder with a spin liquid ground state (GS) [5].
Upon doping the spin ladder, studies based on mean-field
theory using Gutzwiller renormalization show that the spin
gap is persistent [6], which is a tell-tale sign of strong
superconducting fluctuations [5–7]. The t-J model, under
finite doping, exhibits a rich phase diagram that has been
studied extensively for low-dimensional antiferromagnets
(AFMs) [8–11]. In particular, in one-dimensional (1D) and
ladder configurations, the system possesses exotic correlation
properties that are characterized by the Luttinger liquid theory
[12], as confirmed using exact diagonalization calculations,
and it exhibits a rich superconducting phase for a specific
range of values of J/t and electron density, nel [8–11,13,14].
Moreover, the superconducting states of the quantum spin
ladder can be represented using the short-range resonating
valence bond (RVB) ansatz [15,16], which was introduced to
describe Mott insulators.

An important yet demanding task in the study of doped
quantum spin ladders is to characterize how quantum corre-
lations, in particular multiparty entanglement, are distributed
among the subparts of these strongly correlated systems. This
is motivated, on the one hand, by the fact that the study of
multisite physical quantities in many-body quantum systems
often provides deeper insights into the cooperative phenomena
they exhibit [17,18]. On the other hand, such an investigation
can play an important role for implementation of quantum
information processing tasks in the laboratory. However, esti-
mation of the same remains a challenging task, primarily due
to the exponential growth of the Hilbert space with increasing
system size. This is especially true if we try to obtain analytical
expressions or bounds of multisite physical properties such
as entanglement. Therefore, obtaining a general method to
characterize entanglement in multipartite states is crucial to
investigate physical phenomena of a complex system.

In this work, we consider short-range doped RVB states,
and for finite values of the electron density (nel), using the

symmetry properties of the RVB state [19–21], we prove
that the doped RVB ladder is always genuinely multipartite
entangled. To quantify the genuine multiparty entanglement in
large spin ladders, we introduce an analytical recursion method
to build the doped RVB state. The novelty of this recursion
method stems from the fact that in a large spin network with
arbitrary electron density (nel), one can analytically compute
the reduced density matrices of the superposition state,
thus allowing an exact estimation of the genuine multiparty
entanglement using the generalized geometric measure (G)
[22] (cf. Refs. [23,24]). Using the proposed recursion method,
we observe that in the thermodynamic limit, G increases with
nel, reaching a maximum at nc ≈ 0.56, before decreasing
for higher nel (cf. [25]). Interestingly, we show further that
the qualitative multipartite features of doped RVB states
are closely mimicked by ground states (GSs) of doped t-J
ladders obtained through exact diagonalization for moderate-
sized lattices. In particular, we present a representative case
with J/t ≈ 0.6, where we observe that genuine multiparty
entanglement of the GS of the t-J ladder emulates that of the
doped RVB state. The maximum G occurs at nc ≈ 0.65, close
to that obtained using the doped RVB ansatz. The discrepancy
in the values of electron densities needs to account for the
finite-size effect. Hence, using the analytical recursion method,
one can show that within the considered parameter range,
the trend of genuine multipartite entanglement of the former
state qualitatively matches that of the GS of the latter model.
We note that although we use the recursion method to study
multipartite entanglement, the method can also be employed
to investigate other properties, such as single-site, two-site
physical quantities of the doped RVB ladders for systems
with an arbitrary number of sites. In our calculations, we have
considered up to 300 sites, and though a higher number of sites
are accessible through our method, the physical quantities of
interest converge much earlier.

The paper is organized as follows. In Sec. II, we present
the recursion method, which generates the doped RVB state
corresponding to arbitrary electron density. Thereafter, in
Sec. III, we propose the recursion relation for density matrices
of multiple sites, considering both periodic as well as open
boundary conditions. In Sec. IV, we provide analytical results
on genuine multipartite entanglement in the doped RVB state.
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We also discuss a measure of genuine multipartite entangle-
ment called the generalized geometric measure (G) in Sec. V.
In Sec. VI, we introduce the t-J model and subsequently
compare the behavior of G obtained using the doped RVB
state ansatz to that obtained via exact diagonalization of the
t-J model. We present a brief conclusion in Sec. VII.

II. RECURSION METHOD TO GENERATE
DOPED RVB STATES

We begin by considering the doped RVB state containing
2N lattice sites, on a ladder configuration, with 2k spin-1/2
particles and 2(N − k) holes or vacant lattice sites, expressed
using a bipartite lattice, consisting of sublattices A and B. The
corresponding (unnormalized) wave function, with electron
density nel = k/N , is given by

|�〉k,N−k =
∑

i

ri

∣∣(an1bn1

)(
an2bn2

) · · · (ank
bnk

)〉
i

⊗ ∣∣hm2k+1hm2k+2 · · · hm2N

〉
i
, (1)

where |(anj
bnj

)〉 = 1√
2
(|01〉 − |10〉)nj

represents a dimer, with
aj ∈ A and bj ∈ B. |{(anj

bnj
)}〉i represents a complete dimer

covering at occupied sites nj . The holes |hmj
〉 = |2〉mj

are at

sites mj , such that
∑k

j=1 2nj + ∑2N
j=2k+1 mj = 2N . ri = 1 ∀ i.

In general, considering the RVB ansatz for the ground state
of a moderate-sized doped quantum spin ladder, as described
in Eq. (1), the number of dimer coverings in the state increases
exponentially with the increase of the electron density [26].
For example, in a small spin ladder with five spins on each leg,
the number of dimer coverings at electron density nel = 0.33
is 94, and at nel = 0.66 it is equal to 294. Hence, even for
small ladders, a direct construction of the RVB ground state is
computationally expensive. Moreover, the Hilbert space also
increases rapidly with an increase in the number of spins.
This makes the analytical recursion method proposed for
studying the physical properties of doped RVB states on large
quantum spin ladders a very important part of our results. We
recursively [27–30] construct the state |ψ〉k,N−k , defined in
Eq. (1), and we generate its reduced states. Though earlier
attempts have been made to obtain recursion relations for
physical observables such as the ground-state energy [30],
the novelty of our approach lies in the fact that the proposed
method recursively constructs the reduced density matrices of
the doped RVB state, which allows us to study quantum and
classical properties, particularly multipartite entanglement,
which in turn are used to characterize the system.

To generate the analytical recursion method, let us begin
with an open 2N -site ladder lattice with all vacant sites (holes),
which is successively filled with dimers. We use the notation
|N − k,k〉 to denote the N -rung ladder, |ψ〉k,N−k , containing
2k spins filled with dimers and 2(N − k) holes. The state
|N − k,k〉 is achieved by successively filling k dimers in

the |N,0〉 state, i.e., |N,0〉 k−→ |N − k,k〉. As an example,
consider an initial configuration with an eight-site RVB ladder,
doped with four holes. Now the state |2,2〉 mentioned above
can be generated in the following way:

|4,0〉 k=1−−−→ |3,1〉 k=1−−−→ |2,2〉,

FIG. 1. Schematic diagram of the blocks L, R, and J in the spin
lattice. To compute G, we obtain the reduced density matrix (ρred)
corresponding to the sites 1–4 in the R block. The rest of the lattice
is traced out. Numerical studies show that the reduced state ρred is
sufficient to compute G in doped RVB states.

where |4,0〉 is the initial lattice with all holes and |2,2〉 is the
final state, for an eight-site RVB ladder, with two dimers and
two pairs of holes.

For an analytical method that allows us to build the
superpositions in an arbitrary |N − k,k〉, we propose the
generator

|N − k,k〉 = U⊗k′=1|N − k + 1,k − 1〉 + |N − k − 1,0〉
× |χk+1〉 + |N − k − 2,0〉|χk+1〉|1,0〉, (2)

where U⊗k′
is the operator to add k′ dimers. The methodology

to derive the above recursion relation and the description of
|χk+1〉 are given below.

To facilitate our calculations, we divide the 2N ladder lattice
into specific regions that can be filled with dimers. We start
by splitting the initial state |N,0〉 into two regions, denoted by
left (L) and right (R) block, such that

|N,0〉 = |N − 2,0〉L ⊗ |2,0〉R. (3)

This is explicitly shown in Fig. 1. An important region is the
junction (J ) block between L and R blocks, which is shown
in Fig. 1 using a black-dotted square. The blocks, excluding
the overlapping region, can be written as

|N − 3,0〉L′ ⊗ |2,0〉J ⊗ |1,0〉R′ ,

where L′ (R′) implies the region L − L ∩ J (R − R ∩ J ).
Now starting from an initial configuration |N,0〉, our aim is

to reach the final state |N − k,k〉 by systematically introducing
k numbers of dimers in the different blocks of the lattice.
The first dimer is introduced in the initial hole configuration
through the following possible ways:

(i) Update the left block: In this step, a dimer is introduced
into the L block and the updated state is

|N − 2,0〉L|2,0〉R k=1−−→ |N − 3,1〉L|2,0〉R. (4)

(ii) Update the right block: Similarly, in the next step, a
dimer is injected into the R block. The updated state looks like

|N − 2,0〉L|2,0〉R k=1−−→ |N − 2,0〉L|1,1〉R. (5)

(iii) Update the junction block: In this step, a dimer is
introduced in the junction of the L and R blocks, i.e., the J
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FIG. 2. Schematic diagram of the states (a) |χ2〉, (b) |χ3〉, and
(c) |χ3〉, and the periodic terms (d) |ξ〉 and (e) |γ1〉 and |γ2〉 used in
the recursion relations.

block. The updated state turns out to be

|N − 2,0〉L|2,0〉R k=1−−→ |N − 1,0〉|χ2〉|1,0〉, (6)

where the state |χ2〉 is depicted in Fig. 2(a). Now combining
the above three steps, the final state after introduction of a

single dimer in the lattice is given by

|N,0〉 k=1−−→ |N − 1,1〉
≡ |N − 3,1〉L|2,0〉R + |N − 2,0〉L|1,1〉R

+ |N − 1,0〉|χ2〉|1,1〉. (7)

For example, consider the initial state |4,0〉 in Eq. (2). We
have |4,0〉 = |2,0〉L|2,0〉R . Then the state, after the introduc-
tion of one dimer, would be (see Fig. 3 for an illustration of
the three update paths)

|4,0〉 k=1−−→ |3,1〉 = |1,1〉|2,0〉 + |2,0〉|1,1〉
+ |1,0〉|χ2〉|1,0〉, (8)

where the first two terms are the contributions from the blocks
L and R, and the third term comes from the update of the
junction, J . Now after completion of the first step, we need
to introduce one more dimer into the present configuration in
order to continue the iteration process. It can be done following
a path similar to the one described above, i.e., a direct update
of the L and R blocks, which is basically updating all the
terms of the state by introducing dimers into the left and right
blocks, and an update that consists of injecting a dimer at the
junction block. The above scheme can be repeated k times so
that the final state contains k dimers and 2(N − k) holes in the
lattice. In general, by updating the L, J , and R blocks with
k′ = 1 singlets, we obtain the recursive generator expressed in
Eq. (2). As mentioned before, here U⊗k′

is the direct update
operator to inject k′ dimers in the L and R blocks of the
state |N − k + 1,k − 1〉. Subsequently, the second and third
terms in Eq. (2) correspond to the indirect update of the J

block. For example, the first two terms in Eq. (8), |1,1〉|2,0〉
and |2,0〉|1,1〉, are generated from the direct update of the
state |4,0〉, and the third term, |1,0〉|χ2〉|1,0〉, emerges from
the indirect update of the junction sites. Note that there may
arise similar terms due to the update process of the L, R,
and J blocks. In those cases, we need to carefully include
such terms only once in the recursion, so that overcounting

FIG. 3. Schematic diagram of the scheme to build a doped-RVB state from a lattice filled with holes, for an eight-site RVB ladder, as given

by the process |4,0〉 k=1−−→ |3,1〉 described in Eq. (2).
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of the terms can be avoided. In Eq. (2), we note that the term
|χk+1〉 can be generated recursively from |χk〉 by introducing
an additional rung to the left and assigning a dimer along the
horizontal direction, as demonstrated in Fig. 2, for |χ2〉, |χ3〉,
and |χ4〉.

In the next section, we present a detailed discussion on how
reduced density matrices for a block of lattice sites can be
obtained from the recursion method. For the purposes of our
study, a block of four sites, in two nearest-neighbor (NN) rungs
of the ladder, is sufficient.

III. RECURSION RELATION FOR REDUCED DENSITY MATRICES

To calculate the G of the doped RVB state, we derive expressions for the reduced density matrices using the generator expressed
in Eq. (2). Let us consider the cases for open and periodic ladders separately.

(a) Open ladder. The primary method to build the recursive relations is to divide the lattice into blocks and junctions. The
advantage lies in the fact that these blocks do not overlap, and hence they can be independently traced to obtain ρred needed to
calculate the G. Hence, from the nonperiodic ladder state, |N − k,k〉, by tracing all sites apart from rungs m − 1 and m, we get
the reduced state, ρNP

red , of 4-sites, given by

ρNP
red =

2∑
i=0

Z (S−1+i)
(k−i) |2 − i,i〉〈2 − i,i| +

k+1∑
k1=2

Z (S−1)
(k−k1+1)tr

(∣∣χk1

〉〈
χk1

∣∣)|1′〉〈1′| +
k∑

k2=2

Z (S)
(k−k2)tr

(∣∣χk2

〉〈
χk2

∣∣)|1〉〈1|

+
1∑

i=0

Z (S + i)
(k−2−i)tr (|2̄〉〈2̄|)|1 − i,i〉〈1 − i,i| +

k+1∑
k3=3

Z (S)
(k−k3+1)

[
tr

(∣∣χk3

〉〈
χk3

∣∣)] +
k∑

k4=2

Z (S)
(k−k4)

[
tr

(∣∣χk4+1
〉〈
χk4

∣∣〈1|) + H.c.
]

+

i=1,

j=k−2−i∑
i=0,j=0

Z (S+i)
(k−2−i−j )(1/2)j+1(|1〉|1 − j,j 〉〈1 − j,j + 1| + H.c.), whereS = N − k − 1, (9)

andZN−k
k = 〈N − k,k|N − k,k〉 and |2̄〉= |0,2〉 − |0,1〉|1,0〉.

Numerical studies for a moderate N suggest that obtaining
the reduced state of a square block of four sites for large
ladders, which is symmetric for the ladder, is sufficient for
the computation of G. Hence, we use the recursion method to
obtain the four-site reduced state (ρred) at rungs m − 1 and m.

The main advantage in formulating the recursion relation
for the entire state, as expressed in Eq. (2), can be seen when
one needs to obtain the reduced density matrix, ρred. This is
because the terms that correspond to the blocks R and L are
mutually orthogonal to those belonging to the junction block J .
As a result, in the expression for ρred, one would never get any
contribution from the terms that emanate from |•〉L(R)〈•|J .
Now if one starts from the L and R block coverings and traces
out all but the sites of the last two rungs (sites 1–4 in Fig. 1),
then there would be the following three possibilities:

(i) The reduced block contains holes only.
(ii) The reduced block contains one singlet and one pair of

holes.
(iii) The reduced block contains singlet coverings only.
The first term in Eq. (9),

2∑
i=0

Z (S−1+i)
(k−i) |(2 − i),(i)〉〈(2 − i),(i)|,

basically corresponds to the above possibilities. As an exam-
ple, consider an initial eight-site doped RVB state that includes
only one singlet and three hole-pairs. The contribution from
the L block and R block would lead to the following terms
in the expression of the doped RVB state, |1,1〉L ⊗ |2,0〉R +
|2,0〉L ⊗ |1,1〉R . Therefore, the reduced state would contain

the following terms: a1|2,0〉〈2,0| + a2|1,1〉〈1,1|, where a1 =
Z1

1 and a2 = Z2
0 , which can be obtained from Eq. (9).

Subsequently, the junction J would generate additional
terms in the expression of the reduced state. As an example,
first consider terms that have only one singlet at the junction
block (see Fig. 2). Mathematically, those can be expressed
as |•〉 ⊗ |χk〉 ⊗ |•〉, where |χ2〉 and |χ3〉 are depicted in
Fig. 2. Now the contributions from the overlap of those
terms are given by second, third, and fourth terms in Eq. (9).
Considering, once more, the previous example of an eight-site
doped RVB state containing only one singlet, we can write the
contributing term from the junction as |1,0〉 ⊗ |χ2〉 ⊗ |1,0〉.
Hence after tracing out all but the sites that are at the last two
rungs, we get

ρNP
red = a1|2,0〉〈2,0| + a2|1,1〉〈1,1|

+ a3tr|χ2〉〈χ2| ⊗ |1,0〉〈1,0|, (10)

where a3 = Z1
0 is again evaluated using Eq. (9).

Additionally, there may be terms that would contain two
horizontal singlets at the junctions such as |•〉 ⊗ |2̄〉 ⊗ |•〉.
Those would certainly have nonzero overlap with the L and
R block terms. The fifth and sixth terms of Eq. (9) correspond
to contributions from these terms. As an example, instead of
inserting one singlet, if we now introduce two singlets in the
eight-site doped RVB state, i.e., |2,2〉, we would have terms
in the doped RVB state such as |1,0〉 ⊗ |2̄〉 ⊗ |1,0〉. Hence the
reduced density matrix would have the following terms:

a4tr|2̄〉〈2̄| ⊗ |1,0〉〈1,0| + a5/2|0,1〉|1,0〉〈H |,
where a4 and a5 are given by Z1

0 , which can be obtained from
Eq. (9), for N = 4 and k = 2.
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(b) Periodic ladder. Incorporation of the periodic boundary
condition, N + 1 ≡ N , leads to additional terms in the state
|N − k,k〉. Consequently, we find that the number of terms
in the expression of the recursively generated reduced density
matrix, ρP

red, increases due to the overlap of different states.
These extra terms in ρP

red can be redeemed by analyzing two
separate situations, say P1 and P2, corresponding to different
boundary terms:

(I) P1—the end sites of both legs share a singlet [see
Fig. 4(a)].

(II) P2—the end sites of only one of the legs share a singlet,
and the end site of the other leg contains holes [see Figs. 4(b)
and 4(c)].

Therefore, in the expression of the reduced density matrix,
there would be additional terms due to the overlap of the

FIG. 4. Schematic diagram of the blocks L, R, and J in the spin
lattice with periodic boundary condition.

states in (I) with themselves, and the L and R blocks (ρP1
red)

[see Eq. (11)] and, similarly, the overlap of states in (II) with
themselves, and L and R blocks (ρP2

red) [see Eq. (12) for N −
k = 1 and Eq. (13) for N − k = 2],

ρ
P1
red = tr(|ζ 〉〈ζ |) + 1

2

i=1,

j=k−2−i∑
i=0,j=0

Z (S + i)
(k−2−i−j )

(
1

2

)j

|1 − i,i〉|1〉〈i − 1,i + 1| + 1

2

j=k−4∑
j=0

Z (S + 1)
(k−4−j )

(
1

2

)j

tr(|2̄〉〈2̄|)|1〉〈1|

+
(

1

2

)j

k6=k − 1,

j=k−k6−1∑
k6=2,j=0

Z (S)
(k−k6−1−j )

(
1

2

)j

tr(|χk6〉〈χk6 ||1〉〈1| + |χk6〉|1〉〈χk6+1|) + 1

2

j=k−4−i∑
i=0,j=0

Z (S+1)
[k−4−(i+j )]

(
1

2

)i+j

× tr(|2̄〉|1〉〈1|〈2|) + 1

2

i=1
j=k−3−i

l=k−3−(i+j )∑
i=0,j=0,l=0

Z (S + i)
[k−3−(i+j+l)]

(
1

2

)j+l

tr(|1〉|1 − i,i〉|1〉〈2̄|〈1 − i,i|), where S = N − k − 1,

(11)

ρ
P2
red = |γ1〉〈γ1| + |γ2〉〈γ2| +

(
1

2

)k−3

(|γ1〉〈γ2| + |γ2〉〈γ1|) + [(|γ1〉 + |γ2〉)(Dk−2〈1|〈2̄|〈1′| + Dk−1〈H |) + H.c.](−1)k+1/2,

where N − k = 1, (12)

ρ
P2
red = (|ξ 〉〈ξ | + |ξ 〉〈χ2|〈1′|)(−1)k/2−1Dk−1, where N − k = 2. (13)

The terms |ξ 〉, |γ1〉, |γ2〉, and |ζ 〉, along with an illus-
trative description of the recursion method, are provided
in Figs. 2 and 4. Dk can recursively be generated using
Dx = Dx−1 + 2Dx−2 with the initial condition D0 = D1 =
1. Now if N − k = 1, periodic states corresponding to the
two types, P1 and P2, would overlap with each other
and lead to the following additional terms in the expres-
sion of the total reduced density matrix of 4-sites given
by ρ

P12
red = 1/2(k−3)(−1)(k+1)/2[|γ 〉(〈γ1| + 〈γ2|) + H.c.]Dk−3,

where |γ 〉 = |2̄〉1,N |N − k − 2,k − 2〉2,N−1. Hence consider-
ing all possible periodic boundary terms, the expression of
the reduced density matrix for the system is given by ρP

red =
ρNP

red + ρ
P1
red + ρ

P2
red + ρ

P12
red . Figure 5 shows the G of a periodic

doped RVB state calculated using the recursion method for up
to 300 lattice sites.

The expression of the reduced density matrices obtained
using the recursion method can be applied to compute various
bipartite as well as multipartite physical quantities that charac-
terize the ground-state properties of the system, even for large
lattice size. In the following section, we will look at the genuine

multipartite entanglement properties of the doped RVB ladder,
which can be efficiently obtained using this technique.

IV. GENUINE MULTIPARTY ENTANGLEMENT IN
QUANTUM LADDERS

Here we investigate the multipartite entanglement of a
doped quantum spin ladder under the RVB ansatz. Since the
study of GS properties of the t-J Hamiltonian is limited
to numerical simulations and approximate methods, explicit
estimation of multipartite entanglement is extremely difficult
for large systems. The doped RVB ansatz for the GS of
the t-J model provides a viable alternative to study such
quantities. It is known that the RVB liquid state with no
holes, |�〉N,0, is rotationally invariant under the unitary U⊗2N ,
where U is a local unitary acting on a single qubit [19–21].
In the composite dimer-hole qutrit space, the doped RVB
state, |�〉k,N−k , is invariant under unitary operations of the
form Ũ⊗2N = (U ⊕ I)⊗2N , where ⊕ is the direct sum, I is
the scalar 1, and U is an arbitrary single qubit unitary. This
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FIG. 5. Genuine multisite entanglement in a doped RVB ladder.
Variation of G with nel in doped RVB ladder states for 2N = 40 (blue
circles) and 200 (red diamonds) lattice sites. The top inset magnifies
the encircled region in the plot. The bottom inset shows the scaling
of nc with log10 N . The inset shows that as N increases (plotted up to
300 sites), nc converges to 0.56. This is to be compared to the result
for the systems described by the t-J model in the superconducting
regime in Fig. 6.

invariance property of doped RVB ladders is important in
investigating its multipartite entanglement, as shown below.

Theorem. The doped RVB ladder state, |�〉k,N−k , with 2N

lattice sites, containing all possible coverings of k (k �= 0)
spin dimers interspersed with 2(N − k) holes, is always
genuinely multipartite-entangled for all ladder topologies that
are periodic or infinite along the rails.

Proof. To prove that |�〉k,N−k is genuinely multisite-
entangled, we need to show that the state is entangled
across every possible bipartition, or alternatively, we have
to prove that all reduced density matrices of the system are
mixed. Using the invariance of |�〉k,N−k under the action of
Ũ⊗2N , one can show that all p-qutrit reduced systems, ρ(p) =
Trp̄[|�〉〈�|k,N−k], obtained by tracing over all but p (p̄) sites,
are always invariant under Ũ⊗p. Hence, a single qutrit reduced
state must have the form ρ(1) = p|2〉〈2| + (1 − p)/2I2, where
I2 = |0〉〈0| + |1〉〈1| and p is fixed by the number of holes
in the system. The relation shows that ρ(1) is always mixed
for p �= 1. Since all ρ(1) are equivalent, the condition p = 1
is satisfied iff all 2N sites contain holes. Similarly, the
nearest-neighbor two-site density matrix has the form ρ(2) =
p1|22〉〈22| + p2/9I9 + p3W2(q), where I9 is the identity
matrix on C3 ⊗ C3, and W2(q) = q|ψ−〉〈ψ−| + (1 − q)I4/4
is the Werner state [31], with I4 being the identity operator on
the four-dimensional space defined in the projected two-qubit
spin basis. Now, ρ(2) is pure when p1 = p2 = 0 and q = 1,
which implies that it is pure iff the entire lattice is either filled
with holes or is a single dimer covering, and these options
are disallowed by the premise. Therefore, ρ(1) and ρ(2) are
always mixed and |�〉k,N−k is always entangled across these
bipartitions.

However, we want to show that all possible bipartitions,
irrespective of the number of sites, are always mixed. To
prove this, let us assume now that an arbitrary p-site
density matrix (ρ(p)) is pure, which implies that |�〉k,N−k

is separable along that p: 2N − p. Let p = p1 + j , where
j = 1 or 2 such that |j | < |p1| (| · | is the cardinality of
the argument). For the periodic or infinite ladder, one can
always find another equivalent pure density matrix, ρ(q),
such that q = q1 + j and |p| = |q|, where j -sites overlap.
By assumption, both ρ(p) and ρ(q) are pure. Using strong
subadditivity of von Neumann entropy, S(σ ) = −tr(σ log2σ )
[32], we obtain S(ρ(p1)) + S(ρ(q1)) � S(ρ(p1+j )) + S(ρ(q1+j )).
Now S(ρ(p1+j )) = S(ρ(q1+j )) = 0, since ρ(p) and ρ(q) are pure.
Since S � 0, we have S(ρ(p1)) = S(ρ(q1)) = 0, and therefore
S(ρ(j )) = 0, implying ρ(j ) is pure, which is not true since all
ρ(1) and ρ(2) are mixed under finite doping. The contradiction
implies that all reduced density matrices, ρ(p), are mixed and
all p: 2N − p are entangled.

We note that the above proof does not include the p: 2N − p

bipartitions where no equivalent ρ(q) with overlap is feasible,
such as the bipartition between the two legs of the ladder.
However, in such cases, the theorem can be proved using
a different argument. We assume that the legs Li and L′

i

of |�〉k,N−k are pure and thus the entire state is separable
along that N : N . For the above condition to be satisfied, all
reduced states along the rungs, ρ(2)

(Lk,L
′
k),∀ k, must be separable.

However, as can be shown by using the recursive method, such
nearest-neighbor ρ(2) states are always entangled. Hence, the
doped RVB state is genuinely multipartite-entangled. �

Let us now quantify the genuine multipartite entanglement
in doped RVB ladders and characterize its variation with the
electron density. To this end, one needs to find a computable
measure of genuine multiparty entanglement, which in our
work is the generalized geometric measure (GGM) [22]
(cf. [23]). In the forthcoming section, we provide all the
necessary details required to compute GGM for any arbitrary
N -party pure quantum state.

V. GENUINE MULTISITE ENTANGLEMENT MEASURE

The GGM, G, of an N -party pure quantum state |φ〉 is a
computable measure and is basically the optimized fidelity
distance of the state from the set of all states that are not
genuinely multiparty entangled. In particular, the GGM G(|φ〉)
can be evaluated as

G(|φ〉) = 1 − λ2
max, (14)

where λmax = max|〈ξn|φ〉|, |ξn〉 is an N -party non-genuinely-
multisite entangled quantum state, and the maximization is
performed over the set of all such states. For pure quantum
states, it was shown that the GGM can be effectively computed
using the straightforward relation [22]

G(|φ〉) = 1 − max
{
λ2

A:B |A ∪ B = A1, . . . ,AN,

A ∩ B = φ
}
, (15)

where λA:B is the maximum Schmidt coefficient in all possible
bipartition splits of A : B of the given state |φ〉.

Genuine multipartite entanglement is a well understood
physical property in entanglement theory (see Ref. [33]),
which essentially captures the presence of entanglement
between every constituent of a many-body system. In contrast,
measures such as entanglement entropy and entanglement of
formation are essentially bipartite entanglement measures,
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which do not necessarily say anything about the global
entanglement properties of a many-body state. Although
entanglement entropy is important in studying cooperative
phenomena such as area laws, it is not adequate to study the
multipartite entanglement properties of many-body systems.
The presence of multipartite entanglement may give rise
to interesting cooperative properties that are not necessarily
exhibited by restricting to bipartite entanglement. An obvious
advantage of using the GGM is that it can be efficiently
calculated through the reduced density matrices of a many-
body quantum state. One should stress here that entanglement
entropy captures the distribution of entanglement between two
blocks of the system that is comprised of connected cluster of
spins. In comparison, the GGM allows us to characterize the
entanglement between all possible partitions of the system into
two, three, four, . . . blocks, comprised of connected as well as
disconnected group of spins, which provides insight about the
cooperative properties of the ground state, beyond correlation
decay or area laws [24,34].

VI. TRENDS OF GENUINE MULTISITE ENTANGLEMENT:
GS OF THE t- J LADDER VERSUS THE DOPED RVB STATE

We now consider a quantum spin-1/2 ladder model con-
sisting of an arbitrary numbers of holes and spin particles,
and consider the short-ranged RVB state as a framework to
study its GS multiparty entanglement properties. The model
can be derived using second-order perturbation theory from
the Hubbard model in the limit of large on-site interaction
[1–4]. The t-J Hamiltonian on a ladder can be written as

H = −t
∑

〈i,j〉,σ
PG(c†iσ cjσ + H.c.)PG + J

∑
〈i,j〉

�Si · �Sj , (16)

where ciσ (c†iσ ) is the fermionic annihilation (creation) operator
of spin σ (= {↑ , ↓}), and �Si is the triad of spin-1/2 operators
at site i. The Heisenberg exchange coupling (J ) is isotropic
along the rungs and legs, while t represents the transfer energy
and the expression 〈i,j 〉 denotes that the sum is taken over
nearest-neighbor (NN) sites. PG is the Gutzwiller projector
�i(1 − ni↑ni↓), which enforces at most single occupancy at
each lattice site. This ensures that the undoped state physically
represents a Mott insulator. The t-J model, under finite
doping, exhibits a rich phase diagram [8–12]. Note that these
models can potentially be realized in fermionic ultracold
gases at high energy scales [35]. For moderate sized t-J
ladders, at half-filling, the Hamiltonian in Eq. (16) can be
exactly diagonalized provided certain properties of the system
are invoked. For example, the spin number Hamiltonian,
N̂ = ∑

i(|0〉〈0| + |1〉〈1|)i , and the total spin along the z-axis,
Ŝz = ∑

i S
z
i , commute with the Hamiltonian H. Hence, the

Hamiltonian can be block-diagonalized in the (C3)⊗2N Hilbert
space basis for different total spin Ŝz and electron density
nel = 〈N̂〉/2N . For our case, we assume that the spins form an
initial insulating phase with Ŝz = 0, and with nel varying from
0 to 1. Note that nel = 0 and 1 correspond to a completely
vacant and occupied lattice, respectively. For nel = 1, the state
is an insulating RVB spin liquid. The doping concentration
is denoted by x = 1 − nel. In our work, we have developed a
numerical algorithm [36], based on the Lanczos method [37],

FIG. 6. Genuine multisite entanglement in the t-J ladder. Varia-
tion ofG with nel for the exact GS of the t-J ladder Hamiltonian, given
in Eq. (16), for N = 10, 12, and 14. G reaches its maximum value at
nc ≈ 0.65. Here J/t = 0.66. All quantities plotted are dimensionless.

to exactly solve the composite hole-dimer qutrit system. By
dividing the Hilbert space in different subspaces, according to
the hole concentration x and total Ŝz, the exact ground state of
the t-J Hamiltonian can be obtained for up to 14 qutrits with
an even number of holes.

Although we have shown that the doped RVB state is always
genuinely multiparty entangled, a quantitative analysis of G
requires its computation for large systems. Using the analytical
recursion method proposed in this work, one can recursively
build the doped RVB state and subsequently obtain its relevant
reduced density matrices, which is necessary to estimate G.
Figure 5 shows the behavior of the G with increasing nel. We
observe that at nel = 0, G vanishes as expected since it corre-
sponds to a product state containing only holes. The maximum
G is achieved at a critical density, nel = nc ≈ 0.56. Interest-
ingly, we find that this critical value of nc with respect to G cor-
responds to that of the superconducting phase of the t-J model.

We now consider the behavior of genuine multisite entan-
glement in the GS of the periodic t-J ladder, obtained through
exact diagonalization. Figure 6 shows the variation of G with
nel for different moderately sized systems. We observe that the
behavior ofG is qualitatively equivalent to those corresponding
to doped RVB states (see Fig. 5). Below a certain critical
density (nc), i.e., in the region where nel < nc,G scales linearly
with nel, independent of J/t . This is due to the fact that G
is obtained from the 1:rest bipartition, where the single-site
density matrix is diagonal in the computational basis, with
elements [1 − nel,nel/2,nel/2]. When 1 � nel � nc, the G is a
function of both nel and J/t . For the t-J ladders, the maximum
G is achieved at a critical density, nc ≈ 0.65, which is close to
that obtained using the doped RVB state ansatz. However, the
small discrepancy in the exact values of the electron densities
needs to account for the finite-size effect. Moreover, we infer
that this critical density marks the onset of a superconducting
phase in the two-legged t-J ladder. For example, in the t-J
ladder with J/t ≈ 0.6, the superconducting phase has been
predicted to occur for relatively high values of nel [9], which is
close to the critical density corresponding to the G, as obtained
from our analyses.
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Even though the microscopic theory behind high-Tc su-
perconductivity [13,14,38–40] remains unresolved [41,42],
the t-J ladder stands out as an important framework for
understanding this novel phenomenon [43,44]. Furthermore,
the short-range RVB ansatz has been pitched to describe the
superconducting states of the t-J ladder [15,16]. The RVB
state is a possible GS of the half-filled t-J ladder [45],
and, upon finite doping, it provides a simple mechanism to
describe high-Tc superconductivity. In this respect, our work
indicates that G bears the signature of the t-J ladder entering
into the superconducting phase, and even the minimalistically
designed doped RVB state considered in this work supports this
feature, at least at the level of multiparty entanglement. Based
on the behavior of both doped RVB states and the exact GS
of the t-J Hamiltonian, one can hypothesize that the trend of
G can detect the superconducting phase boundary, irrespective
of the size of the ladder. Note, however, that we do not claim to
detect a high-Tc superconducting phase by using the genuine
multipartite entanglement as an order parameter. This is also
not the primary motivation of our work, which is to construct
an efficient recursive method for evaluating bipartite as well
as multiparty observables in large doped RVB states. As a
useful spinoff to our main results, we are able to show that
for some parameter ranges, G may serve as an indicator of
whether the system has entered into the SC phase or not. It
is plausible that one would require further physical properties
along with the GGM to identify all the phases. Since there
exists, as yet, no order parameter that can uniquely identify all
the relevant phases of the ground states of the doped Hubbard
or t-J model [46], the applicability of G as a suitable order
parameter requires further investigation.

An important point in our work is the use of a nonvariational
RVB state as the GS of the doped quantum spin ladder. It is
clear that a variational RVB (vRVB) state, which lends possible
support to d-wave pairing, is a more suitable state to study
the doped ladder. However, vRVB states, in general, do not
possess a recursive form that allows computation of reduced
states with high efficiency in large systems, as the number of
parameters to optimize increases exponentially. However, our
results show that by omitting the variation in the coefficients
of the covering required to build the RVB state, we obtain a
significant advantage in computation power, which allows us
to compute G in large doped ladders. Comparison with the
exact GS of the t-J ladder shows that the nonvariational RVB
state quite accurately simulates the behavior of G. But we do
think that efficient recursions for certain variational RVB states
is an important problem for future tasks.

VII. CONCLUSIONS

In this paper, we adopted two techniques for studying
multisite entanglement in doped quantum spin ladders. First,
we considered the doped RVB states as possible ground states

of the t-J Hamiltonian, which we have shown to be always
genuinely multiparty entangled. To overcome the limitations
of exact diagonalization, we introduced a recursion method
to generate the doped RVB state and to compute its reduced
density matrices. By using the iterative method, we found
that we can compute the genuine multiparty entanglement
of doped RVB ladders for large systems under finite doping
of the ladder. We found that the maximum value occurs at
doping concentration nel = 0.56. Second, we used an exact
diagonalization method for the t-J Hamiltonian, for up to
14 sites, and we observed that the GS of the Hamiltonian
is also genuinely multipartite-entangled, with maximum en-
tanglement occurring at the superconducting phase boundary,
where the electron density nel ≈ 0.65.

We note that the primary outcome of our work is an ana-
lytical recursion method to evaluate the genuine multipartite
entanglement in RVB ladders with finite doping. An immediate
offshoot of our results is the connection between maximal
entanglement in doped RVB states and the high-Tc supercon-
ducting phases of the t-J Hamiltonian. In this regard, we
would like to mention that even though GGM may apparently
be useful in signaling the onset of the high-Tc superconducting
phase, it is possible that the different phases of the Hubbard
or the t-J model cannot be completely characterized by
just using entanglement. Recently, using the behavior of
multiparty entanglement, attempts have been made to get more
accurate insight about the phase boundaries that emerge in
the ground-state configuration of XXZ quantum spin ladders
[47,48]. However, it has been shown that there are regions in
the parameter space at which multiparty entanglement alone
fails to a provide a conclusive phase diagram, and one needs
to study the behavior of other ground-state properties such as
magnetization and spin correlation functions in order to obtain
a complete picture of the different phase boundaries [48]. In a
similar vein, for the case of doped ladders, it is plausible that
one would require further physical properties along with the
GGM to characterize different phases of the t-J Hamiltonian.
This requires further investigations on the model, which are
planned in forthcoming works. Apart from this, there has
also been an attempt to quantify the bipartite entanglement
of certain multipartite pure states, such as the Bardeen-
Cooper-Schrieffer (BCS) state of superconducting compounds
[49], which shed light on the relation of entanglement to
that of the superconducting order parameter. We believe that
the extension of such investigations to the case of high-Tc

cuprates may uncover interesting underlying microscopic
properties.
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