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Coulomb interaction driven instabilities of sliding Luttinger liquids
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We study systems made of periodic arrays of one-dimensional quantum wires coupled by Coulomb interaction.
Using bosonization an interacting metallic fixed point is obtained, which is shown to be a higher-dimensional
analog of the Tomonaga-Luttinger liquid, or a sliding Luttinger liquid. This non-Fermi liquid metallic state,
however, is unstable in the presence of weak interwire backscatterings, which favor charge density wave states
and suppress pairing. Depending on the effective strength of the Coulomb repulsion and the size of interwire
spacing, various charge density wave states are stabilized, including Wigner crystal states. Our method allows
for the determination of the specific ordering patterns and corresponding energy and temperature scales.
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I. INTRODUCTION

Tomonaga-Luttinger liquid (or simply Luttinger liquid,
abbreviated as LL) is the generic metallic state realized in inter-
acting one-dimensional systems [ 1—4]. Phase space constraints
and nesting enable weak short-range interactions to destroy
quasiparticle coherence while preserving metallicity, making
LL the earliest example of a metal that is not described by
Fermi liquid theory. Thus LLs have long motivated theoretical
modeling of non-Fermi liquid states in higher dimensions
[5-8]. Indeed, within a coupled-wire construction, it was
shown that a higher-dimensional analog of LL, the sliding
Luttinger liquid (SLL), can be stabilized above one dimension
in the presence of short-range repulsive interactions and/or
vanishing interwire hoppings [9-12]. Despite the coupling
between wires, the SLL possesses an emergent “sliding”
symmetry corresponding to independent translation invariance
on each wire, whose nature will be made precise in Sec. II.
The SLL is an anisotropic metal, which behaves like an LL
along the wires, while transport is suppressed in the transverse
direction(s).

In parallel to these, coupled LLs have also been used as
a paradigm to study competing orders above one dimension
[13,14]. In one dimension, strong quantum fluctuations prevent
spontaneous breaking of continuous symmetries [15]. Instead,
tendencies toward ordering in different channels manifest
themselves in the power-law correlations of various local order
parameters, with the power law exponents (or scaling dimen-
sions) indicating the strength of the ordering tendency. Indeed,
the unstable coupled LL fixed point can be used as the starting
point of systematic analyses of the physics of ordering in
coupled LLs, based on renormalization group (RG) arguments.
In recent examples, the paradigm of wires coupled by short-
[16] and long-ranged [17] interactions was applied to under-
stand the physics of magnetic field driven catalysis in metals
with low carrier density [18-20]. Quenching of the kinetic
energy on the plane perpendicular to the applied field makes
the metal susceptible to density wave ordering. Owing to a

In this work, we revisit the problem of quantum wires
coupled by Coulomb interaction in the regime where single-
electron interwire hoppings are suppressed. The purpose of our
work is the following. In reality, the interwire couplings that
lead to SLL physics and those that lead to charge density wave
(CDW) ordering come from the same Coulomb interaction.
They should, therefore, be treated on equal-footing. We will
demonstrate that such a treatment leads to specific predictions
of the leading CDW instability and resultant ordering pattern,
as well as corresponding energy scales.

The paper is organized as follows. In Sec. II, we introduce
the model, and derive the bosonized action for a system of
infinite number of quantum wires in d dimensions coupled
by Coulomb interaction in the forward scattering channel. In
Sec. III, we show that the action describes an SLL fixed point in
d dimensions, and deduce the exponents that characterize the
fixed point. In Sec. IV, we analyze the stability of the SLL fixed
point against various symmetry breaking perturbations. Within
a tree-level RG analysis we show that multiple charge density
wave (CDW) states compete for dominance in the absence
of a dimensional crossover, and interwire pairing instabilities
are suppressed. We establish the zero (finite) temperature
phase diagram as a function of Coulomb interaction strength
(temperature) and interwire spacing. Finally, we close with a
discussion of our results in Sec. V.

II. MODEL

We consider a (d — 1)-dimensional lattice of identical wires
of spinless fermions in d dimensions with the wires lying along
the & axis [21]. The wires are labeled by a (d — 1)-dimensional
vector, n, such thatn - £ = 0. The fermion field on the nth wire
is expressed in terms of the hydrodynamic modes as [4]

Yn(T,0) & e (T,0) + T YRa(T,x), (1)

where modes carrying momenta of magnitude larger than 7 p
are ignored. The left and right moving fermions are expressed

small or vanishing Fermi energy, the quantum limit is reached as

at moderate magnetic field strength, and the lowest Landau FOa (1) —gn(2.)) 1

level dominates the low-energy physics. The degeneracy of the V(T x) = I [ po + - 2 @n(T,%),
lowest Landau level is utilized to map the problem to that of

coupled wires, where the number of wires is controlled by the i (9n(T,0)+¢n(T,%)) 1

Goameraey. Yrn(T,x) = po+ —dpa(r.). (2)
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Here, pp is the mean density, d,¢, is the local density
modulation of fermions on each wire, and ¥, is the phase
of the fermion field. The action for free fermions is given by

Z/ [%(ax%)(aﬁn)#’l<ax¢n)2+v—F(3xﬁ“)2]’
LT T T

3

where [ = [dx and vp = kp/m with kp = py being the
Fermi wave vector, and m being the mass of the noninteracting
fermions.

We introduce an instantaneous interaction among the
fermions,

Z/ V(x —x'n—m)pa(7,5)pm(7.X"), (4)
(T,x,x")

n,m

where p,(7,x) = po + %8x(pn(t,x) is the density on the nth
wire. We assume the wires are uniformly spaced with lattice
spacing a, and define the Fourier components through

*® dkodk
d—1 0GRx
¢n(T,x) = [BZ /;oo n)?

'K
X/ (zn)d_]el‘rko+lxkx+lanK(p(k)’ (5)
BZ

where BZ indicates the first Brillouin zone, [g% is a measure

. . . . . d—1
of linear dimension of BZ such that its volume is (é—’;) ,

and K represents points inside BZ. Thus the bosonized action
for the interacting theory is given by

[d*l [BZ d—1
S = £<_) / dk[2ikok,p(—k)D (k)

2r \ a

+ Vo (ki o(—k)p(k) + vek 0 (—=k)d (k)] (6)
where dk = Hdhd K -} = (k, K), and V,(K) = v +
7 (Igz Ja)? _IV(%) with V(I?) being the Fourier conjugate
of V(x —x’,n — m). Ind = 2, the lattice geometry dependent
ratio [gz /a equals 1, while in d = 3 it equals 1 and (v/3/2)'/2
for the square and triangular lattices, respectively. From the
coordinate space representation of Eq. (6), we deduce that
the action is invariant under wire dependent shifts ¢n(7,x)
on(T,x) + %(10) and V,(7,x) > Ua(t,x) + 19,(10), where (p,(,O) and
9" are constants. The former invariance is the sliding
symmetry advertised in Sec. I, and it corresponds to translation
invariance along each wire. It allows the fermions on distinct
wires to “slide” with respect to each other. The latter invariance
corresponds to particle number conservation on each wire
which prevents single-particle interwire hoppings. This results
in two flat patches of Fermi surface that are nested by the
wave vector 2kpx. Generally, such extensive nesting makes
the metallic state exceedingly susceptible to weak coupling
instabilities. However, with a suitable choice of short-range
interwire interactions, it is possible to stabilize this metallic
state in d > 1 [9-12]. Although Egs. (3) and (6) are both
Gaussian actions, they describe a noninteracting and an
interacting fixed point, respectively. We will elucidate this
point further through the computation of scaling exponents in
subsequent sections.
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III. COULOMBIC SLIDING LUTTINGER LIQUID

In this section, we characterize the fixed point described
by the action in Eq. (6). We consider both the inter-
wire and intrawire interactions that arise from unscreened
Coulomb interaction among fermions, V(x — x’,n —m) =

o with e being the electric charge of the
4ns\/(x—x/)2+u2|n—m|2

fermions and ¢ being the permittivity, such that

7 2¢ ian-K
Vi = — ;e Ko(alnlk,), ©)

where o(x) is the modified Bessel function of the second
kind, and KCo(x) ~ —1Inx (Ko(x) ~e™) for x < 1 (x > 1)
[22]. In the limit alk| < 1, the summand varies slowly as a
function of n. Therefore, in this limit, we replace the sum by
an integral to obtain

- Ale? (Igz /a)*~!
Vi (k) ~ v + —4 a1 @2’
drea (k2 + K2

®)

where A/, > 0, and (A5,A%) = (2,4).

In order to obtain the analog of Luttinger parameters, we
project v(p(/?) in the forward scattering channel along the wires
by setting k, = 0. Thus we consider

Ad 82

V,(K) = —_—
(p( ) vF+47T8(U.|K|)(d_U

®

where A; = A (Igz / a)?~!, as the effective Coulomb inter-
action for scatterings in the forward scattering channel. By
utilizing the two component basis, (¢, )T, the propagators for
(k) and ¢(k) are easily deduced from Eq. (6),

7 (a/lgz )V, (k) 7(a/lgz ) lop

Gy(k) = . Gyl = ———2
o) k2 + ve V, (K)k2 o) k2 + ve V, (K)k2
(10)
Furthermore, they are correlated as
7(a/lgz ) 'k
(p(=k)o (k) = 2o (11

iky (k3 + vV, (K)k2)

The equal-time correlation between the simplest vertex oper-
ators,

) _ 5
i0a(t.x) —idm(zx4Ax)y _ _ Onm
‘ ) '= [ Ax |21 ()’ (12)

. . )
ign(T,%) p=igm(T,x+AX)y n,m
<e e ) - |A0Ax|2Ww(hd)’ (13)

where A, IS k;' is the short-distance cutoff along the wires,
and
A d 22

4rdevp

ba

(14)

is the effective fine structure constant. We derive the exponents
ny(ha) and ny(hy) for various wire-stacking geometries in
Appendix A. To illustrate the general features of these
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FIG. 1. The dependence of 5y on b3 for the square lattice
geometry in d = 3.

exponents here we quote the results for the square lattice,

1! ba 3
ns(ha) = Z/o dd1w<1 + —) , (15)

|w|d—l

L ha )
ngo(bd):Z/O dd—lw(u—) . a6

|w|d71

where the integrations are over the unit (d — 1)-dimensional
cube, and w is a vector inside the cube. Since the integrand in
Eq. (15) [Eq. (16)] is larger (smaller) than 1, ny(hs) > ns(0)
[7,(ha) < 1,(0)] for any h,; > 0. Therefore intrawire phase
(density) fluctuations are suppressed (enhanced) compared to
that at the noninteracting fixed point as the effective strength
of the Coulomb interaction increases.
The fermion propagator on the nth wire is given by

(Yn(0.)1(0,0)) ~ ——

Thox P10 (17)

where 1y (hs) = 1s(ha) + n,(ha), and we have ignored an
overall phase factor arising from the correlation between ¢
and ¥. In d = 2, we obtain ny(h,) = %«/1 + b, while it is
numerically computed in d = 3 and its behavior as a function
of b3 is shown in Fig. 1. In both cases, ny > % for hy > 0. The
faster decay of the fermion-fermion correlation compared to
the noninteracting limit (h,; = 0), implies that Eq. (6) describes
a Luttinger-liquid-like metallic state ind > 1. Indeed, this is an
example of a sliding Luttinger liquid state. Due to the central
role played by interfermion Coulomb repulsion, we refer to it
as Coulombic sliding Luttinger liquid (CSLL). Unlike SLLs
arising in systems with short-ranged interactions, the CSLL is
controlled by a single parameter, b,.

Due to the absence of interwire hoppings, the single-
particle correlation functions are diagonal in the wire index.
If this were true for all correlation functions, then the CSLL
would be equivalent to a collection of noninteracting LLs,
albeit with renormalized exponents. The distinction is easily
demonstrated with the aid of the density-density correlation
between two distinct wires,

A 2
(0a(0,0)pm(0,0)) = pg — (ﬁ) f(han—m),  (18)
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FIG. 2. Deviation of the interwire density-density correlation at
the CSLL fixed point from that at the noninteracting fixed point, as
a function of the separation between the wires. Here we have chosen
d =2 and h; = 0.1. The empty circles are numerically computed
values of f(0.1,|n — m|), and the dashed line is the asymptotic form,

fba,|m]) ~ |m| =32,

where n # m and the dimensionless function

d 'K cos(aK - (n — m))

N TS

19)

Flhan —m) = — 14! /
B

We note that f(h,;,m) depends on m only through |m|. Due
to the cosine factor, the integration over |K| obtains domi-
nant contribution from the region where a/K| < |n —m|~".
However, the denominator of the integrand suppresses it at
small |K|. Thus f(h,,|m|) decreases as |m| increases, and
f(Ba,im[) ~ b, "*Im|73@=1/2 for |m| > 1. This nontrivial
interwire correlation between the densities is demonstrated in
d = 2 with the aid of Fig. 2. Therefore the CSLL is distinct
from a simple collection of LLs in d dimensions. While the
low-energy mode disperses as w = ,/vr V,(K)|k,| along the
wires, the CSLL is a charge insulator in the transverse direction
due to a lack of interwire single-particle hopping.

The physics of spinful electrons confined to one dimension,
and interacting through a three-dimensional Coulomb poten-
tial was considered by Schulz in Ref. [23]. The unscreened tail
of the Coulomb interaction was shown to lead to anomalous
logarithmic dependencies of the correlation functions in
Egs. (12) and (13). We recover these anomalous logarithms
by setting d = 1 + €, which leads to

Vhige + 1+ hl+eCSCh71(\/ hite)

N9 (Bi4e) = e ) (20)
_ ~1
no(Dise) = Vhige +1 f]14-:CSCh (v hH—e)- @

As € — 0 these exponents diverge as ¢!, indicating the

presence of additional singularities in d = 1. In contrast to the
qualitative modification of simple LL behavior by long-range
Coulomb interaction in d = 1, the properties of the CSLL
obtained here are qualitatively similar to those obtained in
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SLLs with short-range interactions. This difference between
d > 1 and d =1 is attributed to interwire screening, which
removes the singularities arising from the long-range tail of the
unscreened Coulomb interaction through the enlarged phase
space in the transverse direction [24]. These conclusions are
further supported by diagrammatic computations within the
parquet approximation [25]. In the earlier works on CSLL in
Refs. [24-26], the authors focused on the renormalization of
the intrawire interactions due to interwire Coulomb interac-
tion, and showed that density wave (pairing) susceptibilities
are enhanced (suppressed). Here we have fully characterized
both intra- and interwire correlations. In the following section,
we investigate the effects of interwire backscatterings at the
CSLL fixed point.

IV. INSTABILITIES OF THE COULOMBIC SLIDING
LUTTINGER LIQUID

Weak perturbations that do not break either the sliding
symmetry or particle number conservation on each wire
will not destabilize the CSLL state. However, even at low

J

o (z.x,m) =

O (r,x,n) =

Y VR (T OV TV L (T.2) + Hee] = pf 08 [2(gn(T,x) —
LY TV k(T )V R (T X)W Linm(T,2) + Hee.] = pf cos [2(Pn(T.x) —
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energies, there exists processes, viz. interwire backscatterings
and single-particle hoppings, that break either or both the
above symmetries. Therefore it is necessary to consider the
effect of these symmetry breaking perturbations on the CSLL
fixed point in order to establish the true ground state of
the system. The purpose of this section is to determine the
parameter regime, if any, where the CSLL phase is stable,
and identify the potential symmetry broken states where it is
unstable.

Although the Coulomb interaction primarily contributes
to the forward scattering channel due to the dominance
of small-momentum exchange processes, it also mediates
weak but nonvanishing 2k backscatterings. In general, these
backscatterings can destabilize the CSLL phase by utilizing
the extensive nesting between the two chiral segments of the
Fermi surface in d > 1. The nesting can alter particle-particle
and particle-hole pair hopping amplitudes between different
wires. Further, interwire hoppings are always possible due
to nonvanishing single-particle tunneling amplitude between
wires. In order to investigate the stability of the CSLL against
these destabilizing tendencies, we consider the effect of the
following operators:

@ntm(T,X))], (22)
Untm(7,X))], (23)

O™ (z,x.m) = LY} (T )Y Limim(T.X) + Yo (T VR m(T. %) + Heel]

= po €os [n(T,x) —

An instability driven by O(DW (Oélg)) leads to a CDW
(superconducting) state which breaks the continuous sliding
symmetry (particle number conservation on each wire) to
a discrete symmetry. The strengthening of 0;'3“) enhances
the energy scale for a crossover from the CSLL state to a
d-dimensional Fermi liquid metal. Below the crossover scale
both the aforementioned symmetries are broken. We note that
the spinlessness of the fermions does not allow intrawire
backscatterings, as a result of which m # 0. Thus, for a
fixed wire-stacking, geometry we obtain a set of operators
parameterized by the label m, which compete with each other.

The leading instability is identified by comparing the
scaling dimensions of susceptibilities of various operators. To
compute the scaling dimension of the susceptibility of operator
0§(m) , we perturb the action, Eq. (6), with the vertex

s = g >Z / dtdx O™ (z,x,m), (25)

and with the help of the equal time correlation on the nth
wire, (Og(m)(r,x,n)ngm)(r,x + Ax,m)), we obtain the scaling
exponent of 05("'). The scale invariance of S ™ fixes the scaling
dimension of the coupling ggn), [g X ] [0;")]. Here the
scaling dimension [)] of an operator ) is deﬁned through the
relationship V(1) = V(ro)e!Y¢, where £ = In (A9/1) is the RG
time/distance, and A < A is the running momentum scale. The
asymptotic behavior of the equal-time correlation function of

Unm(T,X)] cos [¢n(T,X)

— @ntm(T,X)]. 24

(

0;“) on the nth wire at the CSLL fixed point is computed in
Appendix B, and it takes the form

208
(m) (m) _ 4Py
(0%"(0,Ax,m)0%"(0,0,n)) = TN (26)
On coarse-graining, gg;“) evolves as

Y (€)= (2 — nx(hg.m)Z(0). @7

where gy m)(é) = gX )(A) (m)k’(z’”)‘(hd'm» is the corre-
sponding dimensionless couplmg. This implies that the op-
erator O;m) is a relevant (irrelevant) perturbation at the CSLL
fixed point if nx(hy,m) < 2 [nx(hz,m) > 2].

We note that, within a weak-coupling framework, generally,
symmetry breaking in two and higher-dimensional metals
is driven by marginal operators. Consequently, the sign and
magnitude of quantum corrections determine the dominant
instability. In the present case, however, we are able to fully
account for interactions along the wires, which leads to the
interwire operators picking up nontrivial scaling dimensions at
tree-level as demonstrated in Eq. (27). Thus, approaching from
weak-coupling side, the dominant instability is determined by
the coupling which reaches a order of 1 value quickest in terms
of the RG time, £. This also leads to a non-BCS form of various
energy scales associated with symmetry breaking transitions
in the CSLL metal.
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A. Charge density wave instabilities

As noted in Sec. 111, the repulsive nature of the Coulomb
interaction suppresses (enhances) fluctuations in the particle-
particle (particle-hole) channel. This renders the Josephson
(SC) couplings irrelevant at the CSLL fixed point, while
the CDW couplings become relevant. In this subsection we
consider the effect of the CDW couplings.

As a representative example, let us consider the wires
stacked into a (d — 1)-dimensional square lattice. The scaling
dimension of O, is

! 1 — cos(rm - w)
ncpw (ha.m) = 224 / i1y LSS W) g
1 1+ |w?dd-1

With the help of Eq. (19), we obtain ncpw (hy,m) =
2 [ a4 w( + halw|' )12 £ 2 £(hy,m). Since the first
term is independent of m, ncpw follows the trend of f(f,,m)
as |m| is tuned. Thus ncpw decreases as |m| increases.
When b, > 0, in the region where |w|?~! « b, the integrand
is suppressed by a factor of /|w|@—1 compared to the
noninteracting fixed point. Thus, at the CSLL fixed point
nepw < 2 for any by,|m| > 0, and the fixed point is always
unstable to the formation of a CDW in any d > 2. We
note that, while in d =2, ncpw is completely determined
by hs and m, in d > 2, ncpw also depends on the wire-
stacking geometry through the cosine term in the numerator
of Eq. (28). In Appendix B, we demonstrate the stacking
geometry dependence by comparing the results for square and
triangular lattices.

In order to identify the leading CDW instability as a
function of effective fine structure constant, h,, and lattice
geometry, we assume that the coupling g;{m) results from
2kr backscatterings mediated by Coulomb repulsion, which
implies

o o &2 oi2krx
8cow (ha, Y5 A0) = dmev

x2 + a2|m|2

2 d—1
~ e Ym, 29)

Ay
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where T = 2krpa. We have also assumed that the density of
fermions on a given wire is larger than the density of wires,
which implies Y > 1. Equations (27) and (28) imply that at
fixed h, the scaling dimension of E(C"];)W increases with |mj|,
which suggests that the CDW operator with the largest allowed
|m| drives the dominant instability. However, the CDW gap,
whose magnitude determines the depth of the free energy
minimum, depends on both the scaling dimension and the
strength of interwire backscattering. In particular, the gap is
proportional to g(c‘;;’w (ha,T; 1), which appears to favor the
CDW with |m| = 1. These opposing tendencies generically
lead to a CDW state with a wave vector whose magnitude
lies in between the largest and smallest allowed transverse
momenta. The leading CDW instability at fixed h,, Y, and
wire-stacking geometry is the one that minimizes the ratio

1/(2—ncpw(ha,m))
) , (30)

Ao _ 1
A (haT) \ B (5T h0)

where )“(CmD)W is such that §gg)w (ha, Y5 A'((?];)W) ~ 1. The alge-
braic dependence of Ag"D)W on the interwire coupling, Eg;)w ,
is a nonperturbative effect that results from the inclusion of all
intrawire interactions. This relationship, however, is subject to
the bare couplings g‘c‘;;)W (h4,7; Ao ) being small. The resultant
T = 0 phase diagrams in d = 2 and 3 are shown in Fig. 3. We
note that for lattices with C, point group symmetry, CDW
states with wave vectors related by the C, symmetry are
degenerate.

From the phase diagrams, we deduce that CDW states
with larger wave vectors are favored at stronger interaction
strengths and larger interwire spacings. MacDonald and Fisher
identified the CDW state formed between adjacent wires
in d =2 as a Wigner crystal [27]. However, as shown in
Fig. 3, the possible symmetry broken states extend beyond
Wigner crystals, as CDW states with smaller wave vectors
and multiple sites per unit cell (in the transverse lattice)
are stabilized through the competition between bare coupling
strengths and scaling dimensions of interwire CDW operators.
While the leading instability fixes the ordering wave vector

20 " (10
[}

S "1 ~ (1,1) « = (11
— ) o (2,0 o - 20

— = |
X 3 1) .

= X e X '
= L o ' " " (22
= B0 3.0
G " (31

1 3 1 2 3

=

T
(a) (b)

FIG. 3. Zero-temperature phase diagrams in (a) d = 2, and d = 3 with wires stacked in (b) square lattice and (c) triangular lattice geometry.
Here, b, is the effective fine structure constant, and Y" = 2kra. The colors represent distinct CDW states which become dominant as (h,,Y) are
tuned. The legends on the right indicate the direction and periodicity of the ordering vector in the dominant CDW state. We note that directions
related by the C,, point group symmetry of the lattice in d = 3 are degenerate.

075131-5



SHOUVIK SUR AND KUN YANG

2
T
(a)

PHYSICAL REVIEW B 96, 075131 (2017)

11

x 1071
©

1,1

Eo
T

In
~

2
T
(b)

FIG. 4. Finite temperature phase diagram in d = 3 showing the transition temperature 7, (top boundary of the colored regions) as a function
of T = 2kra for the (a) square and (b) triangular lattice geometries, respectively. The colors represent distinct CDW states which become
dominant as Y is tuned. The legends on the right of each diagram indicate the direction and periodicity of the ordering vector in the dominant
CDW state. Here Ey = vrhg, and 3 = 22 0 with ¢/vp = 100 and relative permittivity &, = 10. We note that directions related by the C,

137 n2¢,
point group symmetry of the lattice are degenerate.

and, consequently, the number of sites per unit cell, it cannot
determine the intra-unit-cell ordering pattern, which is fixed
by sub-leading operators. We note that the staggered pattern
of CDW modulation is most readily realized in CDW states
with two sites per unit cell.

Although the CSLL state is unstable at 7 = 0, it exists
above a critical temperature,

1
T™(h4,7) ~ viro(Zomw (02, Y5 20)) Zeow®am - (31)

The corresponding finite-T phase diagramsind = 3 are shown
in Figs. 4(a) and 4(b) for the square and triangular lattice
geometries, respectively. We note that at the noninteracting
fixed point described by Eq. (3) g(cngw is marginal, which
implies
T™(hg,T) ~ vphoexp § —————— 1, 32
@ b : a%"Sw(hd,T;Ao)} G2
has the BCS form with « being a nonuniversal numerical
factor. Here, the T™ is solely determined by the strength
of interwire Coulomb repulsion. Since the interaction between
nearest-neighbor wires is strongest, Eq. (32) implies that CDW
states that modulate over a lattice spacing is the dominant
instability for any h; and Y. This is in sharp contrast to the
result obtained in Eq. (31) by perturbing at the CSLL fixed
point with the same operator, where more general CDW states
are possible.

B. Dimensional crossover

While discussing the CDW instabilities, we implicitly
assumed that the energy scale below which interwire sin-
gle particle hoppings become important is small compared
to )‘(cn]l))w~ The effects of interwire hoppings in quasi-one-
dimensional metals have undergone extensive investigations
[22,28-31]. Here we will estimate the crossover scale that
is accessible within our approach, below which the interwire
hoppings cannot be ignored, and the coupled-LL framework
becomes inconvenient for describing the physics [32]. We will
show, in particular, that at small h, the interwire hopping
amplitudes ggg') obtain a larger scaling dimension than the
CDW couplings, which implies that the dimensional crossover
potentially preempts the CDW instabilities. However, if the

bare g™ < gby . the dimensional crossover scale is pushed

below the CDW gap.

The correlation functions of the interwire hopping operators
decay as

(080, Ax,m)OE(0,0.m)) ~ po|hoAx|>PeO0m™ (33)
where 7y (hg,m) = (ncpw (ha,m) + nsc (hg,m))/4. By
defining nepw (ha.m) =2 —4ei(hy,m) and nsc (ha,m) =
2 +4ey(hg,m), we express 7 (hg,m) =1 — €1(hy,m) +
€2(ha,m), where €;(h,,m) > 0. Since limp, ¢ €;(h4,m) = 0T,
weak Coulomb repulsion is not sufficient for overcoming
the large bare scaling dimension of gggﬂ. Consequently,
the system may undergo a dimensional crossover below a
momentum scale

Cross

1
2, (m) (T,hy) = Ao (§$‘>(T,hd; )»0)) Fatgm-ahom - (34)

Such a crossover from a lower to a higher-dimensional metallic
state may be modified by quantum fluctuations that were not
considered in this work. Moreover, the higher-dimensional
metal itself may become unstable to the formation of a
density wave or superconducting state [33], in which case the
crossover would get masked by the symmetry broken state.
Within the purview of the present analysis, the CDW

transitions discussed in Sec. IV A are presentif (™

< )\gnD)W .
In contrast, for A™. = > A(C'II'))W , the system crosses over from
the CSLL to a d-dimensional Fermi liquid metal which
preempts the CDW instabilities. At fixed m, in the small h,
regime, the former limit is satisfied for §$‘) < %ngw < 1. We
note that such a limit is physical, since the interwire hopping
and backscattering originate from distinct processes, viz.
interwire single-particle tunneling and Coulomb interaction,
respectively, as a result of which they are independently
tunable. In particular, the rate of exponential decay of
the interwire hopping amplitude with increasing interwire
distance is controlled by a short-distance scale on the order
of interwire lattice spacing, while the decay rate of the
strength of backscatterings is controlled by the average
interparticle distance on each wire as shown in Eq. (29).
Since in a dilute system the latter is much smaller than
the former, interwire backscatterings dominate over interwire
hoppings.
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V. CONCLUSION

In this paper, we analyzed the effect of backscatterings at
the CSLL fixed point obtained by coupling an infinite number
of quantum wires in d dimensions with Coulomb interaction
in the forward scattering channel. We showed that in the
absence of a dimensional crossover, an infinitesimal Coulomb
interaction destabilizes the CSLL towards CDW ordering. This
implies that the metallic state discussed in reference [17] is
likely unstable. Several CDW states, including Wigner crys-
tals, are shown to compete at linear order in the backscattering
couplings. While CDW states with larger wave vectors are
favored at large values of the effective fine structure constant
hs and low density, CDW states with smaller wave vectors
become dominant in the opposite limit. These properties are

J

PHYSICAL REVIEW B 96, 075131 (2017)

demonstrated by constructing both zero and finite temperature
phase diagrams.

Upon the inclusion of quantum fluctuations in terms of
interwire backscatterings the relevant (in RG sense) backscat-
tering couplings at quadratic order are expected to renormalize
the transition scales [34]. Furthermore, it is in principle
possible to obtain critical fixed points where a subset of the
g(cnl'))W  bh,. Both outcomes will modify the phase diagrams
obtained here. Since there is a large number of relevant
couplings with finely spaced scaling dimensions at small b,
a general analysis of the higher order effects is complicated.
However, by focusing on specific regions of the phase diagram,
e.g., fixing h,, the physics may become more amenable to
loop-wise renormalization group analyses. We leave such
considerations to future work.
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APPENDIX A: DERIVATION OF ANOMALOUS DIMENSION OF HYDRODYNAMIC FIELDS

In this appendix, we outline the derivation of the scaling dimensions of the hydrodynamic fields ¥, and ¢,. We consider two
different geometries of the first BZ, viz. square and triangular lattices.

1. Square lattice

For a (d — 1)-dimensional square lattice, the BZ is a square of sides 27” The correlation functions in Eqs. (12) and (13) are

given by

ion(T,x) —ign(T,x+AX)\ __ d—1
e e = €X —a
< )= { /Bz @r)

di'K /00 dkodk,
—oo (27)2

eiz?n(r,x)efiﬂn(r,x+Ax) — ex _ad71/
( > P pz Qm)d~!

di'K /00 dkodk,
—o ()

ﬂUFE)L (kx) -2
1 — k)] —5——"——1 = A e, Al
[1 — cos(x )]k3+vFV¢,(K)k§} [Aox]| (A1)
V,(K)E,, (ky
[1 —COS(X]@J]M} — |)»0x|7277”, (A2)
k3 + vV, (K)k2

where E,,(k,) is a UV regulator for k,. It is convenient to choose a soft cutoff, e.g., &;,,(kx) = exp —|k,|/Ao, since a hard cutoff,

8, (ky) = ©(ho — |ky|) with ®(x) being the Heaviside theta function, leads to unphysical oscillations. We note that our choice

of cutoff breaks the 1 + 1-dimensional Lorentz invariance of the Gaussian fixed point. Therefore technically this choice is not

appropriate, since we do not expect the quantum fluctuations to break the Lorentz invariance. However, in the results presented

here the absence of Lorentz invariance does not affect the scaling exponents; it only modifies the prefactors of the scaling terms.
The scaling exponents above are given by

1
d—1 prja gd—1 d—1 -3
a di-'g 7% ha

- 1 , A3
=" /n/u <2n>d—‘[ * ad—1|K|d-‘} (A9

d-1 pr/a gd-1g d—1 3
My = u / d—1 [1 + dnl h; 1i| (Ad)

4 —1/a (277) B as |K| B

For h; > 0, n, < 0, and ny > 0, which implies that the phase () correlation weakens at large separation, while the density (¢)
correlation is enhanced.

2. Triangular lattice
We repeat the same calculation as for the square lattice for a triangular lattice in d = 3. For the lattice in coordinate space, we
choose the primitive vectors as, e; = af and e, = a($/2 + +/3%/2), where a is the lattice spacing. The reciprocal vectors, (e},e3),
are deduced from the condition {e] - e; = 0,e] - e; = 27} and {e] - e, = 27,e} - e; = 0}. This leads to e} = 2;”()7 - %2) and

e = 2?” %2 The reciprocal vectors define a hexagonal BZ, where the area enclosed by BZ is %(%”)2. In order for this area to

equal 472 / [1232 , we need to choose [z =,/ ‘/7§ a. The sides of the hexagonal BZis s = 4 and integration of a function, f(k,,k.),

3a’
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02 ‘ 06 ‘ 0 02 ‘ 06 ‘ 10
b3 b3
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FIG. 5. Due to long-range Coulomb interaction the scaling dimension of e (¢'?) decreases (increases).

over BZ is given by

-3 dk, V3(ky+s) dk, Ls dk V3(s—ky) dk,
an=s,| [ 5[ / / 2 £k, ). (A5)
e k) 2T 3 sy 2 [T
By setting f(ky,k;) = 1, itis easily checked that .A[1] = 1, which verifies the required normalization for the integration over BZ.

The equal-time correlations between the simplest vertex operators are given by

digdk
(/D) gmita(rxtAY)y e‘““[f et

wVp(K)E; , (kx)
[1—cos(rk, )] oy B ]

. W — |)\,0.x|_27m’ (A6)
" Tvp Eyp kx)
(eiWn(T,X)eii(Pn(T,x+Ax)> = E_A[‘[%[]_COS(XICFY)]W] = |)\'0x|72nw. (A7)
The exponents are
-1/2
1 7T2h3
=AY ST ’ N
=3 ( 02 (k} + &) -
1/2
1 7T2[73
R | A9
=3 ( T eE R N

Unlike the square BZ, it is hard to find analytical expressions for these exponents. We compute them numerically and plot the
results in Fig. 5. We check that in the noninteracting limit (i.e., h3 — 0), ny = n, = 1/4. This reproduces the correct scaling for
the left and right moving fermions.

APPENDIX B: SINE-GORDON TERMS

In this Appendix, we deduce the scaling dimension of various “sine-Gordon” terms defined in Egs. (22), (23), and (24). We
use the methods in Appendix A to find

2
(m) (m) _
(O (e e MOy (rx + Axom) = e, (BI)

2

(m) (m)
(052 (1.2, 042 (T,x + Ax,m)) = AR

(B2)

The exponents are functions of f;, m and the geometry of the underlying lattice. For the two dimensional square lattice and the
triangular lattice they are, respectively,

1! . E
[square] ncpw (hg,m) = —/ dwidw;[1 — cos(rm - W)](l + 2hd 2) ) (B3)
2 _1 wl + w2
. lfld vl — o )]<1+h_d>5 (B4)
Nsc(Hq,M) = 2/, widw; cos(rm - w wf+w§
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2
[triangle] nepw (ha.m) = 2A |:1 — cos (a(rm + > )ky + aﬁmzkz)] (l + 2(”#
a

nsc(hg,m) =24 [1 — cos (a(ml +

PHYSICAL REVIEW B 96, 075131 (2017)

—-1/2
, (B5)
k2 + kg))

1/2
ma NE] m2h3

— |k —mok 14+ ———
2) y+a > my z>]< +a2(k§+k§)

my
2

(B6)

Here,m = thll m;e;, where {e;} are the direct lattice primitive vectors. Since the interwire interaction is rotationally symmetric,
in d = 3, the behavior of the scaling dimensions, ncpw and nsc, measured along the line m, = 0 is identical to that along any
equivalent line obtained by rotating e; by 27 /n for a lattice with C,, symmetry. New classes of equivalent lines (directions) are
constructed by similar transformations of lines along (1,1),(1,2),(1,3), . .. directions.
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