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Challenges for semilocal density functionals with asymptotically nonvanishing potentials
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The Becke-Johnson model potential [A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)]
and the potential of the AK13 functional [R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013)]
have been shown to mimic features of the exact Kohn-Sham exchange potential, such as step structures that are
associated with shell closings and particle-number changes. A key element in the construction of these functionals
is that the potential has a limiting value far outside a finite system that is a system-dependent constant rather than
zero. We discuss a set of anomalous features in these functionals that are closely connected to the nonvanishing
asymptotic potential. The findings constitute a formidable challenge for the future development of semilocal
functionals based on the concept of a nonvanishing asymptotic constant.
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I. INTRODUCTION

The paramount decision to be made when using Kohn-Sham
(KS) density functional theory (DFT) [1,2] for physical,
chemical, or biological applications is the choice of the ap-
proximation used for the universal exchange-correlation (xc)
functional Exc[n]. A variety of approximations is available,
sometimes classified according to Jacob’s ladder [3,4] of DFT,
reaching from the basic local functionals to constructs of
increasing sophistication. The high-rung functionals nowadays
achieve an accuracy that rivals the one of higher-order wave-
function-based methods [5]. However, many questions of
practical relevance require functionals of the lower rungs
for reasons of computational cost. These semilocal density
functionals, which only depend on the electron density n(r)
and its spatial derivatives, e.g., |∇n(r)|, can provide an overall
reasonable accuracy for Exc. Yet their functional derivatives,
i.e., the corresponding xc potentials, typically completely miss
important features of the exact xc potential [6–15]. Among
them are, e.g., the particle-number discontinuity [16,17] and
step structures or steepening effects [8,18–23] that enforce
[24], e.g., the principle of integer preference. Particle-number
discontinuities and potential step structures and steepenings
are mathematically different properties, but they are closely
related to each other [8,17]. Also the asymptotic features of
the exact exchange [25–28] and xc [6,29] potential are not
reproduced at all by standard semilocal approximations.

It became clear that these omitted features play a decisive
role, e.g., in the description of charge transfer [20,30,31]
and ionization [8,17,18,32,33]. Attempts have been made
to model such features directly into semilocal xc potentials
[34–45], partially also with an additional (nonlocal) eigenvalue
dependence, e.g., as done by Gritsenko et al. (GLLB) [46] and
Kuisma et al. [47].

In past years, the Becke-Johnson (BJ) model potential [36]
and various modifications thereof [41,48,49] have sparked
interest in this respect by showing improved atomic-shell
structure, polarizabilities, atomic and molecular properties,
and band gaps closer to experimental values [36,39,48,50].
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Two of the present authors have discussed that one of its key
features is to effectively mimic “nonlocal” exchange features
in the asymptotic behavior of the potential caused by the
particle-number discontinuity by means of having a nonzero
limiting value far away from a finite system [39].

However, model potentials are only of limited usefulness.
Since they lack a corresponding xc energy, they cannot be used
in applications that require energies, and not being functional
derivatives [51,52] also renders them useless for propagating
the time-dependent Kohn-Sham equations [53,54]. Further-
more, they are problematic from a formal perspective: directly
modeling the xc potential sidesteps the original derivation of
the KS equations as variational equations over the energy, and
thus forgoes much of the formal framework of KS DFT. This
limitation was resolved by the derivation of a semilocal energy
functional, AK13 [55], designed to yield as its functional
derivative a potential that shares the key features with the BJ
model, in particular the asymptotically nonvanishing potential
with a system-dependent limiting value.

The overall appeal of BJ, AK13, and derived methods is
clear: including features in the exact xc potential missing
from other functionals bears the promise of computational
results closer to higher-order methods at the low computational
expense of a semilocal functional. To some degree, the various
modifications of the BJ approach and AK13 have delivered on
this promise [39,48,50]. Thus, it may seem pertinent to ask
why these methods are not more widely used. In applying
AK13 and BJ to broader sets of systems, and in our attempts at
improving the properties of AK13, we have identified a set of
anomalies, most of which are more or less directly connected to
the key property of the asymptotically nonvanishing potential.
These anomalies pose a clear problem to broader adoption of
functionals of this kind and present a serious challenge to their
further development. The purpose of the present paper is to
bring these issues to light, both as a warning against a too
undiscriminating use of the present realizations of this type of
methods and with the hope to inspire further development to
resolve these issues.

The paper is organized as follows. First, in Sec. II, we
review the AK13 and BJ functionals and their key features.
In Sec. III, we discuss issues that appear when AK13 is
applied to noninteger particle-number systems in the context
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of ensemble DFT. Sections IV and VI summarize findings
presented elsewhere on energies and energetics of AK13 and
the issue of divergent potentials along nodal surfaces. In
Sec. VII, we discuss the behavior of AK13 and the BJ model
in external electrical fields. Section VIII focuses on difficulties
that can arise when evaluating these potentials, stemming from
the numerical representation of the KS orbitals. Finally, Sec. IX
gives our summary and conclusions. Hartree atomic units are
used throughout this paper.

II. AK13 AND BJ MODEL REVIEW

The AK13 functional [55] is of the standard generalized-
gradient approximation (GGA) form for exchange (x) func-
tionals, [56] i.e.,

EGGA
x = Ax

∫
n4/3F (s)d3r, (1)

parametrized by the reduced density gradient,

s = |∇n|
2γ n4/3

, (2)

where Ax = −3/4 (3/π )1/3 and γ = (3π2)1/3. Nevertheless, it
is uniquely different from other GGAs. Its foremost feature is
that its potential, as usually given by the functional derivative
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with the semilocal quantities

t = ∇2n

4γ 2n5/3
and u = ∇n · ∇|∇n|

8γ 3n3
, (4)

typically approaches a positive system-dependent constant
outside a finite system. This is achieved by a divergence of the
enhancement factor F (s) ∝ s ln(s) as s → ∞, which typically
marks the threshold between a vanishing and a diverging
asymptotic GGA potential. The AK13 functional implements
this and additional requirements with the choice

F AK13(s) = 1 + B1s ln(1 + s) + B2s ln[1 + ln(1 + s)], (5)

where the constants B1 = 2/27 + 8π/15 and B2 = 4/81 −
8π/15 have been determined in a nonempirical fashion.
This asymptotic behavior has been adopted from the model
potential of Becke and Johnson (BJ) [36], which proposes a
semilocal correction to the Slater potential [57] utilizing the
positively defined kinetic-energy density,

τ = 1

2

∑
i

fi |∇ϕi |2, (6)

to mimic missing exchange features,

vBJ
x = vSlater

x + C�v

√
2τ

n
, (7)

where C�v = √
5/12/π , and the occupation numbers fi .

Concerning their limiting value, both potentials rely semilo-
cally on the fact that far outside the system, the density as well
as τ are governed by the highest occupied orbital. Under the
assumption of spherical symmetry, this leads to the asymptotic
relation [58]

n(r) ∼ n0|r|q exp(−α|r|) as |r| → ∞, (8)

where n0 and q are system-dependent constants. The decay
parameter

α = 2
√−2(εho − v∞

x ) (9)

is determined by the highest occupied eigenvalue εho relative
to the limiting value of the potential v∞

x = lim|r|→∞ vx(r).
Additional asymptotic relations involving the spatial deriva-
tives of the density follow hereby:

u

s3
∼ 1,

t

s2
∼ 1 − 2

3

1

ln(s)
,

(10)

2γ n1/3s ∼ α,
τ

n
∼ α2

8
,

as |r| → ∞. Utilizing these, one can calculate the limits

vAK13,∞
x = −AxB1α

6γ
, vBJ,∞

x = C�vα

2
, (11)

to show the asymptotic similarities of both potentials. Thus,
the limit of the AK13 potential approximately equates to 68%
of the limit of the BJ potential. For further discussions, we note
that the limit of the AK13 potential relies on the cancellation of
the first-order terms ∝s ln(s), while the limit of the BJ potential
is determined by a single first-order term.

Solving Eqs. (9) and (11) for a self-consistent value of v∞
x

gives

v∞
x = Q(1 +

√
1 − 2εho/Q) (12)

with, respectively, Q = (AxB1/6γ )2 in the case of AK13 and
Q = (C�v/2)2 in the case of BJ. Hence, the limiting values of
both semilocal potentials depend on the value of the highest
occupied eigenvalue and therefore change discontinuously if,
e.g., an additional fraction of an electron is added to the system.

As the limiting value of the exact exchange-correlation
potential equals zero [59], it is tempting [39,55] to apply a
constant shift vDD

x to both semilocal potentials,

v0
x(r) = vSL

x (r) + vDD
x , (13)

where vDD
x = − lim|r|→∞ vSL

x (r) = −v∞
x . Due to this realign-

ment, the semilocal limiting value v∞
x gives rise to a nonlocal

discontinuity of the potential triggered by a change in the
value of the highest occupied eigenvalue. Thus, both realigned
versions of the AK13 and the BJ potential mimic a feature
associated with the derivative discontinuity (DD) [16] of the
exact exchange (EXX) functional. Moreover, both models for
exchange share additional attractive properties such as a step
structure in the potential for well-separated subsystems and
an improved shell structure in the potential for atoms [36,55];
in bulk systems, they show band gaps, band structures, and
optical dielectric constants closer to EXX results [50,55,60]—
and are thus typically in better agreement with experiments.
Hence, AK13 and BJ functionals implement several promising
features. In terms of qualitative results, they are quite similar
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with the decisive advantage that the AK13 potential is an actual
functional derivative while the BJ potential is not [37,52,54].

However, as explained in Sec. I, we have now identified
a number of anomalies and general difficulties caused by
the construction scheme summarized above. Some stem from
specific choices made in the construction of AK13 and could
thus potentially be circumvented by improved design criteria.
However, others appear more intimately coupled to the key
feature of an asymptotically nonvanishing potential.

III. AK13 FOR SYSTEMS WITH FRACTIONAL
PARTICLE NUMBERS

In this section, we will point out some features that
AK13 shows when particle-number variations are explicitly
considered. The shift vDD

x must be carefully examined in this
context. For a system with fixed integer electron number, the
constant shift of the potential by vDD

x serves two purposes: On
the one hand, this shift realigns the zero of the eigenvalues,
{ε0

i = εi + vDD
x }, onto the limiting value of the potential. This

is a natural choice, as it separates bound from unbound states.
One the other hand, the realignment of the potential introduces
a nonlocal mechanism akin to the discontinuity of the exchange
optimized effective potential (OEP) [61], a feature that is
associated with the DD of the corresponding energy functional.

Such a shift is fully in line with the Hohenberg-Kohn
theorem [1], as the effective potential is only determined up
to an arbitrary constant. One may further argue that strictly
speaking such a shift does not affect observables: It does
not change the density, but only affects the Kohn-Sham
eigenvalues, which are auxiliary quantities. A subtlety in
this argument is related to the highest occupied eigenvalue,
which equals minus the first ionization potential in exact DFT
[59,62] and therefore can be equated to an observable. One
may thus wonder whether in a functional such as AK13 the
shifted or the unshifted highest occupied eigenvalue should
be used as an approximation to the first ionization potential.
As the self-consistent density from such a functional decays
according to Eq. (8), i.e., the asymptotic decay is governed by
the shifted highest occupied eigenvalue, εho − v∞

x , whereas
the decay of the exact density is likewise determined by the
ionization potential, it seems reasonable to use the negative-
shifted eigenvalue as an approximation to the ionization
potential. In practice, the shifted AK13 eigenvalues generally
are in better [55] agreement with the ionization potential from
EXX (and thus also experimental values) than the highest
occupied eigenvalues of other, commonly used, semilocal
functionals [63].

However, the idea of shifting the eigenvalues can also be
seen more critically when one adopts a different perspective.
Consider the behavior of AK13 within the ensemble extension
of DFT by Perdew et al. [16], i.e., the generalization to
fractional particle numbers. In this framework, the absolute
offset of the exchange-correlation potential is fixed and
the exchange-correlation potential, vxc = δExc/δn, is defined
uniquely for a given energy functional Exc. This can be
understood directly from Janak’s theorem [65],

∂E

∂N
= εho(N ), (14)

FIG. 1. Highest occupied orbital energy ε3s,↑ corresponding to
the semilocal AK13 potential [see Eq. (3)] ε0

3s,↑ = ε3s,↑ + vDD
x

corresponding to its realigned version [see Eq. (13)] and the total-
energy derivative ∂E/∂N as a function of the number of electrons N

for ionized atomic magnesium. ∂E/∂N is calculated using central
nonuniform first-order finite differences and the values of E(N )
at the shown points. The data points are based on self-consistent
calculations with a code for atoms originating from Ref. [64].

which establishes a direct link between the particle-number
dependence of the energy functional and the absolute offset
of the eigenvalue energies in the KS system. Hence, one
is not allowed to shift the energy scale of the KS system
(which would shift the potential and eigenvalues) without also
modifying the energy functional.

Janak’s theorem can also be used to numerically verify the
correct absolute offset. We demonstrate this in the following
for AK13 (and in Fig. 6 of Appendix A for EXX). Figure 1
confirms that in a straightforward extension of AK13 to
ensemble DFT [66], the appropriate exchange potential is not
the zero-aligned one v0

x, but the unshifted, semilocal potential
vSL

x . This should not be surprising since vSL
x is the unmodified

expression given by a straightforward functional derivative of
the AK13 energy functional of Eq. (1).

A major conclusion from Janak’s theorem is that the
straightforward application of the AK13 energy functional
in ensemble DFT gives a functional derivative that does not
explicitly exhibit a discontinuity, i.e., a discontinuous shift
of the potential at integer particle number. We illustrate the
difference between the AK13 potential and the EXX potential
with respect to the discontinuity in Appendix A using Mg2+

as an example. Despite lacking this absolute overall shift,
fractional particle AK13 reproduces the step structure in its
asymptotic behavior that is associated with the shift. For
example, for a single ion, when the fractional occupancy goes
through an integer, the asymptotic potential incorporates a step
related to the atomic-shell structure that moves inwards as the
fractional particle number increases, qualitatively mimicking
a behavior seen in the EXX potential [55,67].

The discussion above may suggest the idea of adding a term
to the AK13 energy functional with the sole responsibility of
generating a discontinuous shift. We have explored this idea,
and in Appendix B we discuss why such an energy correction
term is not straightforward to construct.
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FIG. 2. Contour plot of the BJ, AK13, and EXX (OEP) potential landscapes of O2 for the majority spin channel in the plane containing
the bond axis (x axis). The figure demonstrates that both semilocal potentials diverge exponentially along the nodal surfaces of the highest
occupied orbital. Note that the scale of the potential axis as well as the coloring visualizing the height of the potentials differ. Due to serious
numerical difficulties, which are intensified by the nodal surfaces [68], the BJ and AK13 potentials could not be calculated self-consistently and
were instead evaluated on tightly converged self-consistent local spin density approximation (LSDA) orbitals. The calculations were performed
with the all-electron code DARSEC [69], which is specialized on diatomic molecules and operates on a real-space grid of prolate-spheroidal
coordinates.

Looking once more at the graph of Fig. 1 with the focus
on the region close to N → 10+ reveals that the AK13 energy
response to a change in the fractional particle number deviates
significantly from the exact behavior. Due to the critical
behavior of F AK13(s) in the limit s → ∞ [see Eq. (5)], the
exchange-energy density of AK13 is highly sensitive to small
changes of the electron density which alter its exponential
decay. Addition of a fraction of an electron to the system by
fractionally occupying a new orbital is such a change. The
result is a short interval with high curvature of the E(N ) curve
which deviates from the desired piecewise-linear behavior
[16]. Thus, whereas the exact DD goes along with piecewise
linearity, its semilocal imitation here is acting contrarily.

Finally, it is worthwhile to return to the discussion of
whether it is more appropriate to use the shifted or the unshifted
highest occupied eigenvalue to approximate the negative first
ionization potential. At the beginning of this section, we
had presented arguments for using the shifted eigenvalue.
However, Janak’s theorem shows that the highest occupied
eigenvalue equals the total-energy difference between the
N − 1 and N particle system for functionals that sufficiently
fulfill the piecewise-linearity condition [16] (which AK13 does
not). This applies regardless of whether or not the functional
has a nonvanishing asymptotic potential. Therefore, from the
perspective of Janak’s theorem, one comes to the conclusion
that from a formal standpoint, it is appropriate to identify
the unshifted highest occupied eigenvalue with the negative-
ionization potential. Although this seems like a contradiction
to the arguments given above, there is no formal mistake. These
two different perspectives are possible due to the approxima-
tive nature of the functionals under consideration—the exact
functional does not exhibit a nonvanishing asymptotic constant
and is piecewise linear. From a pragmatic point of view, it
makes sense to adopt the perspective which gives better results
in practice, i.e., for AK13 to use the shifted eigenvalue.

IV. ENERGIES AND ENERGETICS

AK13 can be seen as an improvement over the BJ model
especially because it has an energy functional. However, as

discussed in past works that go back to the original AK13
paper, the accuracy of total energies from this functional is
not as good [40,45,55,70] as from established GGAs, e.g., the
one of Perdew, Burke, and Ernzerhof (PBE) [71]. Instead, one
finds that the energetics displayed upon structural relaxation
are distorted beyond what seems reasonable even for an
exchange-only functional (see Ref. [72] and the Supplemental
Material of Ref. [55]). This was the topic of a recent work
[72], with a typical example of a bad structural relaxation
being AlAs, which deviates from the experimental lattice
constant by 16%. Another similar indication of something
missing from the AK13 total energies is the self-consistent
field (SCF) results for atomic ionization; AK13 SCF energies
deviate more from exact-exchange results than those of the
local density approximation (LDA) [55].

V. DIVERGENT POTENTIAL ALONG NODAL SURFACES

In many finite systems, the highest occupied ground-state
KS orbital has a nodal surface extending to infinity. The
asymptotic density is normally governed by the highest
occupied orbital; however, this is not necessarily the case for
all its asymptotic properties in the vicinity of nodal surfaces.
We recently pointed out that this region is troublesome for
many semilocal exchange functionals [68]. In summary, the
behavior of EXX on nodal surfaces is a protruding ridge along
such regions [25–28]. Ordinary semilocal potentials such as
the LDA potential decay rapidly in the asymptotic region
in a way that mostly does not distinguish nodal surfaces.
Energy functionals with divergent enhancement factors can
display a range of different behaviors, but, if the divergence is
strong enough, the potential will diverge exponentially along
the nodal surface. Examples of such functionals are the BJ
potential, the Becke 1988 exchange functional [73], and AK13.
Of these, AK13 displays the strongest divergence; it is twice
as strongly diverging as the BJ model. A demonstration of
this issue is presented in Fig. 2, which features the divergent
BJ and AK13 potentials in comparison with the EXX (OEP)
potential evaluated for O2, a system with nodal surfaces of
the highest occupied KS orbital. As previously discussed
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[68], these divergences are not only theoretically worrisome
but also lead to major numerical difficulties when trying to
converge calculations for finite systems with nodal surfaces.
The O2 molecule that we show here presents a situation that
somewhat differs from the common cases discussed previously
in Ref. [68], as here the doubly degenerate highest occupied
orbitals of the majority spin channel form a nodal line along
the bond axis in addition to a nodal plane between the two
oxygen nuclei, and also the two degenerate orbitals below the
highest occupied ones exhibit this nodal line along the bond
axis. As a consequence of this unusual electronic structure,
the density of the majority spin channel along the bond axis is
asymptotically dominated by the fifth-highest occupied orbital
[74] and produces a rare feature in the asymptotic exact
exchange potential as well: In addition to a ridge that results
from a positive limiting value along the nodal plane, a furrow
related to an uncommon negative limiting value shows up in
the potential along the nodal line of the bond axis, as can be
seen in Fig. 2(c).

VI. SECOND-ORDER ASYMPTOTICS

Next we discuss an unintended behavior of the AK13
construct that relates to its asymptotic second-order term,
∼B2s ln[ln(s)] as s → ∞, in the enhancement factor F AK13(s);
cf. Eq. (5). The original motivation [55] of the s ln[ln(s)] term
was to mimic the leading asymptotic behavior vx ∼ −c/z

outside the surface of a half-infinite bulk system with c a
system-dependent prefactor and z the distance to the surface.
However, in leading asymptotic order, a term ∼s ln[ln(s)]
results in a system-independent contribution to the potential
∝1/z. Nonetheless, this term is important as it balances the
divergence of the enhancement factor in the limit s → ∞
having the opposite sign of the leading term, ∼B1s ln(s).
This balance is needed to provide reasonable energies as well
as to improve numerical evaluability of the potential in the
asymptotic region of finite systems.

The drawback of this B2 term becomes evident when
evaluating the asymptotics of the AK13 potential in detail,

vAK13
x (r) ∼ −AxB1

6γ
α + AxB2

γ

ln(αr/3)

r

+ Ax

γ

[(
B1 − 3

2
B2

)
− B1 ln(2γ n

1/3
0 /α)

]
1

r
,

(15)

as r = |r| → ∞ and given the asymptotic density of Eq. (8)
with q = 0 for simplicity. The first term of Eq. (15) represents
the positive system-dependent asymptotic constant of AK13,
whereas the second and third terms describe how the poten-
tial approaches this nonvanishing asymptotic constant. The
system-independent contribution to the third term gives by
construction the desired −1/r behavior. However, this term
is asymptotically dominated by the second term ∝ ln(r)/r ,
which has a positive sign. Therefore, the asymptotic constant
of the AK13 potential is ultimately approached from above and
the potential has a local maximum in the asymptotic region.
The latter is approached too fast for the potential to be able to
bind additional electrons [70].

FIG. 3. AK13 potential evaluated for the exact hydrogen ground-
state density. Looking at the outer graph, i.e., a typical computational
length scale, the potential seems to approach a positive constant
unequal to v∞

x given by Eq. (11). The inset shows the same potential
on a logarithmic scale.

A second consequence is exemplified by Fig. 3. It shows the
AK13 potential for the exact hydrogen ground-state density.
Within the typical length scale of a numerical electronic
structure calculation of less than 30 Bohr radii, the AK13
potential seemingly approaches an asymptotic constant which
is 16% higher than the actual limiting value given by Eq. (11).
The true limiting value is approached only within a length
scale of several-thousand Bohr radii. This is a consequence of
ln(r)/r decaying only marginally more slowly than 1/r . This
undesirable behavior can be noticed in numerical calculations
of other systems as well. The theoretical limiting value of the
potential is therefore of only limited significance in typical
calculations.

This drawback could be corrected by modifying the
construction of AK13. In such a revised construction of AK13,
one could, e.g., replace the B2s ln[1 + ln(1 + s)] term by a
term that exhibits an asymptotic behavior ∝s as s → ∞ and
maintains reasonable balance with the original B1 term.

VII. EXTERNAL ELECTRICAL FIELDS

The hope for improved charge-transfer characteristics
spurred some of the investigations of the BJ potential
[39,41,52], and corresponding hopes may have been associated
with AK13. Mimicking the field-counteracting behavior of
exact exchange [31,75] with the semilocal BJ potential,
however, turned out to be difficult. In order to clarify the
situation for AK13, here we look at a standard test case. We
study external electrical fields that are weak and linear, i.e.,
their contribution to the Hamiltonian is Fz with some small
field amplitude F and the z axis chosen in the direction of
the field. Such “infinitely large, weak fields” are, e.g., used to
calculate the electrical response of molecules [76], in particular
of molecular chains, within DFT. In the following, we study
a frequently used [31,75–87] model molecular system: the
hydrogen chains.

Given the asymptotic similarities of the AK13 and BJ
potential pointed out in Sec. II, it does not come as a surprise
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FIG. 4. Difference between the exchange potential of calculations
with and without an external electric field of strength F = 5 ×
10−3Eh/a0 for a H4 chain (atom positions are indicated by circles).
The solid blue line shows the desired field-counteracting behavior
of EXX within the Krieger-Li-Iafrate (KLI) approximation (xKLI).
AK13 (dashed red line) is tilted in the direction of the field, similarly
to BJ (see Fig. 5 of Ref. [39]). The AK13 potentials are not calculated
self-consistently due to the discussed numerical difficulties, but
evaluated on self-consistent xKLI KS orbitals in PARSEC [88]
with Giannozzi pseudopotentials [89], ellipsoidic boundaries with
semiaxis of 10a0 perpendicular to and 30a0 along the chain, and a
grid spacing of 0.2a0.

that in the presence of an external electric field, AK13 shows
the same surprising unphysical behavior as BJ [39], i.e., the
potential is asymptotically tilted in the direction of the external
field and does not go to zero. Figure 4 demonstrates this
by showing the difference between the exchange potential
of a chain of four hydrogen atoms in a weak electric
field and the potential with no external field, v

F �=0
x − vF=0

x .
The approximately linear tilt of the AK13 potential in the
asymptotic region arises solely in the presence of the external
field. It can be understood as a consequence of the deviation
of the asymptotic density from Eq. (8) in response to the
electric field. Terms of the AK13 potential that contribute to an
asymptotic constant when Eq. (8) holds, i.e., terms that arise
from F (s) ∼ B1s ln(s) as s → ∞, now yield (in first order) a
linearly diverging contribution to the potential.

The leading asymptotic behavior in the presence of a linear
electric field can be retraced by utilizing the one-dimensional
Airy gas model in the spirit of the analogous calculation for the
BJ potential of Ref. [39]. While the result of the corresponding
AK13 calculation for this one-dimensional model is in full
analogy to the BJ result [90], it is not quantitatively transferable
to the three-dimensional case, as the asymptotics of the AK13
potential show a direct dependence on the spatial dimension
[55] (which BJ does not show). The one-dimensional result
and Fig. 4 suggest that

vAK13
x (ρ = 0,z) ∼ vAK13,∞

x + C
Fz√−2εho

(16)

in the asymptotic region while |z| 
 |F/εho| with some
constant C > 0 and ρ =

√
x2 + y2.

In Ref. [39], the relation that is the analog of Eq. (16) for BJ
was used to justify a linear, field-dependent correction to the BJ
potential. Since this correction is applied globally, it fixes the
unphysical tilt in the asymptotic region, but more importantly
leads to a slope counteracting the external field in the inner
region, thus mimicking response physics that could previously
not be captured by semilocal constructions. The resulting total
BJ potential response to the electrical field is remarkably close
to exact-exchange calculations and yields vastly improved
polarizabilities [39,52]. Consequently, an analogue correction
to AK13 suggests itself. However, the one important benefit of
AK13 over BJ is the fact that its potential is an actual functional
derivative of a well-defined energy expression. Thus, to
maintain a correspondence between energy and potential, the
field-dependent correction to AK13 has to originate from an
energy correction. Given that this energy correction cannot
explicitly depend on the external electrical field in order to
yield consistent polarizabilities from energy and potential [76],
there is no clear way to create such a term.

VIII. INFLUENCE OF THE NUMERICAL
REPRESENTATION

Next we will discuss how strongly the chosen numerical
representation (basis set) of the KS orbitals influences calcu-
lations of finite systems for functionals with asymptotically
nonvanishing potentials. This can hardly be referenced as
anomalies in the functionals themselves, but is still an issue
of high relevance for their application. For usual (semi)local
functionals, the accuracy of the numerical representation
of the far asymptotic density is typically of little concern
because the energy and potential of such functionals are not
sensitive to these regions of space. The AK13 energy and the
AK13 and BJ potentials, however, are by construction highly
sensitive to the precise decay of the density, which is measured
by ratios such as |∇n|/n. When this ratio is numerically
evaluated, a representation of the asymptotic density that is
not highly accurate can cause serious numerical problems,
e.g., instabilities. Small numerical errors might, for example,
prevent the required cancellation of the leading-order terms
∝s ln(s) in the AK13 potential, and therefore cause a linearly
growing error in the potential in the asymptotic region. This
then can amplify the numerical error in the next step of a
KS iteration.

In the following, we discuss three common approaches to
represent KS orbitals, and their implications for the asymptotic
potential: real-space grids [69,88,91–94], Slater-type orbitals
(STOs) [95], and Gaussian-type orbitals (GTOs) [96,97].

The representation of orbitals on real-space grids is the most
flexible, yet the computationally most expensive one of these
three. The relative numerical accuracy of this representation
is typically decaying in the far asymptotic region, especially
when looking at spatial derivatives represented via finite
differences. The restriction to a necessarily finite grid also
introduces boundary effects. As a consequence, the above-
discussed problems of evaluating the AK13 potential in the
asymptotic region are strongly noticeable and make three-
dimensional, grid-based AK13 calculations extremely hard.

The usage of either STOs or GTOs circumvents some
of these problems. The reason is that, on the one hand,
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critical ingredients to the semilocal potential, i.e., the density
derivatives |∇n| and ∇2n, are analytically accessible and
are thereby numerically arbitrarily accurate, even in the
asymptotic region. On the other hand, both representations
require only a relative small basis-set size, as these sets are
highly tailored and specific to each atom. Therefore, the
degrees of freedom and, consequently, the susceptibility to
instabilities are considerably reduced compared to real-space
methods. Yet, there is a non-negligible price to pay for this
“convenience”: It is the qualitatively wrong behavior of the
density in the asymptotic region that occurs for both STOs and
GTOs. It in turn has the following conceptional implications:
In the case of STOs, the issue is that the exponential decay
of the KS orbitals is predefined by the basis set. This
means that when using semilocal density functionals with an
asymptotically nonvanishing potential, the nonzero limiting
value of the potential, v∞

x , is not determined by the system
within the self-consistent calculation, but rather is given by the
basis set and thus already fixed prior to the actual calculation.
Therefore, in the case of STOs, neither Eq. (9) nor Eq. (12) hold
strictly. Yet, they can hold approximately when a reasonable
basis set of STOs is chosen.

The issue with GTOs is similar, but even more apparent.
GTOs sacrifice the correct orbital asymptotic that is achieved
with STOs. Thus, in the case of GTOs, the asymptotic
relation n(r) ∝ exp(−βr2) as r → ∞ replaces Eq. (8), which
results in a qualitatively different behavior of semilocally
nonvanishing potentials: Instead of approaching a system-
dependent asymptotic constant outside of a finite system, the
AK13 and BJ potentials spuriously diverge linearly to positive
infinity, e.g.,

vAK13
x (r) ∼ −2AxB1

3γ
βr, (17)

as r → ∞. Additionally, the asymptotic slope of these
potentials is akin to the asymptotic constant in the case of
STOs, predefined by the basis set via the value of β.

Hence, one should be aware that semilocal density func-
tionals with an asymptotically nonvanishing potential show
significantly higher demands on the numerical representation
of the KS orbitals, especially in the asymptotic region. To
summarize, real-space methods provide, in principle, the
qualitatively most accurate representation in this region, but
are susceptible to instabilities, whereas STOs or GTOs provide
higher stability, but imply a qualitatively wrong asymptotic
density and potential.

IX. SUMMARY AND CONCLUSIONS

In this paper, we have investigated a set of anomalous
features of semilocal functionals with nonvanishing asymp-
totic exchange potentials, with a particular focus on AK13
and its predecessor BJ. We also commented on the numerical
difficulties that appear when evaluating such functionals in
standard electronic structure codes. In particular, we have
discussed misfeatures seen in the direct application of AK13
in ensemble DFT for systems with fractional particle numbers,
inaccurate energies and energetics, divergent potentials along
nodal surfaces, nonphysical response to an external electric
dipole field, and practical difficulties due to the numerical

orbital representation used. The issues we have identified
and discussed in this work provide a formidable challenge
for the future development of functionals with nonvanishing
potentials.

There are different approaches one can try to overcome
these difficulties and move forward with the aim to incorporate
important exact-exchange features into functionals with mod-
est computational cost. One option is to continue the devel-
opment of semilocal density functionals with asymptotically
nonvanishing potentials. Extending the AK13 construction
idea, one can try to explicitly tackle each deficit that we have
pointed out here. This is a major challenge, but when carried
out successfully such a strategy should lead to a formally
satisfying consistent energy-potential pair. A second option
is to follow the idea of GLLB [46,47] and construct model
potentials that incorporate some of the desired exact-exchange
features via an explicit orbital and eigenvalue dependence.
This type of scheme can provide numerically robust potentials
that do not suffer from the issues that are related to the
semilocal realization of a nonvanishing asymptotic constant.
A downside of this approach is that such constructions are not
functional derivatives of a corresponding energy functional.
This implies serious drawbacks that we have already discussed
briefly in Sec. I, such as instabilities in time-dependent DFT
and no possibility for geometry optimization. A third option
is meta-generalized-gradient approximations (meta-GGAs),
i.e., energy functionals that are semilocal not in the density
but in the orbitals and make use of, e.g., the kinetic-energy
density τ . As discussed previously by Eich and Hellgren [98],
meta-GGAs used in the Kohn-Sham scheme in general have
a derivative discontinuity due the nonlocal character of their
multiplicative potential. However, as commonly used meta-
GGAs to date largely underestimate the exchange derivative
discontinuity and related properties, it remains to be seen
whether the desired potential features can be captured on the
meta-GGA level to an extent that is useful in practice.
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APPENDIX A: COMPARISON OF AK13 AND EXX
POTENTIALS FOR FRACTIONAL PARTICLES NUMBERS

Section III discussed the straightforward extension of AK13
to ensemble DFT using fractional particle numbers. We argued
on general grounds, and explicitly demonstrated for ionized
atomic magnesium in Fig. 1, that the AK13 (ensemble)
potential does not exhibit a global discontinuous shift at integer
particle number. Yet, the AK13 potential reproduces a step in
the asymptotic region that is typically associated with such a
discontinuous shift. In order to further discuss and illustrate the
relation between the step structure and the shift, we compare
the functional derivative with respect to the density of the EXX

075140-7



ASCHEBROCK, ARMIENTO, AND KÜMMEL PHYSICAL REVIEW B 96, 075140 (2017)

(a) EXX (b) AK13

FIG. 5. Change of the EXX (in the KLI approximation) and the (unshifted) AK13 spin-up potentials upon addition of a fraction of an
electron to double-ionized atomic magnesium. The potentials are based on self-consistent calculations with a code for atoms operating on
a logarithmic grid and originating from Ref. [64]. While the EXX potential jumps globally and discontinuously at integer particle numbers,
solely the asymptotic limiting value of the AK13 potentials jumps. Similar plots were shown for BJ in Fig. 2 of Ref. [39] and for AK13 in Fig.
4 of Ref. [55].

energy, on the one hand, to the unshifted functional derivative
of the AK13 energy functional for Mg2+, on the other hand, as
we add a small fraction of an electron to the system. The
functional derivatives are shown in Fig. 5 for a fractional
occupation of one percent, i.e., N = 10 + ε with ε = 0.01.
By virtue of the spin-scaling relation for exchange [99], it is
to be expected that only the exchange potential of the spin
channel in which the particle number changes is substantially
affected and can show a discontinuity or step. This is also
reflected in the AK13 functional and becomes manifest in the
fact that the asymptotic constant of the AK13 potential is spin
dependent and may differ between spin channels. Therefore,
we deliberately focus our discussion only on this spin channel,
which is here chosen to be the up-spin channel.

Upon addition of a fraction of an electron, the functional
derivative of the EXX energy jumps up in the interior region,
r � 2a0, by approximately a constant, �EXX

x , whereas in the
asymptotic region the EXX potential maintains the same
limiting value as the EXX potential at integer number of
electrons,

lim
r→∞ v

EXX,N=10+ε
x,↑ (r) = lim

r→∞ v
EXX,N=10
x,↑ (r) = 0. (A1)

As ε → 0+, the step between these two regions moves
outwards and the discontinuous shift of the potential at integer
particle number becomes apparent; the potentials at any point
r at a finite distance differ by just a constant shift in this case,

lim
ε→0+

v
EXX,N=10+ε
x,↑ (r) − v

EXX,N=10
x,↑ (r) = �EXX

x . (A2)

In the case of the unshifted AK13 functional derivative, the
situation is different: In the interior region, the potentials with
and without fractional particle number overlap perfectly due to
their semilocal nature. However, by construction, the limiting
value of the AK13 potential decreases discontinuously upon
addition of a fraction of an electron [cf. Eq. (12)], thus

lim
r→∞

[
v

AK13,N=10+ε
x,↑ (r) − v

AK13,N=10
x,↑ (r)

] = �AK13
x . (A3)

The result is a step downward in the fractional AK13 potential
between the interior and the asymptotic region. Similar to
the step that is present in the EXX potential, the step between
these two regions moves outwards as ε → 0+. However, as the
AK13 potentials with different particle numbers differ in the
asymptotic region and not in the interior region, there remains
no global discontinuous shift of the potential,

lim
ε→0+

v
AK13,N=10+ε
x,↑ (r) − v

AK13,N=10
x,↑ (r) = 0, (A4)

in contrast to EXX.
This contrast can also be summarized in the following order

of limits relation, which in the case of the EXX potential (as
well as the exact xc potential) reads

lim
ε→0+

lim
|r|→∞

[
vN0+ε

x (r) − vN0−ε
x (r)

] = 0, (A5)

lim
|r|→∞

lim
ε→0+

[
vN0+ε

x (r) − vN0−ε
x (r)

] = �x, (A6)

whereas the relation is reversed for AK13,

lim
ε→0+

lim
|r|→∞

[
vN0+ε

x (r) − vN0−ε
x (r)

] = �AK13
x , (A7)

lim
|r|→∞

lim
ε→0+

[
vN0+ε

x (r) − vN0−ε
x (r)

] = 0. (A8)

In the left-hand sides of these equations, we dropped the
superscripts EXX and AK13 for brevity of notation. Thus,
the qualitative difference between AK13 and EXX essentially
comes down to a missing global shift of the AK13 functional
derivative. This missing shift is precisely the one proposed to
be added in relation to Eq. (13) and discussed in Sec. III as
being in line with the Hohenberg-Kohn theorem for integer
particle systems but inadmissible in ensemble DFT.

If one is familiar with the OEP (or KLI) construction in
detail, one may wonder why we chose to align the EXX
potential for N = 10 + ε such that it goes to zero at infinity—
after all, one has to make a deliberate choice for the asymptotic
constant in the OEP construction [61,67]. So if we chose to
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FIG. 6. Highest occupied orbital energy ε3s,↑ corresponding to the
EXX (KLI) potential aligned to zero at infinity, εshifted

3s,↑ corresponding
to the EXX (KLI) potential aligned in the interior region with the
potential at integer number of electrons (Mg2+), and the total-energy
derivative ∂E/∂N as a function of the number of electrons N

for ionized atomic magnesium. ∂E/∂N is calculated using central
nonuniform first-order finite differences and the values of E(N )
at the shown points. The data points are based on self-consistent
calculations with the all-electron code DARSEC [69].

not align the AK13 potential at zero, why did we choose to
align the EXX potential? The answer to this question is that
as mentioned previously, we have no liberty in choosing the
constant in ensemble DFT but have to accept the constant that
comes out of the functional derivative. Figure 6 demonstrates
via Janak’s theorem that the EXX potential aligned to zero
at infinity corresponds to the functional derivative of the
EXX energy, whereas Fig. 1 shows that the unaligned AK13
potential is the functional derivative of the AK13 energy.
Therefore, Fig. 5 depicts the proper functional derivatives.
We note in passing that for model potentials such as BJ or
GLLB, the question of “properly aligning” is irrelevant, as
these potentials are not functional derivatives to begin with.

APPENDIX B: NONEXISTENCE OF A
STRAIGHTFORWARD ENERGY CORRECTION

As discussed in Sec. III, one might wonder if there
exists a straightforward energy correction to the semilocal
AK13 functional that realigns the potential and introduces a
discontinuous shift of the potential in ensemble DFT. If such
a correction could be devised, the corrected AK13 functional
would take the form

EAK13,0
x [n] = EAK13

x [n] + EDD
x [n], (B1)

where the functional derivative equals the realigned AK13
potential, as given by Eq. (13). We will in the following prove
that the behaviors under uniform density coordinate scaling
of Eqs. (13) and (B1) are in contradiction. This disproves
the existence of a “straightforward” energy correction whose
action is only a simple system-independent realignment of the
potential to zero by a constant homogeneous shift in the whole
system. We specifically note that therefore the following proof

is valid only for shifts that are rigorously constant everywhere,
i.e., including the boundary of the space that is considered.

Assume the functional EDD
x [n] exists. On addition to

EAK13
x [n], the combined exchange potential then is

δEAK13
x [n]

δn(r)
+ δEDD

x [n]

δn(r)
= vAK13

x ([n]; r) + vDD
x [n], (B2)

where vDD
x [n] = − lim|r|→∞ vAK13

x (r) by assumption. Now,
consider some well-behaved spherical-symmetric density n(r)
of a finite system, which satisfies the asymptotic relation of
Eq. (8). Hence, by virtue of Eq. (9),

vDD
x [n] = − lim

|r|→∞
vAK13

x ([n]; r) = −AxB1α

6γ
. (B3)

Given this density, we define the uniform density path,

nλ(r) = λ3n(λr) for λ ∈ (0; 1], (B4)

and investigate the derivative of EDD
x [n] with respect to λ along

this path,

dEDD
x [nλ]

dλ
=

∫
δEDD

x [nλ]

δnλ(r)

dnλ(r)

dλ
d3r, (B5)

where δEDD
x [nλ]/δnλ(r) = vDD

x ([nλ]; r) and

dnλ(r)

dλ
= 3λ2n(λr) + λ3r · ∂n(λr)

∂(λr)
. (B6)

As by construction vDD
x [n] has to system independently cancel

the nonzero asymptotic value of the AK13 potential, one can
show

vDD
x [nλ] = −AxB1αλ

6γ
= λvDD

x [n] (B7)

by evaluating vAK13
x ([nλ]; r) along the density path of Eq. (B4)

and by applying Eq. (B3), respectively. Inserting this result
together with Eq. (B6) into Eq. (B5) while applying the
substitution λr → r gives

dEDD
x [nλ]

dλ
=

∫
vDD

x [n][3n(r) + r · ∇n(r)]d3r

= vDD
x [n]

∫
∇ · [rn(r)]d3r = 0, (B8)

where we have utilized the divergence theorem in the final step
with no boundary contribution due to n(r) satisfying Eq. (8).
Thus, the energy correction EDD

x [n] is invariant under uniform
density scaling for a density that satisfies the asymptotics
relations of Eq. (8),

EDD
x [nλ] = EDD

x [n]. (B9)

Taking the functional derivative of Eq. (B9) with respect to
n(r) and applying the chain rule on the left-hand side then
yields

vDD
x ([nλ]; r) = vDD

x ([n]; λr), (B10)

which is a contradiction to Eq. (B7).
We specifically note in passing that the correction of

Cerqueira et al. [70],

EAK13,0
x = EAK13

x + vDD
x

∫
n(r)d3r, (B11)
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is not the energy functional corresponding to the realigned
potential of Eq. (13) (as one can show using Janak’s theorem

in the spirit of Fig. 1) and would imply a discontinuity of the
total energy E(N ) rather than of its derivative ∂E/∂N .
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