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Motivated by recent experiments, we present a comprehensive theoretical study of the geometrically frustrated
strongly correlated magnetic insulator Mn3O4 spinel oxide based on a microscopic Hamiltonian involving lattice,
spin, and orbital degrees of freedom. Possessing the physics of degenerate eg orbitals, this system shows a strong
Jahn-Teller effect at high temperatures. Further, careful attention is paid to the special nature of the superexchange
physics arising from the 90◦ Mn-O-Mn bonding angle. The Jahn-Teller and superexchange-based orbital-spin
Hamiltonians are then analyzed in order to track the dynamics of orbital and spin ordering. We find that a
high-temperature structural transition results in orbital ordering the nature of which is mixed with respect to
the two originally degenerate eg orbitals. This ordering of orbitals is shown to relieve the intrinsic geometric
frustration of the spins on the spinel lattice, leading to ferrimagnetic Yafet-Kittel ordering at low temperatures.
Finally, we develop a model for a magnetoelastic coupling in Mn3O4, enabling a systematic understanding of
the experimentally observed complexity in the low-temperature structural and magnetic phenomenology of this
spinel. Our analysis predicts that a quantum fluctuation-driven orbital-spin liquid phase may be stabilized at low
temperatures upon the application of pressure.
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I. INTRODUCTION

Frustrated magnetic systems with orbital degeneracy
present an interesting playground for the exploration of novel
ordered as well as liquidlike states. Frustration leads very
naturally to macroscopic degeneracy in the ground state and
a concomitant lack of equilibrium spin ordering. Such spin
liquid states have been proposed in theoretical studies of
several systems with different types of geometrically frustrated
lattices, as well as in experiments performed on some candidate
materials [1–3]. It is important to note, however, that typical
material systems of interest in quantum magnetism also
possess orbital and lattice degrees of freedom. The interaction
among these three can lead to a variety of emergent ordered
states. For instance, degenerate orbital degrees of freedom
interact in a cooperative manner with fluctuations of the lattice
via the Jahn-Teller effect [4–6], inducing orbital ordering along
with a static global distortion of the lattice. From the seminal
work of Kugel and Khomskii [7,8], it is well known that strong
electronic correlations give rise to superexchange (SE) related
interactions between and among the orbital and spin degrees of
freedom. The resultant orderings of orbitals and spins can then
be strongly tied to each other. Further, the coupling of spin and
lattice degrees of freedom can also be shown to have interesting
consequences for spin ordering [9,10]. In this way, the presence
of multiple couplings between various degrees of freedom
leads generically to the separation of energy scales at which
the ordering of the orbitals and spins takes place [11–14].
Equally importantly, such interactions also offer multiple ways
by which the system can relieve any inherent frustration among
the spins and attain their ordering.

Since orbital-spin interactions depend strongly on the
metal-ligand-metal bonding angle in strongly correlated in-
sulators [15,16], a transition-metal (TM) insulator on the
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geometrically frustrated spinel lattice with orbital, spin, and
lattice degrees of freedom offers the exciting prospect of
finding diverse physical phenomena across a wide scale of
energies. In this light, the spinel Mn3O4 is an ideal candidate
system in which the complex interplay of various spin-orbital-
lattice interactions has been studied [17–23]. However, the
microscopic mechanism that relieves the geometric frustration
inherent in the spinel structure and leads to the ferrimagnetic
Yafet-Kittel (Y-K) ordering of spins at low temperatures re-
mains unknown [24]. Further, the SE mechanism for electronic
correlations in the Mn3O4 spinel is likely different from
the other well-studied TM perovskite systems [25,26]. In
perovskite systems, where the TM-ligand-TM bond angle is
180◦ and the ligand site has only one orbital participating
in the superexchange mechanism, one can often conclude on
spin ordering by considering the nature of orbital ordering.
This is the essence of the phenomenological Goodenough-
Kanamori-Anderson (GKA) rules. However, in spinel systems,
the 90◦ TM-ligand-TM bond angle necessitates two orthogonal
ligand orbitals participating in superexchange. This renders
inapplicable our intuition of spin ordering based on the
GKA rules.

Experiments show that at 1443 K Mn3O4 undergoes a
structural transition from cubic to tetragonal lattice symmetry
[17–21,27–29]. This material also has three different magnetic
transitions, with the first being a transition from a paramagnetic
phase to a three-dimensional canted ferrimagnetic Yafet-Kittel
spin ordering at 43 K. In the Yafet-Kittel phase, the magnetic
unit cell possesses two Mn2+(A-type) spins aligned along
the [110] direction, together with a tetrahedra of four Mn3+

(B-type) spins the net moment of which is antiparallel to the
Mn2+ spins, but with each of the four spins being canted
away from the c axis ([001] direction) and towards the [1̄1̄0]
direction. This compound has further magnetic transitions at
39 and 33 K. Between these two transitions, the magnetic unit
cell becomes incommensurate with respect to the chemical
unit cell. Another structural transition, from tetragonal to
orthorhombic lattice symmetry [20], is observed at 33 K and
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FIG. 1. Schematic diagram of a Mn3O4 unit cell. Four orbitally
active Mn3+ ions (red spheres) form a tetrahedron. The Mn3+ ions
are connected via oxygen ions (gray spheres), with the Mn-O-Mn
bonding angle being 90◦. There are also two orbitally nonactive
Mn2+ ions (green spheres) present in the unit cell.

the Yafet-Kittel magnetic order is again attained, but with a
unit cell doubled along the [110] direction with respect to
the ordered phase at 43 K. Experiments also show that the
magnetic transitions are associated with a significant change
in the in-plane (electric field �E ‖ [100]) and out-of-plane
( �E ‖ [001]) components of the dielectric constant, indicating
a strong spin-lattice coupling [19,21,22,30].

In this paper, we attempt a qualitative understanding of
underlying physics of ordering in the Mn3O4 spinel by the
development of a microscopic model for the orbital, spin,
and lattice degrees of freedom. Keeping in mind the special
90◦ TM atom-ligand atom-TM atom bonding angle in Mn3O4

(a typical Mn3+ tetrahedra is shown in Fig. 1), we carry out a
systematic derivation of the orbital-spin Hamiltonian. We then
perform a variational analysis of this Hamiltonian to find the
nature of orbital ordering at higher-energy scales and resultant
spin ordering at lower energies. In understanding the low-
temperature structural transition (tetragonal to orthorhombic)
and associated magnetic and orbital orders, we also develop a
model for the spin-lattice interaction in this system.

This paper is organized as follows. In Sec. II, we derive the
orbital-spin model. In Sec. III, we analyze this Hamiltonian and
discuss our results for orbital ordering. Using the orbital order
found in Sec. III, we then compute the magnetic interaction
in different crystallographic planes in Sec. IV, along with a
discussion of spin ordering at low temperatures. In Sec. V,
we develop a model for the spin-lattice interaction and relate
our results to explain some experimental facts. We end with a
concluding section.

II. SPIN-ORBITAL HAMILTONIAN

The Mn3O4 spin-orbital model is based on the spinel lattice,
where nearest-neighbor transition-metal ions are connected
via oxygen ligand atoms with an ion-oxygen-ion bond angle
of 90◦. Due to the presence of a crystal field, the 3d electron
levels of the Mn3+ ion split into t2g and eg levels [22]. Further,
for an on-site Hubbard repulsion on the transition-metal
ion that is much greater than the crystal-field splitting, the
Mn3+ ion’s four d electrons form a high-spin configuration

FIG. 2. Four-step SE process for a M-type initial configuration
(following notations of [16]). An oval represents the Mn3+ ion with
one eg electron either in the nonhopping orbital (dβ2−γ 2 ) on the left
or in the hopping orbital (d3α2−r2 ) on the right. A circle represents
an oxygen ion with the electrons in the p orbitals. T ,D,G, and S
are excited states of the Mn3+ ion. The triplet t and singlet s are
excited-state configurations of the oxygen ion. Note that {α,β,γ } is
a cyclic permutation of {x,y,z}.

with spin S = 2 [31]. As shown by Mostovoy and Khom-
skii [15] and Reitsma et al. [16] for the case of a 90◦ TM-O-TM
bond angle, the Anderson superexchange process (where an
electron is effectively transferred from one metal ion site
to the other metal ion site) is considerably weaker than the
Goodenough superexchange process (where two electrons
transfer from the ligand oxygen ion, one to each of the
neighbor metal ions). The Goodenough superexchange process
is schematically represented as

e1p6e1 → e1p5e2 → e2p4e2 → e1p5e2 → e1p6e1, (1)

where e and p represent the eg orbital on the transition metal
(Mn3+) and p orbital on the ligand (O) sites, respectively.
The effective spin-orbital Hamiltonian is obtained from fourth-
order perturbation theory. As shown in Fig. 2, in the excitation
process of the SE mechanism, one electron hops from a
pα orbital of the ligand oxygen atom to the left Mn3+ ion
eg orbital, while another electron hops from a pβ orbital
of the same oxygen atom to the down Mn3+ ion orbital.
In the de-excitation process, excited electrons return to the
oxygen atom by reversing the hopping pathway. In this way,
correlations build between the two Mn3+ ions and contribute
to the SE. The relevant Mn3+ eg states are 4A2,

4E, 4A1, and
6A1. Of these, the first is a singlet (S), the second and third are
Hund’s-split orbital doublets (D,G), and the fourth is a triplet
(T), with energy ES = U + 10

3 JH , ED = U + 2
3JH , EG = U ,

and ET = U − 5JH [31,32], respectively. The oxygen p4

configurations that occur during the SE process include a triplet
3T1 (t) and singlet 1T2 (s) with energy Up − Jp and Up + Jp,
respectively. Here U , JH and Up, Jp are the interorbital
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Coulomb repulsion and Hund’s exchange couplings on the
Mn3+ and oxygen ion sites, respectively. In deriving the
complete spin-orbital Hamiltonian, we follow the formulation
and notations of Ref. [16]. While the detailed derivation is
presented in the Appendix, we present here the results. It
should be noted that, in reaching the spin-orbital Hamiltonian,
one must list all possible initial configurations (the electron’s
position on the hopping or nonhopping orbital of Mn sites),
and for each of them list all possible hopping sequences that
return to the ground-state manifold. Thus, the spin-orbital
Hamiltonian we begin with has the form

Heff =
∑

〈ij〉,α �=β

(
Qαβ

O,ij

[
KT

OQT
ij + KS

OQS
ij

] + Qαβ

M,ij

[
KT

MQT
ij

+KS
MQS

ij

] + Qαβ

N,ij

[
KT

NQT
ij + KS

NQS
ij

])
(2)

where Q are the orbital projection operators denoted by

Qαβ

O,ij = Pα
i P

β

j + Pβ

i Pα
j ,

Qαβ

M,ij = Pα
i P

β̄

j + P ᾱ
i P

β

j + Pβ

i P ᾱ
j + P β̄

i Pα
j , (3)

Qαβ

N,ij = P ᾱ
i P

β̄

j + P β̄

i P ᾱ
j ,

where α,β ∈ {x,y,z}, Pα
i = ( 1

2 Ii + Iα
i ), and P ᾱ

i = ( 1
2 Ii − Iα

i )
are projection operators for the hopping and nonhopping
orbitals, respectively, and I is the 2 × 2 identity matrix. The
(rotated) orbital pseudospin operators (I ) are given by

I
x/y

i = −1

2
T z

i ∓
√

3

2
T x

i , I z
i = T z

i , (4)

where T represents the pseudospin operators for the twofold
degenerate eg orbital system, with the orbital Hilbert space at
each site given by(

1
0

)
= |3z2 − r2〉,

(
0
1

)
= |x2 − y2〉. (5)

The orbital projection operators determine the precise config-
uration of the orbitals on any two Mn3+ ions connected by
a hopping pathway, e.g., whether both hopping orbitals are
occupied by an electron each (denoted by “O”), any one of the
two hopping orbitals occupied (denoted by “M”), and neither
hopping orbital occupied (denoted by “N”). Further, Q are
spin projection operators denoted by

QT
ij = 1

10 (6 + �Si.�Sj ), QS
ij = 1

10 (4 − �Si.�Sj ), (6)

where T stands for triplet and S for singlet spin configurations
at Mn sites. Finally, the Ks are various spin-orbital SE
constants.

The Hamiltonian may be separated into purely orbital (O)
and spin-orbital (S) parts as follows:

Heff =
∑

〈ij〉,α �=β

([
JO

O Qαβ

O,ij + JO
MQαβ

M,ij + JO
N Qαβ

N,ij

]
1ij

+ [
J S

OQ
αβ

O,ij + J S
MQαβ

M,ij + J S
NQ

αβ

N,ij

]�Si.�Sj

)
, (7)

with interorbital and spin-orbital interaction constants given
by

JO
L = 1

10

(
6KT

L + 4KS
L

)
,

J S
L = 1

10

(
KT

L − KS
L

)
(L = O,M,N ). (8)

In order to calculate the SE constant, one has to consider
closely the four-step SE process. As an example, consider
the M initial configuration |M,↑ ↓〉 (as shown in Fig. 2).
Here, a single electron (with spin-up) occupies a nonhopping
orbital (dβ2−γ 2 ) on the ith site of Mn3+, while another electron
(with spin-down) occupies the hopping orbital (d3β2−r2 ) on the
j th site. The corresponding contribution to the SE coupling
is denoted by [M,↑↓; ↓↑], where the final (↓↑) denotes the
configuration of hopping electrons from the oxygen sites. As
we will see below, [M,↑↓; ↓↑] involves contributions from 12
possible doubly excited states denoted succinctly by [XvY ],
with X,Y ∈ {T ,D,S,G} and v ∈ {t,s}:

[M,↑↓; ↓↑] = 1
3 ([T tD] + [T tS] + [DtD] + [DtS]

+ [T sD] + [T sS] + [DsD] + [DsS]

+ [GtD] + [GtS] + [GsD] + [GsS]),

(9)

with

[XvY ] = t4

4

�X + �Y

�2
X�2

Y

Uv

�X + �Y + Uv

, (10)

where Us = Up + Jp, Ut = Up − Jp, �T = � − 4JH ,�D =
� + 5

3JH ,�S = � + 13
3 JH ,�G = � + JH , and � = U −

JH . Here t is the charge-transfer amplitude. The factor
1/3 takes care of the threefold processes arising from the
T , D, and G spin configurations of an excited state (see
Fig. 2). Note that we have four sequences of excitation
and de-excitation processes for a given intermediate doubly
excited state. The other “M” configurations as well as “O” and
“N” configurations are taken account of in a similar manner
(see the Appendix for more details).

The complete spin-orbital Hamiltonian can then be written
in a compact notation as follows:

Heff =
∑

〈ij〉,α �=β

JτWαβ

ij

+
∑

〈ij〉,α �=β

(−Jσ 1ij + JνVαβ

ij − JμWαβ

ij

)�Si.�Sj , (11)

where Vαβ

ij = −1i(Iα
j + I

β

j ) − (Iα
i + I

β

i )1j and Wαβ

ij =
2(Iα

i I
β

j + I
β

i I α
j ). The first term denotes interorbital interac-

tions and the second term denotes spin-orbital interactions.
The algebraic expression of the various SE constants (Jτ ,
Jσ , Jν , and Jμ) are presented in the Appendix. It is also
worth noting that the form of the interorbital SE Hamiltonian
and the Jahn-Teller Hamiltonian derived from phonon-orbital
interactions for the spinel lattice [33] are the same.

For an idea of the relative magnitude of various SE constants
in the Mn3O4 spinel model Hamiltonian, we have plotted them
in units of t4/�3 versus Up/�, where Up is treated as a free
parameter (see Fig. 3). We have also taken values for several
other parameters from the existing literature. This includes
Hund’s coupling on the Mn3+ site (JH = 0.69 eV), the charge-
transfer transfer energy (� = 5.5 eV), Hubbard repulsion on
the TM site (U = � + JH = 6.19 eV) [31,34], and Hund’s
coupling on the oxygen site (Jp = 0.1Up) [16]. It is important
to note from Fig. 3 that, among all these SE couplings, only Jν
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FIG. 3. A plot of various SE interaction constants (in units of J =
t4/�3) as a function of Up/� for Jp/Up = 0.1 and JH /� = 0.14 :
(a) orbital SE constant Jτ and (b) spin-orbital SE constants Jμ, Jν ,
and Jσ . Estimates of some of the parameters for Mn3O4 taken from
the literature are Up/� = 0.909, JH = 0.69 eV, and � = U − JH =
5.5 eV [16,31,35,36].

is negative for the Mn3O4 spinel. Further, it is also clear that the
interorbital interaction Jτ is much greater than all spin-orbital
interactions. Thus, orbital ordering must dominate the physics
of this Hamiltonian at high-energy scales.

III. VARIATIONAL ANALYSIS OF THE INTERORBITAL
HAMILTONIAN

Recalling the fact that among different SE constants the
interorbital SE term (Jτ ) dominates over all other exchange
terms (see Fig. 3), we analyze the interorbital part of the
Hamiltonian first in order to obtain the orbital ordering that
will set in at high-energy scales. The form of the interorbital
mean field Hamiltonian is given by

HMF =
∑

〈i,j〉,α �=β

Jτ

〈
Wαβ

ij

〉
. (12)

We use a general superposition of the orbital basis state for a
variational analysis

|θi〉 = cos(θi/2)|3z2 − r2〉 + sin(θi/2)|x2 − y2〉, (13)

such that the expectation value of the orbital operator Wij

acting on the direct-product orbital state specifying the bond
lying between the ith and j th sites, |θi〉 ⊗ |θj 〉, is obtained as

〈
Wαβ

ij

〉 = 1

4
[2 cos(θi + θj ) − cos(θi − θj )]xy

+ 1

4

[
2 cos

(
θi + θj − 4π

3

)
− cos(θi − θj )

]
xz

+ 1

4

[
2 cos

(
θi + θj + 4π

3

)
− cos(θi − θj )

]
yz

.

(14)

Here, the suffix at the end of each bracket indicates the plane
on which the particular Mn-O-Mn bond lies within a given
Mn3+ tetrahedron. Note that we assume a vanishing relative
phase between the two eg orbitals in Eq. (13) above due to the
presence of time-reversal invariance [37,38].

It can be shown that, for the case of 90◦ bonding between
the transition-metal ions, a ferro-orbital (FO) configuration
(θi � θj ) is favored energetically over a canted-orbital (CO)
configuration (θi � θj ± π ) [8,16]. Considering these sub-
tleties in our analysis, we compute the variational ground-state
orbital ordering for the Mn3O4 spinel. The variational energy
for this FO configuration of a tetragonally distorted spinel (the
lattice length scale along the c axis is greater than that along
the a and b axes, c > a = b) is found to be

E(θ ) = Jτ

4
[2(1 − β) cos 2θ − (1 + 2β)], (15)

where the XY -plane SE constant is given by J ab
τ = Jτ , and the

XZ- and YZ-plane constants are given by J ac
τ = J bc

τ = βJτ ,
β < 1. Then, minimizing E(θ ) gives

∂E(θ )

∂θ
= −Jτ (1 − β) sin 2θ,

∂2E(θ )

∂θ2
= −2Jτ (1 − β) cos 2θ,

such that, for β < 1, E(θ ) will have minima at θ = ±(2n +
1)π/2 (where n is integer). For θ = ±π/2, the so-called
mixed orbital ordering states are given by [13,16,38–40]
|θ = ±π

2 〉 = 1√
2
|3z2 − r2〉 ± 1√

2
|x2 − y2〉. This orbital order-

ing has a twofold degeneracy shown in Fig. 4, reflect-
ing the a = b axes symmetry of the tetragonally distorted
spinel.

A. Computation of spin-exchange couplings

The spin-orbital Hamiltonian (11) shows that the dynamics
of the orbitals and spin degrees of freedom are coupled to
one other. Thus, orbital ordering at high temperatures must
dictate low-temperature spin ordering. Thus, once orbital
ordering is obtained variationally, one can use the orbital-
ordering angle θ = ±π/2 in the spin-orbital Hamiltonian in
deriving an effective spin-exchange interaction between spins
in different crystallographic directions. In this way, along the
three crystallographic planes (XY , XZ, and YZ), the effective
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FIG. 4. The mixed orbital state for (a) orbital angle θ = +π/2
and (b) orbital angle θ = −π/2.

spin Hamiltonian has the form [upon neglecting the small Jσ

term in Eq. (11)]

H spin
xy (θ = ±π/2) = 0.75Jμ

�Si. �Sj = JBB
�Si. �Sj ,

H spin
xz (θ = ±π/2) = ±0.865ᾱ|Jν | �Si. �Sj = ±J ′

BB
�Si. �Sj ,

H spin
yz (θ = ±π/2) = ∓0.865ᾱ|Jν | �Si. �Sj = ∓J ′

BB
�Si. �Sj .

(16)

In obtaining Eqs. (16), we have used the expression for the
expectation values of the orbital operators Wij [Eq. (14)] and
〈Vαβ

ij 〉 = cos[(θi + θj )/2 + χγ ] cos[(θi − θj )/2], where χγ =
4π/3,−4π/3 and 0 for γ = x,y,z, respectively, and {α,β,γ } is
a cyclic permutation of {x,y,z}. For a system with tetragonal
symmetry, the ratio of superexchange-based spin-exchange
couplings ᾱ(≡ J xz

ν (J yz
ν )/J xy

ν ) < 1. Our results show that the
antiferromagnetic spin exchange between the B-type moments
(i.e., Mn3+ ions) in the XY planes is given by JBB =
0.75Jμ. However, the exchange coupling between B-type
moments in the other planes is considerably weaker in value,
J ′

BB = 0.865ᾱ|Jν | � JBB , and can be either ferromagnetic
or antiferromagnetic depending on the sign of the orbital
angle θ . As a result, the geometrical frustration inherent in
a Mn3+ tetrahedron is relieved by the mixed nature of the
orbital-ordered ground state.

We can also obtain numerical estimates of the spin SE
constants derived from our model. For this, we use the ratios
Jτ /Jμ ∼ 60 and Jτ /Jν ∼ 140 obtained from Fig. 3 for the
Mn3O4 system (Up/� = 0.91). Thus, for Jτ ∼ 1500 K, Jμ ∼
25 K and we obtain JBB = 18.75 K from Eq. (16). Further,
by considering an anisotropy factor ᾱ = 0.5, we also obtain
J ′

BB = 4.75 K from Eq. (16). We note that the values obtained
for both JBB and J ′

BB are in reasonable agreement with
those found from experiments and first-principles calculations
[24,41].

B. Spin ordering in the Mn3O4 spinel

While the Mn3O4 spinel system undergoes a structural
phase transition from cubic to tetragonal (and consequent
orbital ordering) at 1400 K, spin ordering happens only at
around 42 K. The reason for a lack of spin ordering in a
temperature range as large as 42 < T < 1400 K is indicated
by the low values of the various spin-exchange constants with
respect to the interorbital coupling (Jτ ). The largest of these

FIG. 5. Schematic diagram of a Yafet-Kittel ferrimagnetic spin
configuration in the Mn3O4 spinel. Two Mn2+ spins align ferromag-
netically along the [110] direction whereas four Mn3+ spins cant
toward the [1̄1̄0] direction with a resultant moment along [1̄1̄0]. The
inset shows another Yafet-Kittel configuration which is degenerate
with that shown in the main figure.

spin-exchange couplings, JBB > 0, leads to the formation of
one-dimensional (1D) antiferromagnetic spin chains in the
[110] and [11̄0] directions in this temperature range. While
the Mn3+ spins are S = 2, the large on-site Hund’s coupling
ensures that only the Sz = ±2 is manifest in the dynamics. In
effect, we can treat the spins as effectively spin-1/2, with any
1D chain having two degenerate classical Neél-type ground-
state configurations. As is well known, such 1D spin chains
cannot display any true long-ranged ordering of spins at any
finite temperature; at best, a quasi-long-ranged (or algebraic)
order is obtained [42]. Thus, a true long-ranged spin ordering
can only be obtained at low temperatures through weaker
spin-exchange couplings, including the antiferromagnetic
Mn3+-Mn2+ coupling (JAB) and the interchain spin-exchange
couplings J ′

BB (some of which are ferromagnetic, and some
antiferromagnetic, in nature) [24,41].

In order to understand the appearance of the ferrimagnetic
Yafet-Kittel long-ranged spin order at low temperatures, we
will consider the competing interactions within a single
Mn-ion complex of two Mn2+ spins and a tetrahedron of
four Mn3+ spins. The canting of the Mn3+ spins in the
Y-K state can be seen to arise from having to satisfy the weak
antiferromagnetic Mn3+-Mn2+ coupling (JAB) together with
the in-chain Neél order due to JBB . The yet weaker spin-
exchange couplings J ′

BB and JAA help relieve the frustration
and stabilize the Y-K ground state [43–46]. Note that the
antiferromagnetic nature of JAB , together with the canting
of the Mn3+ spins, will lead to a ferrimagnetic ground state:
the four Mn3+ spins will possess a total magnetic moment
smaller than, and antialigned with, the two Mn2+ spins. As
the system has tetragonal (a = b) symmetry as well as orbital
degeneracy, the Y-K spin ordering is doubly degenerate (see
Fig. 5). It is also known that an orthorhombic structural
distortion finally stabilizes magnetic and orbital ordering in
the system at around 32 K. Thus, in the next section, we show
how a spin-lattice coupling lifts the spin degeneracy via an
orthorhombic distortion of the Mn3+ tetrahedra [10,21,22],
attaining a cell-doubled Y-K spin-ordered ground state.
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FIG. 6. The two orthorhombic forces given in Eq. (19). Dashed
lines correspond to the repulsive forces between spins and the
resultant elongation of the plane on which they are lying, while solid
lines correspond to attractive forces and resultant compression of the
plane. (a) This configuration supports elongation along the y axis
while (b) supports elongation along the x axis.

IV. SPIN-LATTICE INTERACTION IN THE SPINEL

Although the geometrical frustration of the spinel lattice
is relieved by the tetragonal distortion, a twofold degeneracy
remains in the choice of the nature of the exchange interactions
between spins in the XZ and YZ planes, J′

BB , in a given
tetrahedron. This can be observed in Eq. (16) above. As
shown in Fig. 6 below, these two degenerate configurations
are associated with different orthorhombic (a �= b) lattice
distortions of the system [21]. Studies of the effects of a
spin-lattice coupling in spinel [47,48] and pyrochlore [10]
systems show how magnetic ordering can be achieved via
orthorhombic distortions. In seeking the eventual stabilization
of magnetic order in orthorhombically distorted Mn3O4, we
follow an analysis similar to Ref. [10].

Allowing for a dependence of the SE constant Jij on the
distance between spins at sites i and j , the contribution of such
a pair to the exchange energy [9,49,50] is given by

Eij = [J + (dJ/dr)δrij + · · · ](�Si · �Sj ). (17)

Therefore, the spins exert on each other a force, −(dJ/dr)(�Si ·
�Sj ), which is attractive or repulsive depending on the angle
between the two spins. In general, the angles between the
nearest-neighbor spins placed at the vertices of a lattice can
be unequal. This leads naturally to an unbalanced force acting
on each spin, cooperatively resulting in a deformation of the
lattice. Such a spin-lattice coupling has been called the “spin-
Teller” interaction [48,49], the form of which is taken to be [51]

HSL =
∑
i,j

(∂Jij /∂r)(�Si · �Sj )δrij , (18)

where δrij is the elongation along the one axis (a or b), and
∂Jij /∂r is itself a negative quantity.

Due to interorbital interactions, tetrahedra of Mn3+ spins
are already tetragonally distorted (i.e., have a reduced symme-
try, c > a = b). From the spin-orbital Hamiltonian, we know
that the spin-exchange couplings in the XY planes are strong
and antiferromagnetic. This makes it plausible that, among all
possible phonon modes for a tetrahedron, a weak spin-lattice
coupling will likely lead to an orthorhombic distortion. The

FIG. 7. Two nearest-neighbor tetrahedra A and B in a spinel
lattice with their respective orientations of the Mn3+ ions. In all three
configurations, the XY plane interaction is strong and antiferromag-
netic. The spin-lattice coupling leads to an overall distortion along
the [010] direction (a), along the [100] direction (b), and along the
[110] direction (c), leading to a cell-doubled Yafet-Kittel spin state.

form of the orthorhombic force is given by [49]

f = (�S1 − �S2) · (�S3 − �S4)/2 or (�S1 − �S2) · (�S4 − �S3)/2,

(19)

where the distortion corresponding to the first term is shown in
Fig. 6(a) and that corresponding to the second term is shown
in Fig. 6(b). The energy of the system then has the form

E = −J ′f · δr + kδr2/2, (20)

where δr is the amplitude of orthorhombic distortion and J ′
(= ∂J/∂r) and k are the magnetoelastic and elastic constants,
respectively.

Now to consider the collective orthorhombic distortion
(q = 0), we have to take into account the fact that the relevant
degree of freedom arises from the existence of two different
types of tetrahedra in a spinel, namely, A and B (as shown
in Fig. 7), that differ in their orientation. At linear order in
the displacements, there are only two active modes which
couple to the spins—Eg(acoustic mode, overall orthorhombic
distortion) and Eu (optical mode, tetrahedrons distorted in
exactly opposite direction). These two modes can be expressed
in terms of the scalar quantities

Qg = QA + QB

√
2

, Qu = QA − QB

√
2

. (21)

The spin-lattice energy is then

E(f A,f B,QA,QB) = J ′(QA.f A + QB.f B)

+ kg

2
|Qg|2 + ku

2
|Qu|2. (22)

The minimization of this energy with respect to the two lattice
modes Qg and Qu gives

E(f A,f B) = − (Kg + Ku)(|f A|2 + |f B |2)

4

− Kg − Ku

2
f A.f B, (23)

where Kg/u = J ′2/kg/u are the effective spin-lattice coupling
constants. The first term in the expression of the energy is the
self-interaction term for individual tetrahedra, and the second
term is the interaction term between tetrahedra.
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In the limit Kg > Ku (i.e., the Eg mode softens first), the
distortions of the two tetrahedra have the same nature, i.e.,
in order to minimize energy, f A and f B have to support
a distortion along the same axis [see Figs. 7(a) and 7(b)].
However, in the limit Ku > Kg (i.e., the Eu mode softens
first), the two tetrahedra distort in an equal and opposite
manner, i.e., f A and f B elongate along the x and y axis,
respectively (see Fig. 6). Clearly, this case leads to a doubling
of the magnetic unit cell, as observed in various experiments
on Mn3O4 [19–22,28]. There remains one subtlety worth
discussing. We recall that our analysis yielded two degenerate
configurations of the orbitals (characterized by the mixing
angle θ = ±π/2) in the tetrahedral phase. This immediately
leads to two degenerate possible cell-doubled structures: each
of the two sublattices can have an orbital state with either
θ = π/2 or −π/2, with an alternation leading to the doubling
of the unit cell. A spontaneous symmetry-breaking mechanism
will, of course, be needed to choose between these two
cell-doubled structures. This mechanism can, for instance,
arise from the choice of the magnetic easy axis in the system.
In Mn3O4, this is due to the Mn2+ spins. Here, if the easy
axis is along the [110] direction, the orbital angle of cell A
is θ = π/2 and that of cell B is θ = −π/2 [see Fig. 7(c)],
while for the easy axis being [11̄0] the orbital angles of the
two sublattices are exchanged.

Comparison with experiments performed at low temperature

We will now attempt a comparison of the results obtained
from our theoretical analysis thus far with the experimental
observations on Mn3O4 at low temperatures. The experiments
probe the interplay of a magnetoelastic coupling and external
magnetic fields on the magnetic and structural ordering of the
system [20,22,28]. We begin by recalling that for T < 32 K
the ordered magnetic state involves a cell-doubled state of
distorted tetrahedra (as discussed above). When an external
magnetic field is applied along the [100] direction with
T < 32 K, Nii et al. [22] observe a transition to a state
with uniformly distorted tetrahedra. This can be understood
as follows. The application of the field, −Bx(Sx

i + Sx
j ), will

naturally mean that spins in the XZ plane will favor alignment
along the [100] direction. This ferromagnetic alignment in the
XZ plane spins (�Si.�Sj = +1) supports a uniform ordering of
the orbitals with the orbital angle θ = −π/2 in Eq. (16) (see
Fig. 4). Further, such uniformly distorted tetrahedra will cause
a softening of the acoustic Eg mode [see Eq. (23)], even-
tually overturning the cell-doubled ground state. Similarly,
when the B field is applied along the [010] direction, spin
alignment is favored along the y axis [−By(Sy

i + S
y

j )]. In turn,

the ferromagnetic alignment in the YZ planes (�Si.�Sj = +1)
supports a uniform orbital ordering with θ = π/2 (see Fig. 4).
Once again, the magnetoelastic coupling ensures that the
cell-doubled state will eventually be replaced with a state
composed of uniformly distorted tetrahedra. This is again in
keeping with the observations of Ref. [22].

The experiments by Kim et al. [20,28] show, on the other
hand, that for temperatures 32 < T < 42 K the application of
a magnetic field greater than 1 T along the magnetic easy
axis (the [110] direction, due to the Mn2+ spins) leads to
the lattice being distorted from tetragonal to orthorhombic.

FIG. 8. (a) Application of a magnetic field ( �B) along the [110]
easy axis enhances the spin-lattice interaction even for T > 32 K,
and leads to an elongation along the same direction. Red arrows show
the spin components along the c and easy axes. (b) Application of
a sufficiently large magnetic field along the [11̄0] direction in the
orthorhombically distorted phase below 32 K leads to a rotation of
the easy axis towards [11̄0]. The spin-lattice interaction will then
lead to an elongation along this direction. Red arrows show the spin
components along the c and [11̄0] directions.

Insight into this finding can again be gained as arising from
an increase of the spin-lattice interaction resulting from the
applied external magnetic field. The magnetization will now
be maximum when the magnetic moments align along the
[1̄1̄0] direction. While the Yafet-Kittel configuration involves
a canting of the Mn3+ spins away from the easy axis ([110]), the
application of a sufficiently large external magnetic field along
the easy axis will cause them to align along the [1̄1̄0] direction
[see Fig. 8(a)]. In turn, this leads to an increased spin-lattice
interaction in Eq. (23), resulting in an orthorhombic distortion
even for T > 32 K.

Further, Kim et al. also observe that by applying the
magnetic field along the [11̄0] direction (i.e, a field transverse
to the [110] easy axis of the system) for T < 32 K a structural
transition takes place towards an orthorhombic distortion along
the [11̄0] direction as the applied field is gradually increased.
At intermediate values of the transverse field, the system
appears to be in a tetragonal phase with a loss of the magnetic
ordering. These findings can be understood by noting that
the transverse field rotates the choice of the easy axis from
its natural direction ([110]) to its perpendicular direction
([11̄0]) [see Fig. 8(b)]. The passage from one to the other
will also involve a change from one cell-doubled state of
orthorhombically distorted tetrahedra (cell A with orbital angle
θ = π/2, cell B with θ = −π/2) to another in which the orbital
angles for the two sublattices are exchanged. As discussed
above, both configurations are resultant from the model for the
magnetoelastic coupling. Further, at the transition, fluctuations
between the two orthorhombic configurations are large and we
can expect the outcome to be a tetragonal phase for the system
in which the Yafet-Kittel spin order is lost.

V. DISCUSSION AND SUMMARY

We have, in this paper, developed and analyzed a mi-
croscopic model for the understanding of orbital and spin
ordering in the Mn3O4 spinel. Our analysis demonstrates that
the qualitative properties of the spinel can be explained by
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a spin-orbital Hamiltonian derived by a careful consideration
of the 90◦ nature of the Mn-O-Mn bonding angle, as well as
the different electronic energy states of the Mn3+ ion. In this
way, we realized that the charge-transfer (or Goodenough) SE
process is of greater importance than the direct (Anderson)
SE for the 90◦ metal-ligand-metal bond [see, for instance,
Eq. (1)]. Upon considering SE interactions together with
Jahn-Teller orbital-lattice coupling, we find that interorbital
interactions are much stronger than spin-orbital as well as
spin-spin interactions. This indicates that orbitals will likely
order at energy scales much higher than the spins. Further, the
nature of the orbital ordering will influence the nature of the
spin ordering.

A consequence of the 90◦ bonding angle is that the
interaction energy between a pair of Mn3+ ions is less
for similar orbitals (θi � θj ) than dissimilar orbitals (θi �
θj + π ). With this in mind, a variational analysis of our
Hamiltonian yields a mixed orbital configuration in the
tetragonal phase of the spinel. This mixed ordering of the
orbitals then plays an important role in relieving the geometric
frustration of spins in a Mn3+ tetrahedron. In the tetragonal
phase, small values of the effective spin-exchange couplings
lead to spins ordering along one-dimensional chains along the
[110] and [11̄0] directions, and the experimentally observed
three-dimensional Y-K type spin ordering is delayed till very
low temperatures. The canted nature of the spins in the
Y-K state of Mn3+ tetrahedra arises from the competing weak
antiferromagnetic Mn3+-Mn3+(JBB) and Mn2+-Mn3+(JAB)
spin-exchange couplings. This results in the ferrimagnetic
Y-K spin ordering of the Mn3O4 spinel system. Further, we
have shown that a spin-lattice coupling finally lifts the twofold
degeneracy of the Y-K spin configuration via an orthorhombic
distortion, leading to a cell-doubled Y-K state. Our model
for the spin-lattice interaction is also able to explain the
experimentally observed effects of an external magnetic field
effect on the Y-K state [20–22,28].

We end by outlining some open directions. Kim et al. show
that a cell-doubled orthorhombic phase with the magnetic easy
axis along the [110] direction can be manipulated using a
magnetic field leading to a similar phase with the easy axis
along [11̄0], with an intermediate tetragonal phase in which the
Y-K spin order is lost [20]. It remains an open question whether
such a fluctuation-induced tetragonal phase can be stabilized
at yet lower temperatures using, for instance, pressure. As
suggested by a recent experiment on the perovskite magnetic
insulator KCuF3 [52], a quantum orbital-spin liquid state

could potentially be realized in Mn3O4. Further, experimental
signatures of the mixed nature of the orbital state may be
possible to detect in, for instance, x-ray measurements carried
out in the low-temperature orthorhombic phase [39]. Finally,
in a future work, we will present results on the complete mean
field phase diagram of the spin-orbital model derived here,
as well as the orbital and spin-excitation spectra in various
ordered phases. This should be useful in tracking the passage
between competing ground states. It will also be important
in quantifying the validity of the classical mixed-orbital
variational approach to orbital-spin systems on the spinel
lattice.
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APPENDIX

Here we present details of the derivation of the spin-
orbital Hamiltonian for the Mn3O4 spinel. By considering
the fourth-order superexchange mechanism [16], we have
four inequivalent sequences of excitation and de-excitation
processes for a given intermediate state. We then consider a
particular intermediate state by summing over all such equally
probable sequences as follows:

[XvY ] = 1
4 [(X|XvY |X) + (X|XvY |Y )

+ (Y |XvY |X) + (Y |XvY |Y )], (A1)

where [16]

(Z1|XvY |Z3) = t4Uv

�Z1�Z3 (�X + �Y )(�X + �Y + Uv)
.

Z1(Z3) represents the state reached after the first (third) charge-
transfer step. Z1,Z2 ∈ {X,Y } (for example, see Fig. 2). Then,
Eq. (10) can be easily reached from Eq. (A1). We now present
the detailed contributions to various SE couplings from the
“M”, “O”, and “N” configurations (in addition to that presented
in Sec. II):

[M,↑↓; ↑↑] = 2[T tD] + 2[T tS],

[M,↑↑; ↑↓] = [T tD] + [T sD] + [T tS] + [T sS],

[M,↑↑; ↓↓] = 2
3 ([T tD] + [T tS] + [DtD] + [DtS] + [GtD] + [GtS]),

[O,↑↑; ↓↓] = [DtD] + 2[DtS] + [StS],

[O,↑↓; ↓↑] = 1
2 ([DtD] + [DsD] + 2[StD] + 2[SsD] + [StS] + [SsS]),

[N,↑↑; ↑↑] = 4[T tT ],

[N,↑↑; ↑↓] = 2
3 ([T tT ] + [T sT ] + [T tD] + [T sD] + [T tG] + [T sG]),

[N,↑↑; ↑↓] = 2
3 ([T tT ] + [T sT ] + [T tD] + [T sD] + [T tG] + [T sG]),
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[N,↑↑; ↓↓] = 4
9 ([T tT ] + [DtD] + [GtG] + 2[T tG] + 2[DtG] + 2[T tD]),

[N,↑↓; ↓↑] = 2
9 ([T tT ] + [T sT ] + [DtD] + [DsD] + [GtG] + [GsG]

+ 2[T tD] + 2[T sD] + 2[T tG] + 2[T sG] + 2[DtG] + 2[DsG]),

[N,↑↓; ↓↓] = 4
3 ([T tT ] + [DtT ] + [GtT ]). (A2)

Using the above equations, one can write the various SE constants (K) in Eq. (8). For the triplet configuration at metal ion sites,
this gives KT

L = ∑
σ,σ ′[L,↑↑; σσ ′], while for the singlet configuration we obtain KS

L = 2K
↑↓
L − KT

L , where σ,σ ′ ∈ {↑,↓}. In
obtaining a more compact form of the Hamiltonian (7), one has to put the expression for various projection operators in the
expression. The final form of the spin-orbital Hamiltonian is shown in Eq. (11) with SE constants given by

Jτ = 1
2

(
JO

O − 2JO
M + JO

N

) = 1
18

[{
9(SS)+ + 4(GG)+ + (DD)+ + 6(DS)+ + 18{T G}+ + 456

10 [T tT ] + 184
10 [T sT ]

}
−{12(GS)+ + 9{T D}+ + 27{T D}+ + 4(GD)+}], (A3)

Jσ = − 1
2

(
J S

O + 2J S
M + J S

N

) = − 1
18 [{21(DD)− + 9(SS)− + 16(T T )− + 30(DS)− + 20(DG)− + 12(GS)−}

− {40(T D)− + 24(T S)− + 16(T G)− + 4(DD) + 4(GG)}], (A4)

Jν = − 1
2

(
J S

O − J S
N

) = − 1
18 [{9(DD)− + 9(SS)− + 18(DS)− + 16(T D)− + 16(T G)− − 4(DD) − 4(GG)}

− {16(T T )− + 8(DG)−}], (A5)

Jμ = − 1
2

(
J S

O − 2J S
M + J S

N

) = − 1
18 [{9(SS)− + 16(T T )− + 6(DS)− + 8(T D)− + 24(T S)−}

− {3(DD)− + 4(DG)− + 12(GS)− + 16(T G)− − 4(DD) − 4(GG)}]. (A6)

In these expressions,

[XtY ] = t4

4

�X + �Y

�2
X�2

Y

Up − Jp

�X + �Y + Up − Jp

, (A7)

[XsY ] = t4

4

�X + �Y

�2
X�2

Y

Up + Jp

�X + �Y + Up + Jp

, (A8)

[XsY ] > [XtY ], with X,Y ∈ {T ,D,S,G}. Further,

(XY )+ = 6

10
[XtY ] + 4

10
[XsY ] = t4

40

�X + �Y

�2
X�2

Y

[
6(Up − Jp)

�X + �Y + Up − Jp

+ 4(Up + Jp)

�X + �Y + Up + Jp

]
. (A9)

As �X + �Y + Up � Jp, we may write

(XY )+ = t4

40

�X + �Y

�2
X�2

Y

(10Up − 2Jp)

�X + �Y + Up

. (A10)

As Up > Jp, it can be seen that (XY )+ > 0. Similarly,

(XY )− = 1

10
([XtY ] − [XsY ]) = − t4

20

�X + �Y

�2
X�2

Y

Jp

�X + �Y + Up

, (A11)

{XY }+ = 44

30
[XtY ] + 28

90
[XsY ] = t4

360

�X + �Y

�2
X�2

Y

[
(160Up − 104Jp)

�X + �Y + Up

]
, & (A12)

(XY ) = 1

10
([XtY ] + [XsY ]) = t4

20

�X + �Y

�2
X�2

Y

[
Up

�X + �Y + Up

]
. (A13)

For the Mn3O4 system,

�T = � − 4JH , �D = � + 5

3
JH , �S = � + 13

3
JH , �G = � + JH , (A14)
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and � = U − JH . In the plots of various SE constants shown in Fig. 3, we have employed realistic values of various constants
for the Mn3O4 spinel taken from the literature [16,31,35,36].
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