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Without access to the full quantum state, modeling dissipation in an open system requires approximations. The
physical soundness of such approximations relies on using realistic microscopic models of dissipation that satisfy
completely positive dynamical maps. Here we present an approach based on the use of the Bohmian conditional
wave function that, by construction, ensures a completely positive dynamical map for either Markovian or
non-Markovian scenarios while allowing the implementation of realistic dissipation sources. Our approach is
applied to compute the current-voltage characteristic of a resonant tunneling device with a parabolic-band
structure, including electron-lattice interactions. A stochastic Schrödinger equation is solved for the conditional
wave function of each simulated electron. We also extend our approach to (graphenelike) materials with a linear
band structure using Bohmian conditional spinors for a stochastic Dirac equation.
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I. INTRODUCTION

Although reversible dynamics in a closed system induce
irreversibility into a smaller subsystem, the simulation of
quantum dissipation cannot rely on the full quantum state,
because it is computationally inaccessible. The solution is
to deal only with the degrees of freedom of a smaller
subsystem, referred as the open system [1], or simply the
system. The remaining degrees of freedom constitute the
environment. Most approaches for open systems revolve
around the reduced density matrix constructed by tracing out
the degrees of freedom of the environment [1]. A proper
equation of motion of the reduced density matrix must lead
to a dynamical map that satisfies complete positivity (CP)
[2], which guarantees that such a reduced density matrix is
always a positive operator. Some phenomenological treatments
of the source of dissipation violate CP, such as the Boltz-
mann collision operator in the Liouville equation [3] or the
seminal Caldeira-Leggett master equation [4]. For Markovian
evolutions, the Lindblad master equation [5] preserves CP,
but its connection to realistic practical scenarios and its
extension beyond Markovian dynamics are still challenging
[6,7].

Alternatively, inspired by the spontaneous collapse theo-
ries [8], Diósi, Gisin, and Strunz developed the stochastic
Schrödinger equations (SSEs) to unravel the reduced density
matrix in non-Markovian systems [9]. Continuous measure-
ment theory allows the definition of a wave function of the open
system conditioned on one monitored value associated with
the environment [10–12]. This approach preserves positivity
because the reduced density matrix is built from a sum of pro-
jectors associated with the states solution of a Schrödinger-like
equation [1,7,10]. In practical applications, the non-Hermitian
Hamiltonians can provoke states of the SSE to lose their norm
and therefore their statistical relevance [1].

Here a discussion about the physical interpretation of the
pure-state solution of the SSE is relevant. It is well recognized
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that the continuous measurement of an open system with
Markovian dynamics can be described by a SSE [1]. Therefore,
the pure-state solution of a SSE can be interpreted as the
state of the Markovian system while the environment is
under (continuous) observation. However, such a physical
interpretation cannot be given to the solutions of the SSE
for non-Markovian systems [10–12]. In such non-Markovian
systems, a continuous measurement requires a nontrivial
interaction of the system with the environment so that the
physical description of the continuously measured open system
needs to be done through the reduced density matrix [1] (not
through the pure state given by the non-Markovian SSE, which
becomes just a numerical tool). The physical interpretation
that one can assign to the solution of the non-Markovian SSE
(conditioned to some environment value) is the following: the
state of the open system at a given time if a measurement
is performed in the environment at that time, yielding the
mentioned value for the environment. Linking SSE states of
the open system (or values of the environment) at different
times is just a fiction.

In this work, we present an approach to deal with quantum
dissipation based on the use of Bohmian conditional wave
functions (CWFs) [13]. Such a CWF provides an unprob-
lematic way of defining the wave function of a subsystem,
from a computational and an interpretative points of view.
By construction, within Bohmian mechanics, the CWF is
always a well-defined physical state for Markovian and non-
Markovian open systems, with continuous or non-continuous
measurements. The general expression of the equations of
motion of such a CWF with or without dissipation is mentioned
in Ref. [17]. We anticipate the two main results of this work.
First, since our approach deals directly with wave functions,
it provides a CP map for either Markovian or non-Markovian
dynamics with an unproblematic physical interpretation of the
wave function of the open system at different times. Second,
contrary to other CP methods, the numerical inclusion of
different dissipative phenomena in the equation of motion of
the CWF can be done straightforwardly with a microscopic and
realistic implementation. These properties make the approach
presented in this work very relevant for many different research
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fields. In this paper, we discuss its implementation for quantum
transport with dissipation.

The article is structured as follows. After this Introduction,
in Sec. II we present the basic elements of our general
approach. In particular, we discuss its complete positivity in
Sec. II A, the equation of motion of the CWF with dissipation in
Sec. II B, and a comparison with similar techniques in Sec. II C.
In Sec. III, as an example, we study quantum dissipation
through electron-phonon interaction, with the definition of the
conditional potential in Sec. III A. The application to tunneling
nanodevices with parabolic- and linear-band structures is done
in Secs. III B and III C, respectively. We conclude in Sec. IV.
Finally, technical details are discussed in four Appendixes.

II. THE APPROACH

We consider an isolated (closed) quantum system described
by a full many-body state |�〉 solution of the unitary,
reversible, and linear Schrödinger equation. We decompose
the total Hilbert space of N particles as Ĥ = Ĥa ⊗ Ĥb, with
�r = {�ra,�rb} being �ra the position of the a-particle and �rb =
{�r1, . . . ,�ra−1,�ra+1, . . . ,�rN } the position of all other particles.
Next, we present our approach, emphasizing that it provides a
CP map for either Markovian or non-Markovian systems.

A. Complete positivity

The expectation value 〈Oa〉 ≡ 〈�|Ôa ⊗ 1b|�〉 associated
with an operator Ôa acting on the a-particle, with 1b being the
identity operator for Ĥb, can be computed as

〈Oa〉 =
∫

d�raOaρ(�ra,�r′
a,t)|�r′

a=�ra
, (1)

where ρ(�ra,�r′
a,t) is the reduced density matrix:

ρ(�ra,�r′
a,t) =

∫
d�rb�

∗(�r′
a,�rb,t)�(�ra,�rb,t), (2)

where �(�ra,�rb,t) ≡ 〈�ra,�rb|�〉 is the total wave function and
Oa is the position representation of Ôa .

The same system can be described with the Bohmian theory
[13,14] as follows. For each experiment, labeled by j , a
Bohmian quantum state is defined by the same wave function
�(�ra,�rb,t) plus a set of well-defined trajectories in physical
space, {�rj

1[t], . . . ,�rj

N [t]}. The velocity of each trajectory is [13]

�vj
a [t] = d�rj

a[t]

dt
=

�Ja

(�rj
a[t],�rj

b[t],t
)

∣∣�(�rj
a[t],�rj

b[t],t
)∣∣2 , (3)

where �Ja = h̄ Im(�∗∇a�)/ma is the (ensemble value of the)
current density, with ma the mass of the ath particle. The
set of N positions {�rj

1[t], . . . ,�rj

N [t]} in different j = 1, . . . ,W

experiments is distributed (in quantum equilibrium [13]) as

|�(�ra,�rb,t)|2 = 1

W

W∑
j=1

δ
(�ra − �rj

a[t]
)
δ
(�rb − �rj

b[t]
)
. (4)

The identity in Eq. (4) requires W → ∞. Numerically, we just
require a large enough W .

The key element of our approach is the CWF associated
with the ath particle in the open system during the j th

experiment, defined as ψ
j
a (�ra,t) ≡ �(�ra,�rj

b[t],t). We em-
phasize that ψ

j
a (�ra,t) provides an unproblematic (Bohmian)

definition of the wave function of an open system [13]. We
compute a different CWF for each simulated particle of the
open system and for each simulated experiment. In Sec. II B,
we will discuss the equation of motion of such CWFs.

Next, we construct the reduced density matrix, Eq. (2),
using the fundamental elements of the Bohmian theory to
shows that our approach based on CWFs is CP. We define
the (tilde) CWF of the ath particle in the j th experiment as

ψ̃j
a (�ra,t) ≡ �

(�ra,�rj

b[t],t
)

�
(�rj

a[t],�rj

b[t],t
) . (5)

Notice that the denominator �(�rj
a[t],�rj

b[t],t) is just a pure time-
dependent term (without spatial dependence) that has no net
effect on the definition of the velocity in Eq. (3). The Bohmian
velocity of the a-particle computed from ψ̃

j
a (�ra,t) is exactly the

same value as the one we get from ψ
j
a (�ra,t). Putting Eq. (4) into

〈Oa〉 ≡ 〈�|Ôa ⊗ 1b|�〉, integrating all degrees of freedom,
and using the definition of the (tilde) CWF in Eq. (5), we get

〈Oa〉 =
W∑

j=1

[
pj ψ̃

j∗
a (�ra,t)Oaψ̃

j
a (�ra,t)

]
�ra=�rj

a [t], (6)

where pj = 1/W . Equation (6) allows us to compute 〈Oa〉
from Eq. (1) as

〈Oa〉 =
∫

d�ra

⎡
⎣Oa

W∑
j=1

pj ψ̃
j∗
a (�r′

a,t)ψ̃
j
a (�ra,t)

⎤
⎦

�r′
a=�ra=�rj

a [t]

,

(7)

which directly allows the definition of the following density
matrix [15]:

ρ(�ra,�r′
a,t) =

W∑
j=1

pj ψ̃
j∗
a (�r′

a,t)ψ̃
j
a (�ra,t). (8)

The generalization to CWFs with an arbitrary number
of particles is straightforward. The time evolution of
Eq. (8) ensures, trivially, that the dynamical map associated
with our approach is CP. In the position representation,
the density operator ρ̂ = ∑W

j=1 pj |ψ̃j∗
a (t)〉〈ψ̃j

a (t)| gives

〈�ro|ρ̂|�ro〉 = ∑W
j=1 pj |〈�ro|ψ̃j

a (t)〉|2 � 0 at any time [16] and at
any position �ro. The last step to conclude our CP demonstration
is quite simple. If the density matrix in Eq. (8) is positive, then
the diagonal elements of 〈�ro|ρ̂|�ro〉 evaluated only at �ro = �rj

a[t]
and defined as 〈�ro|ρ̂|�ro〉B ≡ ∑W

j=1 pj |〈�ro|ψ̃j
a (t)〉|2δ(�ro −

�rj
a[t]) � 0 are, by construction, also positive.

In fact, the term 〈�ro|ρ̂|�ro〉B has a very simple interpre-
tation. For the j experiment, the tilde CWF in Eq. (5)
evaluated at �ro = �rj

a[t] is 〈�rj
a[t]|ψ̃j

a (t)〉 = ψ̃
j
a (�rj

a[t],t) ≡
�(�rj

a[t],�rj

b[t],t)/�(�rj
a[t],�rj

b[t],t) = 1. Then, since pj =
1/W , we get 〈�ro|ρ̂|�ro〉B ≡ ∑WB

j=1 1/W = WB/W , where WB

is just the number of experiments where the position of the
trajectory �rj

a[t] coincides with �ro. In conclusion, as far as we are
dealing with CWF and Bohmian trajectories in the dynamical
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description of the quantum systems with dissipation, the CP of
our approach is always satisfied (the number WB of trajectories
with position �ro = �rj

a[t] can be zero, but it cannot be negative).

B. The equation of motion for the CWFs

Here we develop the equation of motion for the CWF, ψj
a ≡

ψ
j
a (�ra,t) ≡ �(�ra,�rj

b[t],t). As we discussed, the Bohmian
velocities obtained from ψ̃

j
a and ψ

j
a are identical. It has been

shown in Ref. [17] that the (non-tilde) CWF can be computed,
in general, from the following single-particle Schrödinger-like
equation in physical space:

ih̄
d〈�r|�〉

dt

∣∣∣∣
�rj

b[t]

= 〈�r|Ĥ|�〉|�rj

b [t] ⇐⇒ ih̄
dψ

j
a

dt
= Haψ

j
a , (9)

where Ĥ is the many-body Hamiltonian, and its relation to
Ha will be explained next. First, we notice that the relation
between ih̄d〈�r|�〉/dt |�rj

b [t] and ih̄dψ
j
a /dt on the right and left

sides of Eq. (9) is the following:

ih̄
dψ

j
a (�ra,t)

dt

= ih̄
d
〈�ra,�rj

b[t]
∣∣�(t)

〉
dt

= ih̄
d〈�r|�(t)〉

dt

∣∣∣∣
�rj

b[t]

+ ih̄

N∑
k=1,k �=a

∇k〈�r|�(t)〉∣∣�rj

b[t]�v
j

k [t]

= ih̄
d〈�r|�(t)〉

dt

∣∣∣∣
�rj

b[t]

+ iBa

(�ra,�rj

b[t],t
)
, (10)

with the conditional imaginary potential iBa defined as

Ba ≡ h̄

N∑
k=1,k �=a

∇k〈�r|�(t)〉∣∣�rj

b[t]�v
j

k [t], (11)

where �vj

k [t] = d�rj

k [t]/dt is the Bohmian velocity of the k

particle given by Eq. (3). Second, once we have defined Ba ,
the term Ha on the right-hand side of Eq. (9) can be defined as

Ha =
〈�r|Ĥ|�(t)〉|�rj

b[t] + iBa

ψ
j
a

. (12)

In general, Eq. (9) is nonlinear because Ha in Eq. (12)
depends on the wave function itself. In addition, the imaginary
conditional potential iBa indicates that the evolution of the
CWF can be nonunitary. Equation (9) includes any type of
evolution for the CWF (not only linear and unitary ones). In
particular, Eq. (9) alone allows the description of irreversible
dynamics (energy dissipation) in the open system as required
in this work. Obviously, the full wave function �(�ra,�rb,t)
satisfies unitary and linear dynamics, with conservation of the
total energy [14].

The key computation for the practical application of our
approach is the evaluation of Ha in Eq. (12), which allows us
to determine an equation of motion for each CWF, ensuring
the CP of our approach. The calculation of 〈�r|Ĥ|�(t)〉 before
conditioning depends on the full many-body wave function,
and it requires educated guesses [17]. The potential Ba , which

contains many-body terms but does not depend directly on
Ĥ, will be approximated following Ref. [17]. Stochasticity is
introduced in Eq. (9) through the term Ha , which accounts
for the effect of nonsimulated degrees of freedom of the
environment in each experiment.

C. Comparison with other techniques

Several techniques use Bohmian trajectories as a mathe-
matical/computational tool to solve some reduced equations
of motion [18]. Here, on the contrary, Eq. (4) guarantees
empirical equivalence between Bohmian and standard quan-
tum (nonrelativistic) results in the whole closed system. This
implies not only the correct description of any smaller portion
of the closed system, i.e., our open systems, but also empirical
equivalence in the measured values [13]. It is important to
emphasize that Gambetta and Wiseman [10] pointed out
that the only physical continuous-in-time interpretation of
the wave-function solution of non-Markovian SSEs, i.e.,
with backaction from the environment to the system, has
to be based on the Bohmian theory. In other words, in
spite of its mathematical interest as a computational tool,
the improper sum of wave functions of an open system
in Eq. (8) has a problematic ontological meaning within
standard quantum mechanics, as indicated by D’Espagnat
[19,20]. On the contrary, the Bohmian theory allows a proper
definition of a wave function of an open system with or
without continuous measurements, for both Markovian and
non-Markovian dynamics [13]. We can always interpret (part
of) �rj

b[t] as the pointer of a measuring apparatus. Therefore, the
Bohmian CWF ψ

j
a (�ra,t) can be thought of as the wave function

of SSE conditioned to a continuous observation defined by the
(part of) �rj

b[t] as the pointer.
To the best of our knowledge, we are the first to develop

a practical SSE algorithm using CWF solutions of Eq. (9).
In the Bohmian framework, the ensemble values can be
directly computed from the trajectories and not from the
CWF. Therefore, the technical problems of SSE due to norm
degradation are avoided in our approach. It is a remarkable
fact that the velocity of �rj

a[t] computed from ψ
j
a (�ra,t) gives

the exact same value as if we use �(�ra,�rj

b[t],t). Thus, the
velocity, as seen in Eq. (3), is totally independent of the norm
of the CWF [13]. This explains why Eq. (9) deals with a
non-normalized wave function.

Since we are dealing with a realistic definition (i.e., with
a clear ontological meaning) of the wave function of an open
system, ψ

j
a (�ra,t), a relevant advantage is that our approach

allows a realistic description of the stochastic sources of
dissipation (beyond the typical environmental noise sources
introduced in SEE [1]) while maintaining CP. Below, as an
example, we provide the stochastic conditioned potential of
Eq. (9), which tackles the electron-lattice energy dissipation
in tunneling devices.

III. APPLICATION TO ELECTRON-LATTICE
INTERACTION

To analyze the electron-lattice interaction, here, we develop
the exact expression for Eq. (9) for electrons interacting
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with the lattice. For that purpose, we consider Ne elec-
trons with positions �r = {�r1, . . . ,�rNe

} and Nh ions located
at �R = { �R1, . . . , �RNh

}. Although not explicitly indicated,
Nh includes also all additional particles required to deal
with a closed system with the many-body wave function
�(�ra,�rb,t) ≡ 〈�ra,�rb|�〉 mentioned in Sec. II A. To simplify
the notation, hereafter we define �r = {�ra,�za} with �za =
{�r1, . . . ,�ra−1,�ra+1, . . . ,�rNe

}. These new variables are related
to previous ones through �ra = �ra and �rb = {�za, �R}, with
�r = {�ra,�rb}.

We compute the evolution of the full wave function
�(�r, �R,t) = �(�r,t) under the effect of the full Hamiltonian
Ĥ in Eq. (9). The position representation of the Hamiltonian
Ĥ gives

H (�r, �R) = Ke(�r) + Kh( �R) + Vee(�r) + Vhh( �R) + Hep(�r, �R),

(13)

with Ke(�r) the electron kinetic energies, Kh( �R) the nucleus
kinetic energies, Vee(�r) the electron-electron interactions,
Vhh( �R) the nucleus-nucleus interactions, and Hep(�r, �R) the
total electron-lattice interaction. The last term can be split into
Hep = Hep, �R0

+ Hep,�u. The first term, Hep, �R0
, corresponds to

the interaction of the electrons with the fixed (equilibrium)
positions of the ions �R0. The second one, Hep,�u, includes
the interaction of the electrons with the displacement of the
ions, �u = �R − �R0 = {�u1, . . . ,�uNh

}, and it is the only term
that prevents the exact separation of the many-particle wave
function. Thus, we rewrite Eq. (13) as

H (�r, �R) = Hc(�r, �R) + Hep,�u(�r, �R), (14)

with Hc(�r, �R) = Ke(�r) + Kh( �R) + Vee(�r) + Vhh( �R) +
Hep, �R0

(�r, �R0). Finally, the computation of Ha in Eq. (12) just
requires the explicit evaluation of the terms

〈�ra,�za, �R|Ĥep,�u|�(t)〉|�zj
a [t], �Rj [t] (15)

and

〈�ra,�za, �R|Ĥc|�(t)〉|�zj
a [t], �Rj [t]. (16)

The relevant interaction of the (conditional) wave packet
with the moving lattice, present in Ĥep,�u, will be evaluated
in Sec. III A in the second-quantization formalism. The less
relevant interaction of the (conditional) wave packet with the
fixed (equilibrium) lattice due to Hc present in Eq. (16) is
discussed in Appendix B.

A. Electron-phonon stochastic potential

Assuming a small displacement of the ions �uh =
�Rh − �Rh,0 from their equilibrium positions �Rh,0, the

electron-lattice Hamiltonian for small displacements of
ions in the position representation can be written as
Hep,�u(�r, �R) = ∑

e,h �uh∂U (�re − �Rh)/∂ �Rh| �Rh,0
. The (second-

quantization) electron-lattice Hamiltonian is then

Ĥep,�u =
∑
e,p

g
�qp

�ke

ĉ
†
�ke+�qp

ĉ�ke

(
b̂�qp

+ b̂
†
−�qp

)
, (17)

with b̂�qp
and b̂

†
�qp

being the annihilation and creation operators
of the atomic vibrational eigenstate |�qp〉. Similarly, ĉ�ke

and

ĉ
†
�ke

are the corresponding operators of the (Bloch) eigen-

state 〈�re|ĉ†�ke

|0〉 = 〈�re|�ke〉 = φ�ke
(�re). The coupling constant g

�qp

�ke

specifies the transition between the eigenstates. The first-
quantization explanation of the electron-lattice interaction and

the definition of g
�qp

�ke

are given in Appendix A.
The initial many-body (electron and lattice) quantum state

is

�(�r, �R,t0) =
∑
�k,�q

a(�k,�q,t0)��k(�r)��q( �R), (18)

with a(�k,�q,t0) accounting for an arbitrary superposition,
��k(�r) ≡ 〈�r|ĉ†�k1

· · · ĉ†�kNe

|0〉 the Slater determinant with �k =
{�k1, . . . ,�kNe

}, and ��q( �R) the atomic part with �q = {�q1,�q2, . . . }
representing a phonon base. The Slater determinant of elec-
trons can be expanded in minors giving

�(�ra,�za, �R,t) =
∑
�k,�q

a(�k,�q,t)��q( �R)
∑
�kw

φ�kw
(�ra)sa,w

×〈�za|ĉ†�k1
· · · c†�kw−1

c
†
�kw+1

· · · ĉ†�kN

|0〉, (19)

with sa,w the sign of the (a,w) cofactor. Then, the term
in Eq. (17) acting on Eq. (19) is (for more details, see
Appendix A)

〈�ra,�rb|Ĥep,�u|�(t)〉
=

∑
e,p

g
�qp

�ke

〈�ra,�rb|ĉ†�ke+�qp

ĉ�ke
(b̂�qp

+ b̂
†
−�qp

)|�(t)〉

=
∑
e,p

g
�qp

�ke

∑
�k,�q

a(�k,�q,t)�′
�q( �R)

∑
�kw

φ�kw+�qp
(�ra)sa,w

×〈�za|ĉ†�k1
· · · c†�kw−1

c
†
�kw+1

· · · ĉ†�kN

|0〉. (20)

We use �′
�q( �R) to account for the effect of the electron-lattice

interaction in the atomic part.
When conditioning Eqs. (19) and (20) to {�zj

a[t], �Rj [t]}, the
variable �qj

p is also fixed to some particular values in this
j th experiment. The exact (deterministic) description of the
electron-lattice interaction would require perfect knowledge
of all ion dynamics through �Rj [t]. However, since ions are
considered here as the environment of electrons (they are not
explicitly simulated), we introduce their effect stochastically
in the equation of motion of electrons in Eq. (9), ensuring
that the probabilities of different phonon modes satisfy some
well-known precomputed probabilities [21]. We assume that
only one (or none) phonon mode �qj

p becomes relevant at each
time. Then, the (envelope) CWF before a collision t < tc is

ψj
a (�ra,t) =

∑
�kw

f (�kw,t)φ�kw
(�ra). (21)

Assuming that g
�qj
p

�ka

≈ g
�qj
p

�k0a

with �k0a the central wave vector of
the a wave packet, the final (envelope) CWF in Eq. (20) after
the collision t > tc is ψ

j
a (�ra,t) ≡ 〈�ra,�rj

b [t]|Ĥep,�u|�(t)〉, which
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can be written as (see Appendix A)

ψj
a (�ra,t) = g

�qj
p

�k0a

∑
�kw

f (�kw,t)φ�kw+�qj
p
(�ra), (22)

where the �ra dependence in Eqs. (21) and (22) is given by
φ�ka

(�ra) and φ�kw+�qp
(�ra), respectively, and f (�kw,t) includes all

other terms evaluated at {�zj
a[t], �Rj [t]}.

These results have a simple and intuitive explanation. Dur-
ing the collision, the (Bloch state) quasimomentum eigenstates
that build the wave packet change from |�ka〉 to |�ka + �qj

p〉, while
its weight f (�kw,t) remains constant.

We notice that these collisions introduce not only stochastic
dynamics in the evolution of the CWF, but also time-
irreversibility in the whole simulation, since, in general,

g
�qp

�k0a

< g
−�qp

�k0a+�qp

, where positive (negative) �qp means phonon

absorption (emission).

B. Dissipative transport in parabolic-band structures

We apply our approach for the simulation of a typical
GaAs/AlGaAs resonant tunneling device (RTD) when elas-
tic (acoustic phonons and impurities) and inelastic (optical
phonons) collisions are considered. In particular, it can be
shown that the required evolution of the CWF ψa interacting
with a phonon �qp = {qpx,qpy,qpz} in a material with parabolic-
band structure can be obtained from Eq. (9):

ih̄
∂ψa

∂t
=

[
1

2m∗
( �pa + �λa
tc

)2 + Va

]
ψa, (23)

where �pa = −ih̄ �∇a , m∗ = 0.067me is the electron effective
mass (me is the free-electron mass), �λa = h̄�qp, and 
tc ≡

(t − tc) is the Heaviside step function. In Appendix C, we
prove that Eq. (23) exactly reproduces the transition of ψa

from Eq. (21) to Eq. (22). Each electron a = {1,2, . . . ,Ne}
has its own Eq. (23) to compute ψa and �ra[t] by time-
integrating its velocity in Eq. (3). The term Va provides the
Coulomb correlation among all simulated electrons, including
the appropriate boundaries. The injection model locates the
initial CWF outside the simulation box and defines it from
typical Gaussian wave packets with a dispersion σ = 40
nm. The properties of the injected electrons are selected
according to some well-defined assumptions. For example, the
energies of the injected electrons from one contact (assumed
in thermodynamical equilibrium) into the open system fulfill
a Fermi-Dirac distribution. This randomness in the injection
of electrons introduces another source of stochasticity in the
description of the properties of the open system.

We compute the current as the net number of trajectories
�ra[t] transmitted from one side to the other, divided by the
total simulation time (5 ps). Identically, the dc current is
also computed as the time average of the total (conduction
plus displacement) current. Both types of dc computations
provide the same value at each bias point, showing the
accuracy of the simulation. Technically, the experiment is
not repeated, but the numerical simulation takes so long that
electrons are entering and leaving the active region many
times, providing repeated scenarios. The number and type of
collisions are obtained from the Fermi Golden Rule for GaAs
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FIG. 1. (a) Current-voltage characteristic for a RTD with (solid
red curve) and without (blue dashed curve) dissipation due to acoustic
and optical phonons and impurities. The barrier height and width are
0.5 eV and 1.6 nm, and the well width is 2.4 nm. An n-type doping
with a Fermi level of Ef = 0.15 eV above the conduction band is
considered. (b) Effective collision rate as a function of bias. The
optical phonons lead to an inelastic change of the electron energy of
±0.036 eV.

materials [21]. We notice that the collision in Eq. (9) does not
introduce any artificial decoherence. The expected reduction
of the transmission [22] seen in Fig. 1(a) is because of the
randomization of the momentum due to acoustic phonons
and to the energy dissipation due to the emission of optical
phonons. We see in Fig. 1(b) that the number of collisions
at resonance is three times larger than that out of resonance,
showing that the ballisticity of tunneling devices also depends
on the electron transit time that varies from one voltage to
another, due to different backactions of our non-Markovian
(phonon) environment [6].

C. Dissipative transport in linear-band structures

Next, we present the Bohmian trajectories and CWF
evolution of one electron during a collision with a phonon in
graphene, with a richer band structure than GaAs. The whole
development of the equation of motion in Eq. (9) and the
inclusion of the collision needs to be redone for a conditional
two-dimensional (2D) bispinor ψa ≡ (ψa,1,ψa,2)T giving

ih̄
∂ψa

∂t
= vf

(
Va/vf p−

a + λ−
a 
tc

(p+
a + λ+

a 
tc )χtc Vaχtc/vf

)
ψa, (24)

where vf = 106 m/s is the Fermi velocity. We define
p±

a = −ih̄∂xa
± h̄∂ya

and λ±
a = λax ± iλay as the change in

momentum �λa = h̄�qp due to the interaction with a phonon with
wave vector �qp = {qpx,qpy}. When the interaction occurs, the

term χtc = e
i(mπ+β�kf a

−β�k0a
)�tc makes sure that the final state is

either in the conduction band (positive energy branch) or in the
valence band (negative energy states). If the electron changes
from the conduction to the valence band (or vice versa), we use
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FIG. 2. (a) Time evolution of the modulus squared of the condi-
tional bispinor for an electron initially at t0 in the conduction band,
with wave vector (k0ax,k0ay) = (0,|�k0a|), suffering an elastic collision
at tc with a phonon that provides a final wave vector (kf ax,kf ay) =
(|�k0a |/

√
2,|�k0a|/

√
2). The associated Bohmian trajectories are also

shown. Inset: electron energy conservation for the elastic collision.
(b) Same change of wave vector as in (a) but with an inelastic collision
that produces a final electron in the valence band (where velocity and
momentum are opposite).

m = 1 and if there is no change of band m = 0, with e
iβ�k0a =

(k0ax + ik0ay)/|�k0a|, where �k0a (�kf a) is the central initial (final)

wave vector and e
iβ�kf a having the same definition. χtc is only

relevant at tc, i.e., �tc ≡ �tc (t) = 0 except �tc (t = tc) = 1. In
Appendix D, we prove that Eq. (24) produces the transition of
the 2D bispinor ψa from Eq. (21) to Eq. (22).

We present in Figs. 2 and 3 numerical results for the
electron-phonon collisions in graphene, whose dynamics near
the Dirac points are given by Eq. (24). The initial state in
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FIG. 3. Time evolution of the modulus squared of the conditional
bispinor for an electron that impinges on a 0.4 eV barrier with a
width of 200 nm. The initial t = t0 direction is β0 = π/6, so Klein
tunneling should be minimal. At t = tc, an elastic collision deviates
the electron in a perpendicular direction to the barrier maximizing
the Klein tunneling.

both examples is a Gaussian wave packet with dispersion
σ = 40 nm and wave vector |�k0a| = 2.27 × 108 m−1, whose
initial pseudospin lies in the conduction band.

IV. CONCLUSIONS

In this paper, we present an approach to analyze quantum
dissipation. It is based on Bohmian CWFs that preserves CP
and allows a realistic consideration of dissipative sources.
Formally, our approach follows the SSE technique [9] for
non-Markovian scenarios [7,10,12], but allowing a physi-
cal interpretation of the output results under a continuous
measurement. The open-system techniques mentioned in the
Introduction are rarely applied to the simulation of electron
devices (with exceptions such as the Wigner-Boltzmann ap-
proach, which has problems of CP [2,3], or other density matrix
approaches that have difficulties in being adapted to spatially
well-defined models respecting the different spatial regions
(with well-defined boundaries) typical in electron devices
[23,24]). Typically, dissipation in quantum electron transport
is simulated through a partition of the full Hilbert space
into smaller spaces where sets of eigenstates are perfectly
determined. Interactions (dissipation) between different spaces
are introduced through coupling constants [25]. The solution
of such models implicitly involves an improper mixture of
states [19] that, in spite of its computational interest, has
no ontological definition within standard quantum mechanics
[20]. The Bohmian CWFs provide a unproblematic way to
define the wave function of an open system [10], and we
have shown that it allows a realistic simulation of quantum
dissipation in electron devices with linear and parabolic-
band structures. With the accurate inclusion of quantum
dissipation in the evolution of CWFs, the general and accurate
quantum-trajectory approach [26] presented here is the best
candidate to substitute the old Monte Carlo solution of the
Boltzmann equation for semiclassical systems [21] in the new
nanoelectronics/atomtronics quantum scenarios.
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APPENDIX A: EVALUATION OF THE TERM
〈�ra,�za, �R|Ĥep,�u|�(t)〉|�z j

a [t], �R j [t] IN EQ. (15)

We evaluate the effect of the Ĥep,�u on the wave packet
�(�ra,�za, �R,t). For that purpose, we develop the explicit
expression of Ĥep,�u and then we define an initial many-body
wave packet �(�ra,�za, �R,t).

1. Definition of the electron-phonon Hamiltonian

The term Hep in Eq. (13) can be written as Hep = Hep, �R0
+

Hep,�u = ∑
e,h Vep(�re − �Rh). We decompose Vep(�re − �Rh) in
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a Taylor expansion around the equilibrium position of the h

ions �Rh,0 as∑
e,h

Vep(�re − �Rh)

≈
∑
e,h

Vep(�re− �Rh,0) + ( �Rh− �Rh,0) · ∇hVep(�re− �Rh)| �Rh= �Rh,0

=
∑
e,h

Vep(�re − �Rh,0) + �uh · ∇hVep(�re − �Rh)| �Rh= �Rh,0

= Hep, �R0
+ Hep,�u. (A1)

The term Vep(�re − �Rh,0) will become relevant later for the
electronic band structure, while �uh · ∇Vep(�re − �Rh)| �Rh= �Rh,0

provides the interaction of the electron �re with the ion
�Rh (neglecting second-order Taylor terms in the atomic

displacements expansion). Instead of dealing with individual
displacements �uh, we consider the normal coordinate �Q�qp

defined from the Fourier transform:

�uh =
∑
�qp

�Q�qp
ei �qp

�Rh,0 , (A2)

where �qp is a wave vector in the reciprocal space that labels
each of the possible collective solutions of the movement of
ions. Then we perform the Fourier transform of the potential
Vep(�re − �Rh):

Vep(�re − �Rh) =
∑

�v
ei�v(�re− �Rh)U�v, (A3)

where �v is another wave vector in the reciprocal space, and
U�v is the Fourier coefficients of the potential. Notice that∑

h Vep(�re − �Rh) is a periodic potential, while Vep(�re − �Rh)
alone is essentially a Coulomb potential with corrections due
to screening. Then, the gradient of the potential in Eq. (A1)
can be written as

∇hVep(�re − �Rh)| �Rh= �Rh,0
=

∑
�v

(−i�v)ei�v(�re− �Rh,0)U�v. (A4)

Putting Eq. (A4) and Eq. (A2) altogether for all electrons and
ions, we obtain finally

Hep,�u =
∑

e

Hep,�u,�re
=

∑
e

∑
h

�uh · ∇hVep(�re − �Rh)| �Rh,0

=
∑

e

∑
h

∑
�qp

ei �qp
�Rh,0 �Q�qp

∑
�v

(−i�v)ei�v(�re− �Rh,0)U�v.

(A5)

Before discussing the interaction through the term Hep,�u,
we define the initial electron-lattice wave packet.

2. Definition of the many-body wave packet �(�r, �R,t)

The many-body wave packet �(�r, �R,t) = 〈�ra,�za, �R|�(t)〉
can be written as

�(�r, �R,t) =
∑
�k,�q

a(�k,�q,t)��k(�r)��q( �R), (A6)

with a(�k,�q,t) accounting for an arbitrary superposition of
the many-body electron base ��k(�r) and many-body phonon
base ��q( �R). The vector �k = {�k1,�k2, . . . ,�kNe

} represents the

many-body index of the electronic (Bloch states) base, and
�q = {�q1,�q2, . . . } is the index of the ionic base.
We define ��k(�r) ≡ ∑Ne!

n=1

∏Ne

i=1 φ�ki
(�rp(n)i )sn, with �p(n) =

{p(n)1, . . . ,p(n)Ne
} the n-permutation vector, and sn is its sign.

We have also used the single-particle Bloch eigenstate:

φ�ke
(�re) = 〈�re|�ke〉 = ei�ke�reu�ke

(�re), (A7)

where u�ke
(�re) is periodic with respect to lattice translations

(which includes the appropriate normalizing constant) and �ke

is the electron (quasi) wave vector related to the quasi (or
crystal) momentum �pe = h̄�ke.

In the language of the second quantization, the
Slater determinant of the electrons can be written as
��k(�r) ≡ 〈�r|ĉ†�k1

· · · ĉ†�kNe

|0〉. To explicitly write the depen-

dence of ��k(�r) on �re, we expand the Slater deter-
minant of electrons by minors as 〈�re,�ze|ĉ†�k1

· · · ĉ†�kNe

|0〉 =∑Ne

w=1 φ�kw
(�re)se,w〈�ze|ĉ†�k1

· · · c†�kw−1
c
†
�kw+1

· · · ĉ†�kNe

|0〉, with se,w the

sign of the (e,w) cofactor. Then

�(�re,�ze, �R,t) =
∑
�k,�q

a(�k,�q,t)��q( �R)
∑
�kw

φ�kw
(�re)se,w

×〈�ze|ĉ†�k1
· · · c†�kw−1

c
†
�kw+1

· · · ĉ†�kN

|0〉. (A8)

3. Evaluation of Hep,�u(�r, �R,t)�(�r, �R,t)

The term Hep,�u = ∑
e Hep,�u,�re

in Eq. (A5) is a sum over
terms that depend on a unique �re, so that when conditioning
Hep,�u(�r, �R,t)�(�r, �R,t) to {�zj

a[t], �Rj [t]}, all terms except one do
not depend on �ra . We have

Hep,�u(�r, �R,t)�(�ra,�za, �R,t)
∣∣∣
�zj
a [t], �Rj [t]

=
(∑

e

Hep,�u,�re
(�re, �R,t)

)
�(�ra,�za, �R,t)

∣∣
�zj
a [t], �Rj [t]

=
⎛
⎝∑

e �=a

Hep,�u,�re

(�rj
e [t], �Rj [t],t

)⎞⎠�
(�ra,�zj

a[t], �Rj [t],t
)

+Hep,�u,�ra
(�ra, �Rj [t],t)�

(�ra,�zj
a[t], �Rj [t],t

)
. (A9)

The term
∑

e �=a Hep,�u,�re
(�rj

e [t], �Rj [t],t) is a constant value
without dependence on �ra . This pure time-dependent term
only provides a global phase on the conditional wave function
that can be omitted without any effect [17]. The only term that
we have to compute explicitly is Hep,�u,�ra

(�ra, �R,t)�(�r, �R,t) =
〈�r, �R|Ĥep,�u,�ra

|�(t)〉. Using the identities
∫

�r d�r|�r〉〈�r| = 1 and∫
�R d �R| �R〉〈 �R| = 1, the fact that Ĥep,�u,�ra

is diagonal in the
position representation, and the identity

∑
�ka

|�ka〉〈�ka| = 1, we
can write

〈�r, �R|Ĥep,�u,�ra
|�(t)〉

= 〈�r, �R|Ĥep,�u,�ra
|�r, �R〉〈�r, �R|�(t)〉

=
∑
�ka

∑
�k′′
a

〈�ra|�k′′
a 〉〈�k′′

a ,�za, �R|Ĥep,�u,�ra
|�ka,�za, �R〉〈�ka,�za, �R|�(t)〉

=
∑
�ka

∑
�k′′
a

T
(�k′′

a ,Ĥep,�u,�ra
,�ka

)〈�ra|�k′′
a 〉〈�ka,�za, �R|�(t)〉, (A10)
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where we have defined T (�k′′
a ,Ĥep,�u,�ra

,�ka) ≡ 〈�k′′
a ,�za, �R|

Ĥep,�u,�ra
|�ka,�za, �R〉 as the electron-phonon Hamiltonian in the

momentum (Bloch state) representation. This term can be
rewritten as

T (�k′′
a ,Ĥep,�u,�ra

,�ka) =
∫

�ra

d�ra〈�k′′
a |�ra〉〈�ra,�za, �R|

× Ĥep,�u,�ra
|�ra,�za, �R〉〈�ra|�ka〉, (A11)

and using the final expression of the electron-phonon Hamil-
tonian in the position representation, Eq. (A5), we obtain

T
(�k′′

a ,Ĥep,�u,�ra
,�ka

) =
∫

�ra

d�rae
−i�k′′

a �ra u�k′′
a
(�ra)ei�ka�ra u�ka

(�ra)

×〈�ra,�za, �R|Ĥep,�u,�ra
|�ra,�za, �R〉

=
∫

�ra

d�rae
−i�k′′

a �ra u�k′′
a
(�ra)ei�ka�ra u�ka

(�ra)

×
∑

h

∑
�qp

ei �qp
�Rh,0 �Q�qp

∑
�v

(−i�v)

× ei�v(�ra− �Rh,0)U�v. (A12)

We take away from the integral those elements that do not
depend on �ra:

T (�k′′
a ,Ĥep,�u,�ra

,�ka)

=
∑

h

∑
�qp

ei �qp
�Rh,0 �Q�qp

∑
�v

(−i�v)e−i�v �Rh,0U�v

×
∫

�ra

d�rae
−i�k′′

a �ra u�k′′
a
(�ra)ei�ka�ra u�ka

(�ra)ei�v�ra . (A13)

Due to the periodicity of u�ka
(�ra), we can use the change of

variable �ra = �r ′
a + �Rm,0, where �r ′

a integrates only inside the
first Brillouin zone. We get

T
(�k′′

a ,Ĥep,�u,�ra
,�ka

)
=

∑
h

∑
�qp

�Q�qp

∑
�v

(−i�v)ei �Rh,0(�qp−�v)U�v

(∑
m

ei �Rm,0(−�k′′
a+�v+�ka )

)

×
∫

�r ′
a

d �r ′
ae

−i�k′′
a
�r ′

a u�k′′
a
(�r ′

a)ei�ka
�r ′

a u�ka
(�r ′

a)ei�v �r ′
a . (A14)

The sum over �Rh,0 in
∑

h ei �Rh,0(�qp−�v) imposes the condition
�G = �qp − �v, and the sum over �Rm,0 in

∑
m ei �Rm,0(−�k′′

a+�v+�ka )

imposes that �G′ = −�k′′
a + �v + �ka , with �G and �G′ two vectors

of the reciprocal lattice. For simplicity, although umklapp scat-
tering can also be considered, we assume that all momentum
vectors can be considered in the first Brillouin zone, �G = 0
and �G′ = 0, so that �k′′

a = �qp + �ka . Therefore,

T
(�k′′

a ,Ĥep,�u,�ra
,�ka

) =
∑
�qp

δ(�k′′
a − �qp − �ka)g

�qp

�ka

. (A15)

All other terms in Eq. (A14) are included into the coupling

constant g
�qp

�ka

defined as

g
�qp

�ka

= −i �Q�qp
�qp U�qp

∫
�r ′

a

d �r ′
ae

−i(�ka+�qp) �r ′
a

× u�ka+�qp
(�r ′

a)ei�ka
�r ′

a u�ka
(�r ′

a)ei�v �r ′
a . (A16)

We emphasize that we did not include any dependence on the
n band we are dealing with, since usually phonon energies
are smaller than band gaps and then phonons cannot make
band transitions. However, for materials with small band gaps,
these multiband transitions can be included straightforwardly.
In fact, when dealing with graphene bispinors, we include the
dependence of the coupling constant on the energy branches.
We introduce Eq. (A15) into Eq. (A10), and we conclude

Hep,�u,�ra
(�ra,�za, �R,t)�(�ra,�za, �R,t)

=
∑
�ka

∑
�k′′
a

〈�ra|�k′′
a 〉T

(�k′′
a ,Ĥep,�u,�ra

,�ka

)〈�ka,�zj
a[t], �Rj [t]

∣∣�(t)〉

=
∑
�qp

∑
�ka

g
�qp

�ka

〈�ra|�ka + �qp〉〈�ka,�za, �R|�(t)〉. (A17)

4. Conditional (envelope) wave packet before the collision

The conditional wave packet before the collision can be
obtained from Eq. (A8) by fixing �za = �zj

a[t] and �R = �Rj [t],
where these positions correspond to one j experiment. Then

�
(�ra,�zj

e [t], �Rj [t],t
) =

∑
�k,�q

a(�k,�q,t)��q( �Rj [t])
∑
�kw

φ�kw
(�ra)sa,w

× 〈�zj
a[t]

∣∣ĉ†�k1
· · · c†�kw−1

c
†
�kw+1

· · · ĉ†�kN

|0〉.
(A18)

The dependence on �ra of the conditional wave packet in
Eq. (A18) appears because of the Bloch state φ�kw

(�ra) ≡
〈�ra|�kw〉. Therefore, it can be compactly rewritten as

ψa(�ra,t) ≡ �
(�ra,�zj

a[t], �Rj [t],t
)

=
∑
�kw

fa

(�kw,�zj
a[t], �Rj [t],t

)
φ�kw

(�ra)

=
∑
�kw

fa(�kw,t)φ�kw
(�ra), (A19)

where fa(�kw,t) ≡ fa(�kw,�zj
a[t], �Rj [t],t) ≡ 〈�kw,�zj

a[t], �Rj [t]
|�(t)〉, appearing in Eq. (21) and Eq. (22) in the text, is
defined here as

fa(�kw,t) =
∑

�q

∑
�k,�ke �=�kw

a(�k,�q,t)��q( �Rj [t])sa,w

× 〈�zj
a[t]

∣∣ĉ†�k1
· · · c†�kw−1

c
†
�kw+1

· · · ĉ†�kN

|0〉. (A20)

Under the standard envelope approximation in which the
wave packet is centered around �ka ≈ �k0a , we can rewrite the
Bloch states as 〈�ra|�ka〉 = φ�ka

(�ra) ≈ ei�ka�ra u�k0a
(�ra) and rewrite

Eq. (A19) as

ψa(�ra,t) = u�k0a
(�ra)

∑
�kw

ei�kw�ra
〈�kw,�zj

a[t], �Rj [t]
∣∣�(t)

〉

= u�k0a
(�ra)

∑
�kw

ei�kw�ra fa(�kw,t). (A21)

We notice that f (�ka,t) includes now an (irrelevant) normal-
ization constant. Finally, we notice that we will use the same
symbol ψa(�ra,t) to refer to the conditional wave packet and to
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the envelope conditional wave function defined, by ignoring
the atomic periodicity u�k0a

(�ra), as

ψa(�ra,t) =
∑
�kw

ei�kw�ra
〈�kw,�zj

a[t], �Rj [t]
∣∣�(t)〉

=
∑
�kw

ei�kw�ra fa(�kw,t). (A22)

The ensemble momentum of the initial envelope wave packet
ψa(�ra,t) in Eq. (A22), at t = tc1 before the collision, can be
written as

〈 �pa〉tc1 =
∑
�kw

h̄�kw|fa(�kw,t)|2. (A23)

5. Conditional (envelope) wave packet after the collision

Conditioning the many-body wave function �(�ra,�ze, �R,t)
to the particular values of �zj

a[t] and �Rj [t] belonging to the
j experiment means that we are considering only one event
of the many available in the wave function. In particular,
from all phonon modes present in Eq. (A17), we consider
that, in a particular j experiment, only one �qj

p[t] (or none)
is relevant at each time t (if more than one phonon mode
is relevant simultaneously, then we can assume two single-
phonon collisions simultaneously, each one with only one type
of phonon mode). In addition, we consider that the involved
wave packets are narrow enough in momentum space so that

g
�qp,j

�ka

[t] ≈ g
�qp,j

�k0a

[t], with �k0a the central wave vector of the a

wave packet. Then, Eq. (A17) conditioned to the value of �zj
a[t]

and �Rj [t] can be written as

Hep,�u,�ra
(�ra,�za, �R,t)�(�ra,�za, �R,t)

∣∣
�zj
a [t] �Rj [t]

= g
�qj
p

�k0a

[t]
∑
�kw

〈�ra|�kw + �qp〉〈�kw,�zj
a[t], �Rj [t]

∣∣�(t)〉. (A24)

The coupling constant g
�qj
p

�k0a

[t] in the j experiment will imply an

interaction of the �ra electron with the phonon mode �qp during
a collision time interval, starting at tc1 and ending at tc2. In a

later time, g
�qj
p

�k0a

[t] will indicate a collision with another phonon

mode. The exact (deterministic) description of g
�qj
p

�k0a

[t] would

require perfect knowledge of the dynamics of �Rj [t]. Since we
do not explicitly simulate the dynamics of the ions (which
are understood as the environment of the electrons), we can
only introduce their effects in a stochastic way ensuring that

the probabilities of different phonon modes given by g
�qj
p

�k0a

[t]
satisfy some precomputed values. This is the origin of the
stochasticity in Eq. (9) due to the environment.

In one particular j experiment, during one collision, the

term g
�qq

�k0a

[t] becomes irrelevant (the Bohmian velocity only

depends on the dependence of the phase on �ra , not on the
norm), and the final wave packet in Eq. (A24), at time t > tc2

after the collision, can be written as

ψa(�ra,t) ≡ �
(�ra,�zj

a[t], �Rj [t],t
)

=
∑
�kw

fa

(�kw,�zj
a[t], �Rj [t],t

)
φ�kw+�qp

(�ra)

=
∑
�kw

fa(�kw,t)φ�kw+�qp
(�ra), (A25)

where fa(�kw,t) = 〈�kw,�zj
a[t], �Rj [t]|�(t)〉 remains equal to the

value in Eq. (A20) before the collision.
After the collision at t = tc2, the (pseudo)momentum base

changes from |�ke〉 to |�ke + �qj
p〉, so that the final ensemble

momentum of the envelope conditional wave packet in
Eq. (A25) is

〈 �pa〉tc2 =
∑
�kw

h̄
(�kw + �qj

p

)|fa(�kw,t)|2

= 〈 �pa〉tc1 + h̄�qj
p. (A26)

Let us emphasize that Eqs. (A23) and (A26) provide
the expected role of the electron-phonon interaction: such
a collision generates a change of momentum h̄�qj

p in the
conditional wave packet during a time interval tc2 − tc1.
We notice that we are considering a collision with a finite
duration. As will be later explained, for simplicity in practical
applications, we have considered instantaneous collisions in
the text.

APPENDIX B: EVALUATION OF THE TERM
〈�ra,�za, �R|Ĥc|�(t)〉|�z j

a [t], �R j [t] IN EQ. (16)

The term 〈�ra,�za, �R|Ĥc|�(t)〉|�zj
a [t], �Rj [t] = 〈�ra,�za, �R|Ke(�r) +

Kh( �R) + Vee(�r) + Vhh( �R) + Hep, �R0
(�r, �R0)|�(t)〉|�zj

a [t], �Rj [t] can
be evaluated as follows. First, we divide Vee(�r) = Vee,�ra

(�ra) +
Vee,�za

(�za) as the terms with an explicit dependence on
�ra , plus the terms without it. Similarly, Hep, �R0

(�r, �R0) =
Hep, �R0,�ra

(�ra, �R0) + Hep, �R0,�za
(�za, �R0).

1. Evaluation of 〈�ra,�za, �R|V̂hh + V̂ee,�za +
Ĥep, �R0,�za

|�(t)〉|�z j
a [t], �R j [t]

We have

〈�ra,�za, �R|V̂hh + V̂ee,�za
+ Ĥep, �R0,�za

|�(t)〉|�zj
a [t], �Rj [t]

= (
Vhh( �Rj [t]) + Vee,�za

(�zj
a[t]

) + Hep, �R0,�za

(�zj
a[t], �R0

))
×�

(�ra,�zj
a[t], �Rj [t],t

)
, (B1)

where Vhh( �Rj [t]) + Vee,�za
(�zj

a[t]) + Hep, �R0,�za
(�zj

a[t], �R0) are
pure time-dependent terms, without an �ra dependence, and
then it only contributes to an arbitrary pure time-dependent
angle that can be directly ignored; see Ref. [17].
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2. Evaluation of 〈�ra,�za, �R|V̂ee,�ra |�(t)〉|�z j
a [t], �R j [t]

Similarly, we write

〈�ra,�za, �R|V̂ee,�ra
�(t)〉∣∣�zj

a [t], �Rj [t]

= Vee,�ra

(�ra,�zj
a[t]

)|�(�ra,�zj
a[t], �Rj [t],t

)
= u�k0a

(�ra)Vee,�ra

(�ra,�zj
a[t]

)
ψa(�ra,t), (B2)

where Vee,�ra
(�ra,�zj

a[t]) can be easily known once the set of �rj [t]
trajectories are known. Later we will use Va ≡ Vee,�ra

(�ra,�zj
a[t]).

3. Evaluation of 〈�ra,�za, �R|K̂e,�za + K̂h|�(t)〉|�z j
a [t], �R j [t]

The kinetic energy of ions K̂h and the kinetic energy of
the rest of electrons, different from �ra , defined as K̂e,�za

with
K̂e = K̂e,�ra

+ K̂e,�za
, can be written as

〈�ra,�za, �R|K̂e,�za
+ K̂h|�(t)〉∣∣�zj

a [t], �Rj [t]

=
Ne∑

e=1,e �=a

Ke,�ra
�(�ra,�za, �R,t)

∣∣
�zj
a [t], �Rj [t]

+
Nh∑
h=1

−h̄2

2mh

�∇2
h�(�ra,�za, �R,t)

∣∣
�zj
a [t], �Rj [t]

= A
(�ra,�zj

a[t], �Rj [t],t
)
�

(�ra,�zj
a[t], �Rj [t],t

)
= u�k0a

(�ra)Aa

(�ra,�zj
a[t], �Rj [t],t

)
ψa(�ra,t), (B3)

where Ke,�ra
is the kinetic energy of each �za electron and where

we have introduced the real potential Aa as

Aa ≡ Aa

(�ra,�zj
a[t], �Rj [t],t

)
=

∑Ne

e=1,e �=a Ke,�ra
�(�ra,�za, �R,t)

∣∣
�zj
a [t], �Rj [t]

�
(�ra,�zj

a[t], �Rj [t],t
)

+
∑Nh

h=1
−h̄2

2mh

�∇2
h�(�ra,�za, �R,t)

∣∣
�zj
a [t], �Rj [t]

�
(�ra,�zj

a[t], �Rj [t],t
) . (B4)

This constant Aa includes other correlations (different from
the electron-lattice correlations that we treat exactly apart from
the stochastic approximation for ions dynamics), and it will be
approximated later according to Ref. [17].

4. Evaluation of 〈�ra,�za, �R|K̂e,�ra + Ĥep, �R0,�ra
|�(t)〉|�z j

a [t], �R j [t]

The last terms that have to be evaluated from Ĥc in
Eq. (15) are K̂e,�ra

+ Ĥep, �R0,�ra
. They determine the electronic

band structure:

〈�ra,�za, �R|K̂e,�ra
+ Ĥep, �R0,�ra

|�(t)〉∣∣�zj
a [t], �Rj [t]

=
(

Ke,�ra
+

∑
h

Vep(�ra − �Rh,0)

)
�

(�ra,�zj
a[t], �Rj [t],t

)
,

(B5)

where Ke,�ra
corresponds to the kinetic energy of the condi-

tioned a electron, and Hep, �R0,�ra
= ∑

h Vep(�ra − �Rh,0) is the
periodic potential seen by this a electron. From here, and
after a tight binding and the approximation for low-energy

excitations (small �k), depending on the system we will end
up with a band structure E( �p) either with linear or parabolic
shape. Therefore,

〈�ra,�za, �R|K̂e,�ra
+ Ĥep, �R0,�ra

|�(t)〉∣∣�zj
a [t], �Rj [t]

≈ u�k0a
(�ra)E( �p)ψa(�ra,t), (B6)

where ψa(�ra,t) is the (conditional) envelope wave packet
already defined in Eq. (A21).

APPENDIX C: SCHRÖDINGER (PARABOLIC-BAND)
EQUATION

In the parabolic case, E( �pa) appearing in Eq. (B6) is
E( �pa) = | �pa |2

2m∗ with m∗ an isotropic effective mass. After the

collision, t = tc2, regarding Eq. (A25) the state |�ke〉 changes to
|�ke + �qj

p〉. Under the mentioned envelope approximation, the
Bloch states are 〈�ra|�ka〉 = φ�ka

(�ra) ≈ ei�ka�ra u�k0a
(�ra). Then, the

conditional wave packet at tc2 in Eq. (A25) can be related to
the initial wave packet at tc1 given by Eq. (A22) as

ψa(�ra,tc2) =
∑
�kw

ei(�kw+�qp)�ra
〈�kw,�zj

a[tc2], �Rj [tc2]
∣∣�(tc2)〉

=
∑
�kw

ei(�kw+�qp)�ra fa(�kw,tc2) = ei �qp�raψa(�ra,tc1).

(C1)

Therefore, since Bloch states are energy eigenstates, the
ensemble energy before the collision 〈E(�ka)〉tc1 changes to
the value 〈E(�ka + �qp)〉tc2 after the collision.

Putting together Eqs. (B2), (B3), (B6), and (10) into the
original Eq. (15), and removing u�k0a

(�ra), we get

ih̄
∂ψa(�ra,t)

∂t
=

[
1

2m∗ ( �pa)2 + Va + Aa + iBa

]
ψa(�ra,t),

(C2)

where the terms Aa and Ba in Eqs. (B4) and (11) are
approximated by a zero-order Taylor expansion (i.e., no
dependence on �ra) so that they can be neglected when
computing Bohmian velocities. See Ref. [17] for a discussion
of such an approximation. Therefore, the time-evolution
operator (propagator) from the initial time t0 until a time

before the collision t < tc1 is just Ûa(t,t0) = e
− i

h̄

∫ t

t0
Ĥca (t ′)dt ′ ,

with Hca = 1
2m∗ ( �pa)2 + Va , where Hc is conditioned at �zj

a[t].
The time evolution of the wave packet due to the collision

with the phonon has to reproduce the condition given by
Eq. (C1). The time-evolution operator (propagator) from t = t0
until a time t > tc2 after the collision is then

Ûa(t,t0) = e
− i

h̄

∫ t

tc2
Ĥca (t ′)dt ′

e
− i

h̄

∫ tc2
tc1

Ĥepa (t ′)dt ′

e
− i

h̄

∫ tc1
t0

Ĥca (t ′)dt ′ = e
− i

h̄

∫ t

tc2
Ĥca (t ′)dt ′

ei
�λa �ra

h̄ e
− i

h̄

∫ tc1
t0

Ĥca (t ′)dt ′
,

(C3)

where Ĥepa = −h̄�λa�raδ(t − tc) is the previously mentioned
total electron-lattice interaction Ĥep conditioned at �zj

a[t].
For a small time interval, �t , we have Ûa(t +

�t,t) = (1 − i
h̄
�tĤca). Then, it can be proven that (1 −
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i
h̄
�tHca)ei

�λa �ra
h̄ ψa(�ra,tc1) = ei

�λa �ra
h̄ (1 − i

h̄
�tHca+λ)ψa(�ra,tc1),

where Hca+λ = ( �pa+�λa )2

2m∗ + Va . The demonstration of this result
just requires us to show that

( �p)2ei
�λa �ra

h̄ ψa(�ra,t) = −h̄2 �∇2e−i
�λa �ra

h̄ ψa(�ra,t)

= �λ2
ae

i
�λa �ra

h̄ ψa(�ra,t)

− 2ih̄�λae
i

�λa �ra
h̄ �∇ψa(�ra,t)

− h̄2ei
�λa �ra

h̄ �∇2ψa(�ra,t)

= ei
�λa �ra

h̄ ( �p + �λa)2ψa(�ra,t). (C4)

Therefore, the time evolution of the conditional wave packet
at any time t = tc2 + n�t can be computed by applying the
previous property n times and then(

1 − i

h̄
�tHca

)
· · ·

(
1 − i

h̄
�tHca

)
ei

�λa �ra
h̄ ψa(�ra,tc1)

= ei
�λa �ra

h̄

(
1− i

h̄
�tHca+λ

)
· · ·

(
1− i

h̄
�tHca+λ

)
ψa(�ra,tc1).

(C5)

Finally, we can combine the time evolution of the envelope
conditional wave packet ψa(�ra,t) before and after the collision
in a unique equation of motion as

ih̄
∂ψa

∂t
=

[
1

2m∗ ( �pa + �λa
t )
2 + Va

]
ψa, (C6)

where 
t (t) can be any function that accomplishes 
t (t) =
0 before the collision (t < tc1) and 
t (t) = 1 after the
collision (t > tc2). For practical purposes, and to facilitate
computations, in the numerical results we consider 
t ≡ 
tc

to be the Heaviside step function, t = tc is the time when
the interaction occurs, tc2 is a time infinitely small after
tc, and tc1 is a time infinitely small before tc. The time
interval tc2 − tc1 can be roughly estimated from time-energy
uncertainty relations, and it gives a value on the order of a
few fs. If a more slow/adiabatic evolution of the collision
is required in some practical implementations, the equation
of motion in Eq. (C6) can be easily adapted to a slower or
more adiabatic collision process by just splitting the whole
momentum exchange taking place during one time step of
the simulation into more steps but with smaller momentum
exchange. This equation of motion of the conditional wave
function reproduces Eq. (23) for the conditional wave packet
suffering an electron-lattice interaction with parabolic energy
bands. We emphasize that the stochasticity is introduced into
Eq. (C6) because the exact (Bohmian) path of the ions �Rj [t]
is not explicitly simulated. Their effect is introduced into the
dynamics of the electron �rj

a [t] through the random selection of
collision times and phonon modes satisfying some well-known
probability distributions.

By construction, the time evolution of ψ(�ra,t) before and
after the collision is fully coherent. The main and important
difference is the change of momentum. For example, in
a double barrier, a collision adding and subtracting the
momentum �λa = h̄�qp in the wave function ψ(�ra,t) can convert
a nonresonant state into a resonant one or vice versa. Until here,

only collisions within a unique band have been considered. The
implementation in electron-phonon multiband models [already
indicated below Eq. (A16)] or other types of collision could
be straightforwardly done.

APPENDIX D: DIRAC (LINEAR-BAND) EQUATION

In the linear case, E( �pa) = ±vf | �pa|, with vf the Fermi
velocity. The same development done for the Schrödinger
equation can be followed here for the evolution of the 2D
bispinor solution of the Dirac equation, with a slight difference
appearing because the wave function is a bispinor wave
function. The Bloch energy eigenstates |�ka〉 defined in Eq. (A7)
have to be substituted by |�ka,sa〉 defined as

φ�ka,sa
= 〈�ra|�ka,sa〉 = u�ka

ei�ka�ra

√
2

(
1

sae
iβ�ka

)
, (D1)

where sa indicates if the electron is in the conduction (sa = 1)
or valence (sa = −1) band, with positive or negative energies,
respectively. We have defined e

iβ�ki = kix+ikiy√
k2
ix+k2

iy

, and β�ki
is the

angle of the �ki wave vector.
All developments done previously for a parabolic band can

be reproduced here by just introducing the appropriate index sa

and the bispinor. In particular, the initial conditional envelope
wave packet before the collision in Eq. (A22) is rewritten here
as

ψa(�ra,t) =
(

ψa,1(�ra,t)
ψa,2(�ra,t)

)
=

∑
�kw

(
1

sae
iβ�kw

)
fa(�kw,t)ei�kw�ra

≈
(

1
s0ae

iβ�k0a

) ∑
�kw

fa(�kw,t)ei�kw�ra , (D2)

where we have assumed again that �kw ≈ �k0a and sa ≈ s0a ,
with s0a indicating that the initial wave packet belongs to the
conduction (s0a = 1) or valence (s0a = −1) band. Identically,
the coupling constant defined in Eq. (A16) has to be substituted
by the new one:

g
�qp

�ka,sa,s ′
a

= −i �Q�qp
�qp U�qp

∫
�r ′

a

d �r ′
ae

−i(�ka+�qp) �r ′
a u�ka+�qp

(�r ′
a)

× ei�ka
�r ′

a u�ka
(�r ′

a)ei�v �r ′
a

(
1 + sa s ′

a e
i(β�ka −β�ka+�qp

)

2

)
,

(D3)

which contains the information of the transition from the initial
energy branch sa to the final branch s ′

a . We assume again
that, in a particular experiment j , only one �qp[t] (or none) is

relevant at each time, and that g
�qp,j

�ka,sa,s ′
a

[t] ≈ g
�qp,j

�k0a,s0a ,sf a

[t], where

sf a indicates that the final wave packet is in the conduction
(sf a = 1) or valence (sf a = −1) band (more exotic collisions
with final presence of the wave packet at both energy branches
can be considered by two collisions with the one final-branch-
collision process mentioned here). Then, the condition given
in Eq. (C1) between the envelope conditional wave packet
before and after the collision with parabolic energy bands can
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be straightforwardly rewritten here as

ψa(�ra,tc2)

=
∑
�kw

(
1

sf a e
iβ�kw+�qp

)
fa(�kw,tc1)ei�kw�ra ei �qp�ra

= ei
�λa �ra

h̄

∑
�kw

(
1

sf as0ae
i(β�kw+�qp

−β�kw )
s0ae

iβ�kw

)
fa(�kw,tc1)ei�kw�ra

≈ ei
�λa �ra

h̄

(
1 0
0 eiαa

)(
1

s0ae
iβ�kw

)∑
�kw

fa(�kw,tc1)ei�kw�ra , (D4)

where we have introduced s0as0a = 1 and e−iβ�kw eiβ�kw = 1. We
define sf as0a = eimπ , where mπ reflects the changing from
one branch to the other due to the absorption/emission of the
phonon (m = 1) or the collision without changing (m = 0).
We have finally defined αa = mπ + β�kf a

− β�k0a
. We can then

rewrite Eq. (D4) compactly as

ψa(�ra,tc2) =
(

ψa,1(�ra,tc2)

ψa,2(�ra,tc2)

)

≈ ei
�λa �ra

h̄

(
ψa,1(�ra,tc1)

eiαaψa,2(�ra,tc1)

)
. (D5)

With the same development done for the parabolic band, we
know that the time evolution of ψa(�ra,t) before the collision
is given by the 2D Dirac equation as

ih̄
∂ψa

∂t
= (vf σ̂xpax + vf σ̂ypay + (Va + Aa + iBa)Î )ψa

=
(

Va + Aa + iBa vf p−
a

vf p+
a Va + Aa + iBa

)
ψa, (D6)

with σ̂x = ( 0
1

1
0 ) and σ̂y = ( 0

−i

i

0 ) the Pauli matrices,

Î = ( 1
0

0
1 ) the identity matrix, �p = {pax,pay} = {−ih̄∂x, −

ih̄∂y}, and p±
a = −ih̄∂xa

± h̄∂ya
. With the same approxima-

tions used in Eq. (C2) for Aa and Ba based on Ref. [17], we
get the following time-evolution operator (propagator) from
the initial time t = t0 until a time before the collision t < tc1

as Ûa(t,t0) = e
− i

h̄

∫ t

t0
Ĥca (t ′)dt ′ with Hca = vf (σ̂xpax + σ̂ypay) +

VaÎ . Again we can define the time-evolution operator for any
time larger than the collision t > tc2 as

Ûa(t,t0) = e
− i

h̄

∫ t

tc2
Ĥca (t ′)dt ′

e
− i

h̄

∫ tc2
tc1

Ĥepa (t ′)dt ′

× e
− i

h̄

∫ tc2
tc1

Ĥsa (t ′)dt ′
e
− i

h̄

∫ tc1
t0

Ĥca (t ′)dt ′
, (D7)

with the interacting Hamiltonian given by
Hepa = −h̄�λa�raδ(t − tc)Î and Hsa = −h̄δ(t −
tc)( 1

0
0
αa

). With this time-dependent Hamiltonian,
it can be easily demonstrated that Eq. (D5) is

satisfied:

ψa(�ra,tc2) =
(

ei
�λa �ra

h̄ ψa,1(�ra,tc1)

ei
�λa �ra

h̄ eiαaψa,2(�ra,tc1)

)

= e
− i

h̄

∫ tc2
tc1

Ĥepa (t ′)dt ′
e
− i

h̄

∫ tc2
tc1

Ĥsa (t ′)dt ′
ψa(�ra,tc1). (D8)

It can also be demonstrated that (p+
a )ei

�λa �ra
h̄ ψa,1(�ra,t) =

ei
�λa �ra

h̄ (p+
a + λ+

a )ψa,1(�ra,t). Identically, (p−
a )ei

�λa �ra
h̄ ψa,2(�ra,t) =

ei
�λa �ra

h̄ (p−
a + λ−

a )ψa,2(�ra,t), where we have defined λ±
a = λax ±

iλay . Therefore, we have proved for the bispinor(
1 − i

h̄
�tĤca

)
· · ·

(
1 − i

h̄
�tĤca

)
ei

�λa �ra
h̄ ψa(�ra,tc1)

= ei
�λa �ra

h̄

(
1− i

h̄
�tĤca+λ

)
· · ·

(
1− i

h̄
�tĤca+λ

)
ψa(�ra,tc1),

(D9)

with Ĥca+λ = vf [σ̂x(pax + λax) + σ̂y(pay + λay)] + VaÎ .
Notice that we have still not considered the effect of the term
e
− i

h̄

∫ tc2
tc1

Ĥsa (t ′)dt ′ . It includes an angle eiαa in the second element
of the bispinor at time t = tc1. As discussed in Appendix C,
in most practical applications, for simplicity, we assume an
instantaneous collision. A slower or more adiabatic collision
process is also easily implementable. Finally, the global
equation of motion of the conditional bispinor that includes all
mentioned dynamics and is valid for any time, either before
or after the collision, is

ih̄
∂ψa(�ra,t)

∂t
= vf

(
Va/vf p−

a + λ−
a 
tc

(p+
a + λ+

a 
tc)χtc Vaχtc/vf

)
×ψa(�ra,t). (D10)

As we explained below, the term χtc = exp[i(mπ + β�kf a
−

β�k0a
)�tc ] projects the general bispinor into positive or negative

energy states, and for practical purposes in the numerical
results we chose 
tc to be the Heaviside step function.
This equation of motion exactly reproduces Eq. (24). We
emphasize again that the stochasticity is introduced into
Eq. (D6) because the exact (Bohmian) path of the ions
�Rj [t] is not explicitly simulated. Their effect is introduced

into the dynamics of the electron �rj
a [t] through the random

selection of collision times and phonon modes satisfying
some well-known probability distributions.

We achieve the same conclusion as in the Schrödinger case:
the time evolution of ψ(�ra,t) before and after the collision
is fully coherent. For example, as is shown in the text, if a
collision occurs with an initial electron whose direction was
not perpendicular to a potential barrier (and therefore will not
suffer Klein tunneling) and that collision changes the electron
direction appropriately, the electron can experience the full
Klein tunneling effect.
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