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The lanthanum family of high-temperature cuprate superconductors is known to exhibit both spin and charge
electronic modulations around a doping level of 1/8. We assume that these modulations have the character
of a two-dimensional spin-vortex checkerboard and investigate whether this assumption is consistent with the
Fermi surface and the pseudogap measured by angle-resolved photoemission spectroscopy. We also explore the
possibility of observing quantum oscillations of transport coefficients in such a background. These investigations
are based on a model of noninteracting spin-1/2 fermions hopping on a square lattice and coupled through
spins to a magnetic field imitating a spin-vortex checkerboard. The main results of this paper include (i) a
calculation of the Fermi surface containing Fermi arcs at the positions in the Brillouin zone largely consistent
with experiments, (ii) identification of factors complicating the observations of quantum oscillations in the
presence of spin modulations, and (iii) an investigation of the symmetries of the resulting electronic energy
bands, which, in particular, indicates that each band is doubly degenerate and has at least one conical point,
where it touches another doubly degenerate band. We discuss possible implications these cones may have for the
transport properties and the pseudogap.
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I. INTRODUCTION

Several families of high-temperature cuprate superconduc-
tors are known to exhibit spin and/or charge modulations
[1–11]. Resolving the character of these modulations ac-
quired new urgency in recent decades in the context of ef-
forts to reconcile angle-resolved photoemission spectroscopy
(ARPES) experiments [12–15] with the measurements of
quantum oscillations of various observables in response to
magnetic field [16–21]. ARPES experiments in underdoped
(hole-doped) cuprates generically observe open-ended lines
of the Fermi surface known as Fermi arcs accompanied
by an angle-dependent pseudogap. At the same time, ob-
servations of quantum oscillations indicate the presence of
small closed Fermi surfaces. This phenomenology hinted at
the possibility that Fermi arcs originate from closed Fermi
surfaces in a smaller Brillouin zone (BZ) emerging as a
result of some kind of periodically modulated background.
Such interpretations based on one-dimensional stripelike or
two-dimensional checkerboardlike charge modulations have,
indeed, been proposed [22–28]. Spin modulations have mostly
been omitted in these interpretations because of the absence
of experimental evidence of the static spin response in
YBa2Cu3Oy (YBCO) and other cuprate families exhibiting
quantum oscillations.

The cuprate family that does exhibit both spin and charge
modulations is lanthanum cuprates. A priori, one may expect
that the presence of spin modulations does not change the situa-
tion qualitatively, and hence, some sort of quantum oscillations
would be present. Moreover, the experiments in Ref. [29]
showed that one of the quantities exhibiting quantum oscilla-
tions in YBCO [17], namely, the Seebeck coefficient, exhibits
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the same overall trends in both La1.8−xEu0.2SrxCuO4 (Eu-
LSCO) and YBCO as a function of both temperature and dop-
ing. Yet no experimental evidence of quantum oscillations has
been reported so far for Eu-LSCO or other lanthanum cuprates.
This may be due to the difficulty of producing sufficiently high
quality samples, but there might also be deeper reasons.

The main focus of the present work is on 1/8-doped
lanthanum cuprates, where elastic neutron scattering
experiments [1] observed the fourfold splitting of the
antiferromagnetic (π,π ) peak and a later experiment [30]
indicated that the modulation harmonics are linearly polarized
in the direction transverse to the modulation wave vector.
This leaves one with two possible interpretations, namely, (i)
two domains of one-dimensional stripelike modulations or (ii)
the two-dimensional checkerboard of spin vortices shown in
Fig. 1. The above matter has been extensively discussed on the
basis of both theoretical arguments and experimental evidence
[31–37]. On the theoretical side, the situation was, in particular,
analyzed on the basis of the Landau-type expansion in powers
of the order parameter [37]. This analysis indicated that the
ground states of both stripe and checkerboard patterns are
possible, subject to material parameters, which are not known
with the precision required to discriminate between the two
possibilities. Microscopic models have also been investigated
in this context (see, e.g., Refs. [38,39]), but here again, one
can hardly rely on them because they either neglect or very
crudely approximate quantitatively important factors such as
medium-range Coulomb interaction and/or electron-lattice
coupling. Various experiment-based arguments in favor of
either stripes or checkerboards for lanthanum cuprates have
been put forward in Refs. [31–37,40], but the issue has not
been settled either. This issue is elusive not only in lanthanum
cuprates but also for the yttrium-based and other cuprate
families (see, e.g., Refs. [41–45]). Recently, a somewhat
similar situation emerged in the context of the “spin-vortex
crystal” proposal for iron-based superconductors [46–49].
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FIG. 1. Site-centered checkerboard corresponding to φ1 = φ2 = 0
in Eq. (3).

Fermi-surface reconstruction in the presence of stripelike
spin and charge modulations was described theoretically in
Ref. [25] in the context of ARPES experiments for 1/8-doped
lanthanum cuprates. Here our goal is to study the Fermi
surface properties assuming the presence of the spin-vortex
checkerboard shown in Fig. 1. We develop a model of
noninteracting fermions of spin 1/2 on a square lattice coupled
through spins to local fields that mimic such a checkerboard.
These local fields originate from the exchange interaction,
which, in turn, has its origin in the interplay of the Coulomb
interaction and the kinetic energy of electrons. Therefore, in
leading order, the relativistic orbital effects of this local field
can be neglected.

Our main results include (i) the reproduction of Fermi
arcs at the positions observed experimentally, (ii) the iden-
tification of factors complicating the observations of quantum
oscillations in the presence of spin modulations, and (iii)
the discovery that the model has a symmetry forcing each
energy band to have at least one point where it forms a conical
connection to another band of the kind well known from the
physics of graphene [50]. Such a property may drastically
influence transport properties of the system. Moreover, this
ubiquitous presence of conical points is a potential origin
of the pseudogap. We also consider another scenario for the
emergence of the pseudogap, which turned out to be more
likely for the model parameters estimated to be relevant to
lanthanum cuprates.

This paper is organized as follows: In Sec. II, we formulate
our model and discuss its relevance to 1/8-doped lanthanum
cuprates. In Sec. III, we investigate symmetries of the model
and show that energy bands necessarily exhibit cones. In
Sec. IV, we propose two scenarios for the emergence of the
pseudogap and in Sec. V perform a calculation for a particular
set of model parameters relevant to 1/8-doped lanthanum
cuprates, thereby illustrating how our model can describe
the pseudogap and the Fermi arcs. In Sec. VI, we discuss
various parameter regimes and possible generalizations of
the model and also place our results in the context of
broader experimental knowledge about electronic transport in

1/8-doped lanthanum cuprates, addressing, in particular, the
possibility to observe quantum oscillations. Finally, the main
conclusions are summarized in Sec. VII.

II. MODEL

We consider a model of noninteracting spin-1/2 fermions
on a square lattice in the background of 8 × 8 periodic
modulation of local fields as in Fig. 1. The Hamiltonian is
as follows:

H = H0 +
∑

i,j ;α,β

a
†
ij,α

(
Bx

ijS
x
α,β + B

y

ijS
y

α,β

)
aij,β, (1)

where i,j are the lattice indices, α,β are the indices of spin
polarizations ±1/2 along the z axis, aij,α are the fermionic
annihilation operators, Sx

α,β , S
y

α,β are the spin-1/2 operators,
and H0 is the tight-binding Hamiltonian with hopping to
the first, second, and third nearest neighbors, which has the
following spectrum

E0(k) = 2t(cos kx + cos ky) + 4t ′ cos kx cos ky

+ 2t ′′(cos 2kx + cos 2ky). (2)

The local fields Bij depend on the lattice site positions as
follows:

Bi,j = (−1)i+j

[(
B0

0

)
cos

(
π

4
j + φ1

)

+
(

0
B0

)
cos

(
π

4
i + φ2

)]
, (3)

where φ1 and φ2 are two fixed phases of the two orthogonal
harmonics. For Fig. 1, φ1 = φ2 = 0, but we would like to
consider the general case.

As the fermions fill one-particle states of the Hamiltonian
H, the system exhibits the 8 × 8 modulation of spin polariza-
tions that follow the local magnetic field. It is accompanied
by 4 × 4 checkerboard modulation of the particle density of
the form ni,j = n0 + δni,j , with δni,j ∝ |Bi,j |2. Such spin-
and charge-density modulations are consistent with the exper-
iments [1]. This is therefore the minimal model describing the
low-energy spin checkerboard response possibly emerging as a
result of the delicate balance between large contributions from
kinetic energy, Coulomb energy (including spin exchange),
and the electron-lattice interaction.

Details of the numerical solution

We obtain the density of states (DOS) ν(E) and other
quantities of interest by directly diagonalizing Hamiltonian
H in Eq. (1). The diagonalization is done in the basis of the
Bloch eigenstates of the Hamiltonian H0: {|k,±〉}, where the
+ or − represents the projection of the particle’s spin on the
z axis and k ≡ (kx,ky) is a wave vector belonging to the first
BZ of the square lattice: −π � kx,ky < π . We refer to it as
the “large BZ.”

The 8 × 8 modulation of the local field reduces the BZ to
−π/8 � kx,ky < π/8 (“small BZ”). The modulated terms in
the Hamiltonian couple only those basis states in the large
BZ which, after backfolding to the small BZ, have the same
k̃. These wave vectors are kl,m = k̃ + π

4 lex + π
4 mey , where
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ex ≡ (1,0), ey ≡ (0,1), and l,m = 0, . . . ,7. Taking into ac-
count the fact that, for each of the 64 thus defined wave vectors,
there are also two spin states coupled by the local-field terms,
we obtain the energy spectrum for each k̃ by diagonalizing
the 128 × 128 Hamiltonian matrix, which has the following
structure:

(1) 〈kl,m, ± |H|kl,m,±〉 = E0(kl,m).

(2) 〈kl1,m1 , + |H|kl2,m2 ,−〉 = i
4B0e

±iφ2

for (l2 − l1 ± 1)[mod 8] = 4 and (m2 − m1)[mod 8] = 4.

(3) 〈kl1,m1 , + |H|kl2,m2 ,−〉 = 1
4B0e

±iφ1

for (m2 − m1 ± 1)[mod 8] = 4 and (l2 − l1)[mod 8] = 4.
Elsewhere, matrix elements are equal to zero.

III. SYMMETRIES AND DEGENERACIES
OF ENERGY BANDS

A. Double degeneracy of energy bands

Here we show that each energy band in the spin-vortex
checkerboard model is at least twice degenerate.

Let T̂x be an operator representing translation by four
lattice periods along the x direction and subsequent rotation
of spins through 180◦ about the x axis. Analogously, let T̂y

be an operator representing translation by four lattice periods
along the y direction and subsequent rotation of spins through
180◦ about the y axis. These operators have the following
representation:

T̂x ≡ τ̂(4,0) ⊗ (iσx), (4)

T̂y ≡ τ̂(0,4) ⊗ (iσy), (5)

where σα are the Pauli matrices and τ̂a is the translation by
vector a.

We now observe that operators T̂x and T̂y commute with
the Hamiltonian but do not commute with each other, and in
addition, they do not change wave vector k. Therefore, each
energy level for any given wave vector k is at least twice
degenerate, which means that each energy band is at least
doubly degenerate.

B. Conical touch points

We now show that at k0 = (π
8 , π

8 ) each energy level is four
times degenerate. This wave vector is a special high-symmetry
point, because it is at the corner of the small BZ, and therefore,
all symmetry transformations map it either into itself or into
three other wave vectors, (−π

8 , π
8 ), (π

8 ,−π
8 ), or (−π

8 ,−π
8 ), all

of which are equivalent in the sense that they are connected
by vectors of the reciprocal lattice. Although Hamiltonian (1)
is not time reversal invariant, it is symmetric with respect to
transformation τ̂(4,4)T , where T is the time-reversal operator.
Importantly, the operator τ̂(4,4)T transforms the wave vector
k0 = (π

8 , π
8 ) into an equivalent wave vector (−π

8 ,−π
8 ). As

shown in Appendix A, this leads to the desired fourfold
degeneracy.

The above proof implies that, at the wave vector
k0 = (π

8 , π
8 ), one doubly degenerate energy band touches

another doubly degenerate energy band, which generally
leads to a linear spectrum near the touching point; that is,
the touching energy bands have a conical shape near k0 (see
Figs. 4 and 5 below).

We also can generalize our Hamiltonian by including
additional terms, such as the ones that induce charge-density
modulations and/or superconductivity. Cones are robust to any
such terms, provided they commute with T̂x , T̂y , and τ̂(4,4)T .
One such obvious example is a potential proportional to | 	Bi,j |2
acting on charge density.

C. Plaquette-centered checkerboard

The case φ1 = φ2 = π
8 in Eq. (3) corresponds to the

plaquette-centered checkerboard shown in Fig. 8. This lattice
possesses unique symmetries, and as we show in Appendix B,
these symmetries result in eightfold degeneracy of each energy
level at the wave vector k0 = (π

8 , π
8 ).

IV. TWO SCENARIOS OF PSEUDOGAP

We assume that, in real materials, the pseudogap in the
one-particle density of states ν(E) around the Fermi energy
EF arises from the same energy balance that simultaneously
determines the amplitude of the spin modulation. Therefore, in
terms of the model description, we first obtain ν(E) for fixed
values of t , t ′, t ′′, and B0, then identify a dip associated with
the pseudogap, and then choose the concentration of fermions
such that EF corresponds to the minimum of that dip.

We consider two scenarios for the origin of the pseudogap:
the “conical-point scenario” and “band-edge scenario.”

A. Conical-point scenario

In Sec. III, we showed that there are cones in the electronic
energy spectrum; therefore, one would expect ν(E) to be
suppressed near these conical touch points, and thus, the
emergence of the pseudogap is associated with the chemical
potential being pinned at one of these points. For the parame-
ters choice relevant to lanthanum cuprates, cones are not likely
to be isolated in the sense that, at such a chemical potential,
there are additional contributions from regular Fermi surface
pockets. This would make the conical-point scenario not very
different from the more general band-edge scenario described
below. Yet, as discussed in Sec. VI, the isolated conical-point
scenario might be realized if additional terms are included in
the model Hamiltonian.

B. Band-edge scenario

In general, the checkerboard modulation does not lead to
clear energy gaps between the energy bands. As the modulation
amplitude B0 increases, some of the energy bands develop a
clear gap between themselves, while other bands still have
states within that gap. This results in an incomplete suppression
of the density of states, which we associate with the band-edge
scenario. Section V illustrates this scenario on the basis of a
concrete calculation.

V. CALCULATIONS FOR A BAND-EDGE SCENARIO

A. Choice of parameters and density of states

Here we focus on the site-centered case φ1 = φ2 = 0 (see
Fig. 1). Below, following Ref. [51], we fix t = −1, t ′ =
−0.17t , and t ′′ = −0.5t ′. For comparison with experiments,
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FIG. 2. Density of states in our model for t = −1,t ′ = 0.17,t ′′ =
−0.5t ′, and B0 = 0.5. The black bar indicates the minimum of the
DOS. The inset zooms in on the region close to the dip.

energy unit 1 corresponds to approximately 350 meV. We use
the local field amplitude B0 = 0.5.

The density of states ν(E) for the above choice of
parameters is shown in Fig. 2. Following the approach outlined
in Sec. IV, we place the Fermi level at EF = −0.77, which, as
shown in Fig. 2, is located at the deepest minimum in ν(E) in
the energy range approximately expected to correspond to the
hole-doping level 1/8. We identify this dip with the pseudogap.
Such a choice leads to the concentration of fermions equal to
0.849 per site, which is reasonably close to the value of 0.875
expected for 1/8-doped lanthanum cuprates. The discrepancy
here is not of significant concern since the concentration
depends on the properties of the model far from the Fermi
level, where the model is not supposed to be quantitatively
accurate. We have numerically computed the amplitude of
the spin modulation, associated with the above concentration,
to be equal approximately 0.3 × 1/2, which is consistent
with the spin modulation amplitude reported by muon-spin
relaxation (μSR) experiments [52]. This justifies our choice
of the magnetic field amplitude B0.

We further note that spin superstructure necessarily leads
to charge-density modulation δni,j proportional to |Bi,j |2.
The amplitude of this modulation obtained numerically is
approximately 2%.

B. Fermi surface in the small Brillouin zone

Next, we obtain the Fermi surface in the small BZ. It is
shown in Fig. 3. The Fermi surface consists of three disjoint
parts: a large electron pocket (with area equal to ∼0.4% of
the total area of the large BZ) and two small hole pockets (the
larger of them is ∼0.05% of the area of the large BZ). Figure 3
may convey the incorrect impression that the electron pocket
and the larger hole pocket touch each other and, therefore,
the Fermi surface forms a connected network in the k space.
In Fig. 4 we demonstrate that the electron pocket and hole
pockets are actually disjoint. They originate from different
bands. Interestingly, all three bands in Fig. 4, which contribute
to the Fermi surface, originate from the same cone at the Y

-π/8 -π/16 0 π/16 π/8
-π/8

-π/16

0

π/16

π/8

Γ    M 

 Y 

FIG. 3. Calculated Fermi surface in the small BZ. It consists of
three disjoint pockets: the largest pocket, represented by the dashed
red line, is electronlike; the two smaller pockets, represented by the
dotted blue line and solid blue line, are holelike. The two larger
pockets (electronlike and dotted holelike) almost touch, thereby
nearly forming a joint Fermi surface that has the character of a
connected network in momentum space.

point [Y = (π
8 , π

8 )]. The cone for one of the bands (dashed red
line in Figs. 3 and 4) is further illustrated in Fig. 5.

Figure 4 shows that five bands come close to the Fermi
level: three of them contribute to the Fermi surface, while the
remaining two are repelled just around EF . That is why we
call this scenario band edge.

C. Fermi surface in the large Brillouin zone

Let us specify the procedure of mapping the states from
the small BZ to the large BZ. As described in Sec. II, each
eigenstate associated with a wave vector in the small BZ is
represented by a superposition of initial states (eigenstates of
the tight-binding Hamiltonian H0) that correspond to wave
vectors in the large BZ:

|q̃〉 =
∑

l,m=0,...,7;α=±
Clm,α

∣∣∣∣q̃ + π

4
lex + π

4
mey,α

〉
. (6)

This gives the mapping from the small BZ to the large one: the
sum |Clm,+|2 + |Clm,−|2 represents the spectral weight at the
wave vector q̃ + π

4 lex + π
4 mey in the large BZ.

In order to obtain the Fermi surface in the large BZ, we
have chosen a sufficiently fine grid of wave vectors q̃ in the
small BZ. For each q̃, we numerically computed the eigenstates
in Eq. (6), then selected those that fell in the energy window
E = −0.77 ± 0.03, and then, for each one, plotted the spectral
weights of the participating wave vectors q̃ + π

4 lex + π
4 mey .

The result of such a mapping is shown in Fig. 6. In Appendix
C, we further illustrate contributions in the large BZ from each
of the three Fermi surface pockets present in the small BZ.

In Fig. 6, one can clearly see Fermi arcs in the nodal
directions. Other spots of lower intensity also appear, but so
far, they have not been observed in experiments. A comparison
of Figs. 6 and 9 indicates that the Fermi arcs originate from
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FIG. 4. (a) Cuts of energy bands in the small BZ close to the Fermi level (horizontal line). The Fermi surface originates from three bands;
nevertheless, the contribution from one of the bands is relatively small (compare with Fig. 3). All three bands originate from the same cone at
the Y point. (b) Close-up of the region in the rectangle in (a). We see that, indeed, the largest hole pocket and the electron pocket arise from
different bands.

the largest Fermi surface pocket in the small BZ, while
the remaining spots originate from the two smaller pockets.
These smaller pockets are likely related to the noninteracting
character of our model. They may possibly be removed if
superconducting fluctuations are introduced (see Ref. [28]).

FIG. 5. Different views of the 3D band corresponding to the red
dashed line in Figs. 3 and 4. The top illustration shows the cone at
k0 = ( π

8 , π

8 ).

VI. DISCUSSION

Let us first consider the isolated conical-point scenario
described in Sec. IV. It requires either a large value of the
local-field amplitude B0 or the inclusion of extra terms in the
Hamiltonian not considered in the present paper, such as those
associated with charge-density and lattice modulations [53]
and/or superconducting fluctuations [28], provided these terms
would respect the symmetries discussed in Sec. III. They may
further separate energy bands and, as a result, isolate cones. In
real materials, contributions from such terms might be large,
and hence, the isolated conical-point scenario would become
relevant. If this scenario is realized, then it would lead to the
absence of quantum oscillations, because, in such a case, the

FIG. 6. Reconstructed Fermi surface in the large BZ. The proce-
dure for its reconstruction is specified in the text.
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(a) (b)

FIG. 7. (a) Quantum oscillations at low magnetic field H � Hc

contain contributions from both the electron pocket depicted by the
dashed red line and the larger hole pocket depicted by the dotted
blue line (compare with Fig. 3). (b) At large magnetic field H � Hc,
semiclassical wave packets on the Fermi surface move as if the two
pockets in (a) merge into a single Fermi surface depicted by the solid
black line.

Fermi surface in the small BZ would be reduced to a single
point.

The band-edge scenario leads to parameter-dependent
predictions. Let us first analyse the example computed in
Sec. V. The Fermi surface in Fig. 3 contains two pockets
which, at the BZ boundary, almost touch each other. (Here we
neglect the smallest Fermi surface pocket.) This suggests the
possibility of magnetic breakdown between the corresponding
bands. We estimate the characteristic field Hc for the onset

of magnetic breakdown from the condition [54] eh̄Hc

mc
∼ ε2

g

W
,

where W ∼ 0.3t is the characteristic bandwidth [see Fig. 4(a)]
and εg is a gap at EF between the two bands. As one
can see in Fig. 4(b), εg � 0.03t , resulting in Hc � 10 T.
Figure 7(a) illustrates electron and hole pockets contributing to
quantum oscillations at low magnetic field H � Hc. Due to the
smallness of each pocket, observations of quantum oscillations
would probably require samples with an unrealistically long
quasiparticle lifetime. In the opposite limit H � Hc, semiclas-
sical fermionic wave packets will follow the trajectory in the
momentum space shown in Fig. 7(b). This trajectory switches
between the available Fermi surface pockets. The resulting
pocket is holelike, with a total area of ∼1.3% of the large BZ,
large enough to be detectable.

We now draw general lessons from the above example. The
spin-vortex checkerboard modulation in the interesting range
of parameters produces quite a dense set of energy bands with
many symmetries. It is therefore to be expected that these
bands have quite a few avoided crossings, which, in turn, if
sliced at constant energy, would lead to multiple Fermi surfaces
nearly touching each other. Such a pattern of Fermi surfaces
is likely to suppress quantum oscillations because of multiple
points where, at moderate external magnetic fields, magnetic
breakdowns may occur, so that, effectively, the Fermi surface
is turned into an open network in the momentum space without
a well-defined cyclotron frequency.

In both the conical-point and the band-edge scenarios,
one possible way to explain the drop in resistivity reported
in Refs. [55,56] is to attribute it to a crystallizationlike
first-order transition, which leads to the emergence of the spin
superstructure and is accompanied by a sudden increase of

the mean free path of quasiparticle excitations. This would be
similar to what occurs with simple metals as they undergo a
first-order crystallization transition. In the framework of the
conical-point scenario, the possibility of the resistivity drop
is further strengthened by the fact that, like in graphene, a
Fermi surface reduced to a few conical points suppresses the
scattering of the quasiparticles and hence should significantly
increase their mobility. The alternative interpretation is the
one proposed by the authors of Ref. [55] and supported by
the strong magnetic-field dependence of the resistivity drop,
namely, that it is caused by the onset of two-dimensional
fluctuating superconductivity. This interpretation as such
does not discriminate between stripes and checkerboards.
Superconductivity in the presence of stripes was considered
in Ref. [57], while, for the spin-vortex checkerboard, it was
done in Ref. [58].

The multitude of bands arising for the spin-vortex checker-
board and their dependence on the model parameters prevent
us from making definite predictions about the Seebeck coeffi-
cient. If, however, our assumption that the minimization of the
total energy of the system requires the modulation parameters
to adjust themselves in such a way that the chemical potential
becomes pinned at the bottom of the pseudogap is correct, then
the density of states should be nearly symmetric with respect
to the chemical potential, which, in turn, would suggest that
the Seebeck coefficient is close to zero and can easily change
sign as a function of temperature or doping. Such a behavior
of the Seebeck coefficient is indeed observed experimentally
(see Ref. [29]).

Finally, we remark that one of the likely features of spin-
vortex checkerboard modulations irrespective of a particular
scenario is that more than one band comes close to the Fermi
surface. It is therefore to be expected that such features are
to be seen by ARPES. This proposition is consistent with the
ARPES experiment in Ref. [15] reporting the observation of
two bands for a particular momentum cut through the BZ.

VII. CONCLUSIONS

We calculated the band structure for the model of noninter-
acting fermions in the background of a spin-vortex checker-
board and analyzed the symmetry properties and degeneracies
of the resulting bands. We have proven that each band is doubly
degenerate and has at least one conical point where it touches
another doubly degenerate band. We then considered two
scenarios for the emergence of the pseudogap: (i) the conical-
point scenario and (ii) the band-edge scenario. For the model
parameters estimated to be relevant to 1/8-doped lanthanum
cuprates, the isolated conical-point scenario is not realizable
because the Fermi surfaces corresponding to the energies of
each of the available conical points also contain additional
regular pockets. The conical feature is, nevertheless, robust
because it is symmetry protected. Therefore, the conical-point
scenario may become relevant if the model Hamiltonian
is further generalized to include terms representing charge
modulations and superconducting fluctuations. As for the
band-edge scenario, we performed a concrete calculation,
which led to the Fermi surface containing Fermi arcs along
the nodal directions, in agreement with experiments, and some
low-intensity spots not observed experimentally. Our analysis
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FIG. 8. Plaquette-centered checkerboard corresponding to φ1 =
φ2 = π/8 in Eq. (3).

indicates that quantum oscillations of transport coefficients
would be suppressed in the presence of a spin-vortex checker-
board within either of the above scenarios. It also appears that
our model is largely consistent with the measurements of the
resistivity and Seebeck coefficient in 1/8-doped lanthanum
cuprates.
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APPENDIX A: FOUR TIMES DEGENERACY AT k0 = ( π
8 , π

8 )

Let us consider one fermion on the spin-vortex checker-
board lattice and parametrize its wave function as follows:

ψ(x,y) = u(x,y)

(
1
0

)
+ v(x,y)

(
0
1

)
, (A1)

where u(x,y) and v(x,y) are spatial functions defined on
the two-dimensional lattice plane and (1

0) and (0
1) correspond

to spin projections on the z axis. For convenience, we also
introduce the operator

T̂xy ≡ iT̂x T̂y = τ̂(4,4) ⊗ σz, (A2)

representing translation by vector (4,4) with subsequent
rotation of spins through 180◦ about the z axis.

Let us recall that the time-reversal operator T acts on a
wave function given by Eq. (A1) as follows:

T ψ = iu∗(x,y)

(
0
1

)
− iv∗(x,y)

(
1
0

)
. (A3)

Note that T 2 = −1. The important property of the time-
reversal operator is that it reverses both the spin and the wave
vector. Another useful property is the anticommutation relation
{τ̂x,yT ,T̂x,y} = 0.

From now on, we focus our attention on functions u(x,y)
and v(x,y), which correspond to k0 = (π

8 , π
8 ). From Bloch’s

theorem, it follows that such functions are antiperiodic with re-
spect to translation by eight lattice constants, i.e., u(x + 8,y) =
u(x,y + 8) = −u(x,y). Note that, for such wave functions,
T̂ 2

x = T̂ 2
y = T̂ 2

x,y = 1. By analogy with spin operators, we

introduce operators Q̂ = T̂x + iT̂y , Q̂† = T̂x − iT̂y , which can
be considered as raising and lowering operators while acting
on eigenstates of operator T̂x,y :

[T̂x,y,Q̂
(†)] = ∓2Q̂(†). (A4)

Since each energy level is doubly degenerate, it is convenient
to characterize each eigenstate by two quantum numbers: the
energy and eigenvalue λ of the operator T̂x,y , which can take
values ±1.

Let us consider an energy eigenstate ψ with λ = 1, i.e.,
T̂x,yψ = ψ . From ψ we can construct a new state ψ̃ = τ̂x,yT ◦
Q̂ψ , which has the same energy and the same λ = 1. The
fact that ψ̃ has the same λ = 1 follows from the fact that the
operator Q̂ lowers λ to −1, but since operators τ̂x,yT and T̂x,y

anticommute, τ̂x,yT raises λ back to 1. Our goal now is to show
that ψ and ψ̃ are two linearly independent states. This, together
with our previous argument for the twofold degeneracy of each
energy band, will prove the desired fourfold degeneracy.

Using the definition of the operator Q̂, one can check that

ψ1 = Q̂ψ = i(τ̂4xu − τ̂4yu)

(
0
1

)
+ i(τ̂4xv + τ̂4yv)

(
1
0

)

= 2iτ̂4xu

(
0
1

)
+ 2iτ̂4xv

(
1
0

)
, (A5)

where, in the last equality, we imply that τ̂x,yu = u and τ̂x,yv =
−v, which follow from T̂x,yψ = ψ . Using Eq. (A3), we then
obtain

ψ̃ = τ̂x,yT ψ1 = −2(τ̂4xu)∗
(

1
0

)
− 2(τ̂4xv)∗

(
0
1

)
. (A6)

Therefore, ψ and ψ̃ are linearly dependent if and only if

u∗ = ατ̂4xu, (A7)

v∗ = ατ̂4xv, (A8)

where α is some nonzero complex number. We can use the last
two equations to obtain

u(x,y) = (u∗)∗ = [αu(x + 4,y)]∗ = α∗u∗(x + 4,y)

= |α|2u(x + 8,y) = −|α|2u(x,y). (A9)

The same relation holds for v. For nonzero u(x,y) and v(x,y),
the two relations can be satisfied only when α = 0, which
means that ψ and ψ̃ are linearly independent. This completes
the proof of the fourfold degeneracy of each energy level at
k0 = (π

8 , π
8 ).

APPENDIX B: EIGHTFOLD DEGENERACY AT k0 = ( π
8 , π

8 )
FOR THE PLAQUETTE-CENTERED CHECKERBOARD

Let us introduce three more symmetry transforma-
tions specific to the case of the plaquette-centered
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FIG. 9. Mapping of the Fermi-surface pockets from the small BZ shown in Fig. 3 to the large BZ: (a) the largest pocket (red dashed line in
Fig. 3), (b) the intermediate pocket (blue dashed line in Fig. 3), and (c) the smallest pocket (blue solid line in Fig. 3).

checkerboard:

Âx ≡ Rx τ̂(0,1) ⊗ σz, (B1)

Ây ≡ Ry τ̂(1,0) ⊗ σz, (B2)

Ŝ ≡ ÂxÂy = Î τ̂(1,1), (B3)

where Rx (Ry) denotes spatial reflection with respect to the x

axis (y axis) shown in Fig. 8 and Î denotes the spatial inversion
with respect to the coordinate origin shown in Fig. 8. All three
operators, Âx , Ây , and Ŝ, commute with each other and with
the Hamiltonian H.

Operators Âx and Ây anticommute with T̂x,y . In order to
show this, let us consider some function f (x,y) that has spatial
periodicity corresponding to k0 = (π

8 , π
8 ). In this case, we find

Rx τ̂(0,1)τ̂(4,4)f (x,y) = f (x + 4,−y − 5),

τ̂(4,4)Rx τ̂(0,1)f (x,y) = f (x + 4,−y + 3)

= −f (x + 4,−y − 5),

which implies that Ŝ commutes with T̂x,y , because the operator
Ŝ is a product of operators Âx and Ây , each of which
anticommutes with T̂x,y . As a result, each eigenstate can be
characterized, in addition to λ, by a quantum number λs

associated with the operator Ŝ.
Consider state ψ with λ = 1,λs = 1. We now observe that

ψ̃ = τ̂x,yT Âxψ is a state with the same energy and with
λ = 1,λs = 1. Indeed, both operators τ̂x,yT and Âx anticom-
mute with T̂x,y , so that their product commutes with T̂x,y ; both
of them as well as their product commute with Ŝ.

Let us write ψ̃ explicitly,

ψ̃ = iu∗(x,−y − 1)

(
0
1

)
− iv∗(x,−y − 1)

(
1
0

)
, (B4)

and then prove that ψ̃ and ψ [given by Eq. (A1)] are linearly
independent. They are linearly dependent if and only if

u(x,y) = −αv∗(x,−y − 1), (B5)

v(x,y) = αu∗(x,−y − 1) (B6)

for some nonzero complex number α. We can use the last two
equations to obtain

u(x,y) = −|α|2u(x,y). (B7)

The same identity holds for v(x,y). For nonzero u(x,y) and
v(x,y), the last identity can be satisfied only when α = 0, but
this means the linear independence of ψ and ψ̃ . From this, it
follows that point k0 = (π

8 , π
8 ) for the plaquette-centered case

has an additional twofold degeneracy, which, together with
the previously proven general fourfold degeneracy, implies
the overall eightfold degeneracy.

APPENDIX C: MAPPING INDIVIDUAL FERMI-SURFACE
POCKETS TO THE LARGE BZ

In Fig. 9, we present the individual mapping of each of the
three small-BZ Fermi-surface pockets shown in Fig. 3 to the
large BZ. Figure 9 supplements the discussion in Sec. V C.
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