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We theoretically study the impact of impurities on the photogalvanic effect (PGE) in Weyl semimetals with
weakly tilted Weyl cones. Our calculations are based on a two-nodes model with an inversion symmetry breaking
offset and we employ a kinetic equation approach in which both optical transitions as well as particle-hole
excitations near the Fermi energy can be taken into account. We focus on the parameter regime with a single
photoactive node and control the calculation in small impurity concentration. Internode scattering is treated
generically and therefore our results allow us to continuously interpolate between the cases of short-range and
long-range impurities. We find that the time evolution of the circular PGE may be nonmonotonic for intermediate
internode scattering. Furthermore, we show that the tilt vector introduces three additional linearly independent
components to the steady-state photocurrent. Amongst them, the photocurrent in direction of the tilt takes a
particular role inasmuch it requires elastic internode scattering or inelastic intranode scattering to be relaxed.
It may therefore be dominant. The tilt also generates skew scattering which leads to a current component
perpendicular to both the incident light and the tilt. We extensively discuss our findings and comment on the
possible experimental implications.
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I. INTRODUCTION

In the present days, Weyl semimetals [1] enjoy significant
scientific interest which is generated by a multitude of reasons.
From the theoretical viewpoint, this class of materials is special
since it represents a solid state realization of Weyl’s theory
of chiral relativistic fermions [2]—an elegant theory which
regrettably seems to have lost its connection to fundamental
particle physics after the discovery of neutrino oscillations
[3]. In the context of transport theories, the unique features
related to the chiral anomaly [4] are at the basis [5] of the
experimentally observed giant magnetoresistance [6]. From
the viewpoint of applications, Weyl semimetals are attractive
as their topologically protected band touching associated with
a Berry curvature singularity may allow to explore and exploit
novel regimes and phenomena of semiconductor physics. As
we understand now, the appearance of Weyl nodes in systems
lacking inversion or time reversal symmetry is far from being
exceptional and the observation of Weyl physics has been
already reported in various materials [7]. One particularly
exciting phenomenon occurring in Weyl semimetals is the
photogalvanic effect (PGE) [8–13], i.e., the generation of
current due to the exposure to light. In contrast to most ordinary
semiconductors, Weyl semimetals are susceptible to lowest
frequencies and allow for novel technologies in the infrared.
This consequence of the protected gapless spectrum comes
along with the theoretical prediction of a quantized circular
PGE [14], which is awaiting its experimental verification.

The theoretical foundations of PGE go back to the seventies
(for review, see Refs. [15–17]), while modern derivations rely
on the nonlinear susceptibility framework [18], Floquet theory
[19], and the Keldysh quantum kinetic equation approach [20].
In this paper, we concentrate on the dc response. It is common
to distinguish two contributions: the injection current and the
shift current. The former of the two represents the current
generated by photoelectrons which are excited by optical

(vertical) transitions with an anisotropic transition rate. In
the steady state, this contribution diverges linearly when the
current relaxation time becomes infinite. Differently stated, in
the absence of a relaxation mechanism, the injection current
grows linearly in time. In contrast, the shift current [21,22]
is due to the real space displacement that electrons undergo
upon an optical transition. This contribution is always finite
and thus subleading for long relaxation times.

Therefore, in the present paper, we keep only the dc
injection current. We focus on the parameter regime with
a single photoactive node which materializes the predicted
topological quantization [14]. We investigate its relaxation
due to impurities taking into account both intra and inter valley
scattering in a model of two Weyl nodes. We scrutinize the time
evolution of the current in response to a sudden illumination as

FIG. 1. Cut through the spectrum of Hkin defined by Eq. (1a)
for the case t̂ ⊥ b. The green [red] dispersion relation represents
bands with negative [positive] Berry flux sgn( ̂p − ζ b · �ξ ) = −ξ =
−1 [sgn( ̂p − ζ b · �ξ ) = −ξ = 1]. When 0 < εF < γ and ω

2 ∈ (γ −
εF ,γ + εF ), optical transitions occur in the ζ = +1 cone, only (solid
vertical line), while transitions in the ζ = −1 cone are Pauli-blocked
(dashed vertical line). In this plot ω = 3γ .
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well as its steady-state characteristics. Furthermore, we study
the effect of a weak tilt in the Weyl spectrum. As we show, the
interplay of impurity scattering and tilt leads to skew scattering
and to the appearance of current components transversal to the
direction of illumination.

It is also worthwhile to emphasize, that the current
injection mechanism for the nonlinear PGE response at large
frequencies is strongly different from the nonlinear intraband
response at small frequencies considered in Refs. [23–26]. We
explicitly show that the latter exactly vanishes in our model for
the case of absent tilt and intervalley scattering and that it is
generically subdominant for frequencies exceeding the elastic
scattering rate.

This article is structured as follows. In Sec. II, we introduce
the model under consideration and the assumptions for the
calculation. In Sec. III, we present a sketch of the technical
derivation as well as the main results, which are subsequently
discussed in Sec. IV. We conclude with a summary and an
outlook about the experimental relevance of our findings,
Sec. V. Appendix contains details on the model (Appendix
A), the elastic scattering rates (Appendix B), the relaxation of
the photocarriers (Appendix C), the intraband response (Ap-
pendix D), and a microscopic tight-binding model (Appendix
E).

II. MODEL AND ASSUMPTION

The terms entering the free Hamiltonian H0( p,x) =
Hkin( p) + Hdis(x) are as follows. The kinetic term is a
generalized low-energy version of lattice models presented in
Refs. [14,27] and Appendix E:

Hkin( p)=
∑
ζ=±

ζ [v( p − ζ b) · σ + ut̂ · ( p − ζ b) + γ ]
1 + ζκ3

2
.

(1a)

Here, Pauli matrices σ = (σ1,σ2,σ3) act in spin space, while
Pauli matrices κ = (κ1,κ2,κ3) act in node space. The terms
proportional to velocities v,u with 0 � u � v represent
Weyl dispersion and the tilt in direction t̂ respectively,
the energy scale γ is the offset between the two nodes.
The spectrum εξζ ( p) = ζ (ξv| p − ζ b| + ut̂ · [ p − ζ b] + γ )
of the kinetic Hamiltonian is characterized by quantum
numbers ζ = ±1 (node), ξ = ±1 (band) and p (momentum)
and plotted in Fig. 1. This kinetic term is supplemented by a
disorder potential

Hdis(x) = V (x)[1κ + κ1], (1b)

where V (x) = ∑
Rj

V(x − Rj ) is a sum over impurity poten-
tialsV(x) which are centered at uniformly distributed positions
Rj in R3. Finally, there is a homogeneous electric field
eE(t) = e

∑
± E±e±iωt = −∇	(x,t) enclosed in our model

Hamiltonian by means of H = H0( p,x) + 	(x,t) (e is the
elementary charge).

By construction, the model defined by Eq. (1) is not
invariant under time reversal, space inversion or rotation
symmetries, see Appendix A for more details. We note that
the tilt direction could also be assumed to be equal in both
nodes [28]. In contrast, we chose a model with opposite tilt in
opposite cones, so that the tilt preserves inversion symmetry.

Our calculation of the photocurrent in Weyl semimetals
relies on the following simplifying assumptions. First, we
neglected any spatial dependence of the electric field which
is justified for v/c → 0, where c is the speed of light. In
doing so, we omit the photon drag effect. The assumption
of a homogeneous electric field treatment within a 3D bulk
Hamiltonian also relies on the second assumption of a long
Thomas-Fermi screening length. In this limit, the contribution
of surface states can be expected to be subdominant. Third, in
neglecting all other sources of scattering we assume impurities
to be the dominant source of photocurrent relaxation. While
this statement is generally expected to be true at suffi-
ciently low temperatures where electron-phonon and electron-
electron scattering rates are small, we will explicitly show
the limitations of this picture. Fourth, the current relaxation
is calculated using a semiclassical kinetic equation approach
which is justified if the mean free path of photoelectrons and
photoholes exceeds their wavelength. This implies that the
frequency of light is much larger than the elastic scattering
rate. Formally, we implement this assumption by keeping only
the leading O(n−1

imp) terms in small impurity density. For the
evaluation of quantum transition probabilities we truncate the
T-matrix at next to leading (i.e., second) order in powers of
weak impurity potentials. We also assume that the impurity
potential is short ranged as compared to the wavelength
of photocarriers (but it may be long-ranged as compared
to 1/|b|). Fifth, our calculation at the lowest temperatures
is exponentially accurate if the energy difference between
Fermi energy and the energy of photocarriers exceeds the
temperature. Finally, all presented formulas are valid to linear
order in u/v � 1, unless stated otherwise.

III. SKETCH OF THE CALCULATION AND RESULTS

In this section, we present a sketch of the derivation of
the photocurrent for a tilted, disordered Weyl semimetal. For
the sake of a clearer presentation, we here restrict ourselves
to the case of photocarrier generation at the ζ = +1 cone only
(see Fig. 1) and of absent intervalley scattering and relegate
details and the more general case of finite intervalley scattering
to Appendices B and C.

Our calculation is based on the Boltzmann kinetic equation
[29,30] describing the time evolution of the distribution
function f ( p,t):

∂tf ( p,t) + ṗ∇ pf ( p,t) = Stinj[f ] + Stdis[f ]. (2)

Here, ṗ = eE(t) and the collision integral contains two
contributions. First, there is a term describing the excitation
rates of photocarriers:

Stinj[f ] = 2πξζδ( − ξζω + εξζ ( p) − ε−ξ,ζ ( p))

×
{

1

4p2
[eET

+(1 − p̂ ⊗ p̂)eE−]

+ i

2
ξζ (eE+ × eE−) · �ξ

}
. (3a)

Here, we assumed states with energy εξζ ( p) [ε−ξζ ( p)] to
be empty (filled). In the considered parameter range, ξ = 1
(ξ = −1) for photoelectrons (photoholes) and ζ = 1, see
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Fig. 1. Clearly, terms proportional to the Berry curvature �ξ =
−ξ p̂/2p2 change sign when the chirality of the photoactive
node is reversed. Note that Stinj contains two anisotropic terms
proportional to the direct product p̂ ⊗ p̂ and to �ξ as well as
an isotropic term proportional to 1.

The second part of the collision integral describes the
relaxation of photocarriers by impurities:

Stdis[f ] = −
∫

p
w p′ pf ( p,t) − w p p′f ( p′,t). (3b)

We introduced the shorthand notation
∫

p = ∫
d3p/(2π )3.

Since impurity scattering is fully elastic, it may only relax
anisotropic terms in the photoexcitation rates. The intervalley
scattering discussed below and in Appendix C may also
relax the valley imbalance of the isotropic contribution to the
photoexcitation rates.

In the limit u/v = 0, time-reversal and rotational symme-
tries dictate that the scattering probability w p′ p contains only
terms proportional to 1 and p · p′ and thus w p′ p = w p p′ . This
statement is fulfilled also when intervalley scattering is present,
see Appendix B. However, the symmetry of the scattering
probability is lost in the presence of a finite tilt u/v 	= 0.
Here we present the dominant contributions of symmetric and
antisymmetric scattering probability:

w
(s)
p′, p 
 2πδ(εξζ ( p) − εξζ ( p′))nimpV2

0
1 + p̂ · p̂′

2
, (4a)

w
(a)
p′, p 
 2πδ(εξζ ( p) − εξζ ( p′))

×
(
−πu

2v

)
νζ (εξ,ζ ( p))nimpV3

0 t̂ · (p̂ × p̂′). (4b)

Here, V p is the Fourier transform of the impurity potential
and the density of states (DOS) is

νζ (ε) = (ζ ε − γ )2

2π2v3
. (5)

The skew scattering probability obtained in Eq. (4b) relies on
the third moment of the distribution function of the disorder
potential. We note that, by means of both semiclassical [31]
and diffractive [32,33] mechanisms, skew scattering may also
occur for Gaussian disorder models. However, skew scattering
probabilities due to Gaussian disorder contain an additional
factor of nimp and are thus subleading in the perturbation
scheme employed here.

To obtain the photocurrent in the steady state, the solution
for the distribution function can be obtained by equating
the full collision integral to zero. We obtain the following
nonequilibrium corrections to the Fermi-Dirac distribution
function in band ξ :

fξ ( p) = δ(ω − 2vp)�−1
+

{
p̂iIi + 2

3
p̂i p̂j Iij

+ u

v
ξ

[
p̂i

(
t̂i

4I

5
− 4Iij t̂j

15

)
+ 2

3
p̂i p̂j p̂k t̂kIij

]

+ u

v
εijkp̂iIj t̂k

�sk,+
�+

}
, (6a)

where we introduced

I = 2πv2

ω2
ξe2E+ · E−, (6b)

Ii = 2πv2

ω2
ξ{−ie2(E+ × E−)i}, (6c)

Iij = 2πv2

ω2
ξ{−Re[e2E+,iE−,j ]}. (6d)

We also introduced the intravalley scattering rates for
momentum relaxation and skew scattering

�ζ (ε) = 2π

3
nimpV2

0 νζ (ε), (7a)

�sk,ζ (ε) = π2

3
nimpV3

0 ν2
ζ (ε), (7b)

which both implicitly depend on the energy of the photocarri-
ers by means of the density of states. In Eq. (6a), the scalar part
of the distribution function was omitted (it will be recovered
shortly). Furthermore, Eq. (6a) was derived using the premise
that only O(u/v) corrections proportional to odd powers of p̂

enter the final expression for the photocurrent.
We insert this expression into the definition of the current:

j = −e
∑
ξ=±1

∫
p
v

[
ξ p̂ + u

v
t̂

]
fξ ( p). (8)

Here the sum over ξ reflects the two types of photocarriers
that the injection term generates: electrons in band ξ = +1
at energy εe = γ + ω/2 and holes in band ξ = −1 at energy
εh = γ − ω/2. As a side remark, we note that anomalous
velocity terms δv ∼ �ξ × E are unimportant for the photo-
carriers, since their nonequilibrium distribution function (6a)
is quadratic in electric field.

The final steady-state current can be written as

j = − e3

12π

{
τCPGE[−i(E+ × E−)]

+u

v
[τskew[−i(E+ × E−) × t̂]

−τt̂ t̂(E+ · E−) + τ⊥Re[E+ ⊗ E−]t̂]

}
. (9a)

We present the microscopic values of the effective scat-
tering rates τCPGE,τskew,τt̂ ,τ⊥ in Eqs. (9b)–(9i), below. In
Appendix C, we generalize the calculation presented here
to a finite intervalley scattering described by the parameter
κ = |Vb/V0|2. The latter interpolates between long-range
impurities (κ = 0, no intervalley scattering) and short range
impurities (κ = 1, strong intervalley scattering). The relax-
ation times in the limit of weak intervalley scattering κ → 0
behave as

τCPGE 
 1

2

∑
ε=εe,εh

1/�+, (9b)

τskew 
 1

2

∑
ε=εe,εh

�sk,+/�2
+, (9c)
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τt̂ 
 −1

2

∑
ε=εe,εh

2

3�−κ
sgn(ε − γ ), (9d)

τ⊥ 
 −κ

2

∑
ε=εe,εh

(
2�−
5�2+

+ 2

5�−

)
sgn(ε − γ ). (9e)

In contrast, for κ → 1, we obtain

τCPGE 

∑

ε=εe,εh

1

3[�− + �+]
, (9f)

τskew 

∑

ε=εe,εh

(1 − κ)
2(�sk,+�− + �sk,−�+)

9(�+ + �−)2
, (9g)

τt̂ 
 −
∑

ε=εe,εh

9�− + 5�+
15�−(�+ + �−)

sgn(ε − γ ), (9h)

τ⊥ 
 −
∑

ε=εe,εh

2

15(�+ + �−)
sgn(ε − γ ). (9i)

General formulas which interpolate between these two
limits are presented in Eq. (C23) of Appendix C and are plotted
in Fig. 2. Note that all relaxation rates �ζ (ε) and �sk,ζ (ε)
introduced in these formulas are implicitly energy dependent.
However, in the photoactive cone, the particle-hole symmetry
about the Weyl node implies for both photoelectrons and pho-
toholes equal scattering rates �+(εe) = �+(εh), �sk,+(εe) =
�sk,+(εh). The rate τt̂ is not defined in a noninteracting
model without intervalley scattering as it is determined by the
relaxation time of the isotropic part in Eq. (3a). This can only
be achieved by inelastic scattering or by means of intervalley
scattering. We discuss this issue and other physical implication
of the result presented in Eqs. (9), (C23), and Fig. 2 in Sec. IV.

In Appendix C, we also present a derivation of the time
evolution after a sudden illumination in the limiting case u/v =
0. Technically, this amounts to adding the solution of the
homogenoeous Boltzmann equation (the Liouville equation),
Eq. (2), to the particular steady-state solution, Eq. (6a). In
terms of the final result (9a) this amounts to the following
replacement τCPGE → T (t) with

T (t) 

∑

ε=εe,εh

{
1

2�+
(1 − e−�+t ), κ → 0,

1
3(�++�−) [1 − e−3t(�++�−)/2], κ → 1,

(10)

where we assumed the light to be switched on at time t = 0. For
a more general formula of T (t), which interpolates between
the two limits κ = 0 and 1, we refer the reader to Eq. (C26) of
Appendix C as well as to Fig. 3. Again, the discussion of this
result is relegated to Sec. IV.

Finally, the Appendix D contains a calculation of the
intraband rectified response due to particle hole excitations
near the Fermi surface. There we show, that this contribution
vanishes in the absence of tilt and intervalley scattering and
that it is generically suppressed by the parameter �+/ω � 1.

We remind the reader, that Eq. (7) were evaluated at the
Born level. This procedure, as well as all of our results, is
valid in the semiclassical regime where the kinetic energy of
photocarriers exceeds their inelastic scattering rates. In the
opposite regime of strong scattering, a finite density of states
at the Weyl point is believed to occur [34,35].

IV. DISCUSSION

In this section we analyze and discuss the physical content
of the major results of this work, Eqs. (9) and (10) as well as
Figs. 2 and 3.

A. Limit u/v = 0

We begin the discussion considering the limit of absent
tilt u/v = 0. In this case, the dc photocurrent is propor-
tional to −i(E+ × E−) and is thus crucially dependent on
circularly polarized light. This is the injection mechanism:
vertical transitions inject photocarriers moving predominantly
in direction −i(E+ × E−), see Eq. (3a). This leads to the
linearly increasing time-dependent response, Fig. 3 at small
t � 1/�+. The slope is topologically quantized [14] in the
present case of a single photoactive Weyl node. Disorder
exponentially relaxes the linear increase and a steady state is
formed, see Fig. 3 at large t � 1/�+. It is worthwhile to notice
that 1/�+ is the “transport” mean free time, which is a factor
of 3 larger than the “quantum” mean free time responsible
for the level broadening. While these features are generic to
any disorder model, intervalley scattering has the following
three additional effects. First, it increases the scattering rate
by increasing the density of available final states. This implies
faster relaxation and a smaller steady-state value. Second,
since the relaxation rates at energies εe (photoelectrons) and
εh (photoholes) are different in the ζ = −1 node, intervalley
scattering introduces two different relaxation rates for the
circular PGE. Third, for intermediate κ and provided �− < �+
intervalley scattering can lead to a peculiar nonmonotonic
time dependence, see Eq. (C26) and the κ = 1/3 and κ = 2/3
curves in Fig. 3. For the parameters chosen in our plot the
nonmonotonicity stems from the photoholes living at energy
εh. Those scatter from the photoactive ζ = +1 node to the
ζ = −1 node where the current is opposite and the decay
much slower in view of a smaller DOS.

B. Finite u/v

We now turn to the steady-state solution at finite u/v. The
finite tilt allows for the presence of additional contributions to
the current, see Figs. 2 and 4.

FIG. 2. Plot of the effective scattering times entering the final
steady-state solution of the photocurrent, Eq. (9a). As in Fig. 1, we
assumed ω = 3γ for this plot and furthermore we assumed �sk,+ =
�+/3.
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Γ+T(t)

Γ+t

κ=0

κ=1/3
κ=2/3
κ=1

FIG. 3. Time evolution of the circular photogalvanic effect after
a sudden illumination at time t = 0 for κ = 0, 1/3, 2/3, 1 from top
to bottom. In this plot, ω = 3γ was chosen, i.e., the case represented
in Fig. 1.

First, skew scattering leads to a term −i(E+ × E−) × t̂ . Just
as the circular PGE, it is only present for circular polarization
of light. As we already mentioned, the momentum of excited
photoelectrons predominantly points in direction −i(E+ ×
E−). The time-reversal symmetry breaking tilt introduces a
finite anisotropy leading to a preferred direction of momentum
relaxation. The resultant imbalance between electrons moving
towards −i(E+ × E−) × t̂ as compared the opposing direction
generates the skew scattering term proportional to τskew.
It is in accordance with intuitive expectation that opposite
tilts in opposite nodes imply antagonistic skew scattering
contributions from opposite Weyl nodes. It is, however,
surprising to find, that theO(u/v) skew scattering contribution
exactly vanishes at strongest intervalley scattering κ = 1, see
the blue dot-dashed curve in Fig. 2.

Apart from skew scattering, the finite tilt in the spectrum
also introduces terms which do not rely on circular polarization
of light and which may be present also for linearly polarized
light. We first focus on the term proportional to t̂(E+ · E−).
This term stems from the (u/v)t̂ term in the definition of
the current, Eq. (8). Therefore, it stems from the scalar
(isotropic) part of the distribution function of photocarriers,
or differently said, from the scalar term proportional to 1
in Eq. (3a). As we already mentioned, without intervalley
scattering impurities cannot relax such a term. This is why

FIG. 4. Directions of photocurrent according to the final result,
Eq. (9a) (same color coding as Fig. 2). Here, γ̂ is the direction
of incident light. The orange −i(E+ × E−) term is the “quantized”
response for circularly polarized light [14]. The blue vector −i(E+ ×
E−) × t̂ is directed into the plane spanned by the directions of light
propagation and tilt t̂ . Just as the green Re[E+ ⊗ E−]t̂ and red
t̂(E+ · E−) vectors it is a consequence of finite tilt. In the absence
of intervalley scattering, the red contribution proportional to t̂ can not
be relaxed by impurities and may therefore be dominant, see Fig. 2.

the photocurrent in direction t̂ , represented by a red arrow
in Fig. 4, is much stronger than all other contributions. The
presence of intervalley scattering κ > 0 introduces a finite τt̂ ,
which however diverges as 1/κ for small κ , see Eq. (9d). This
is represented in the red dashed curve in Fig. 2, which, for
the sake of a better presentation, had to be downscaled by
an extra factor of 20. In the chosen parameter regime, τt̂ is
particularly large, because �− is relatively small at εh. Even
though inelastic scattering is beyond the scope of the present
paper, we mention that in practice, the steady-state value of
the current in t̂ direction is determined by the smaller of τinel

(inelastic scattering time) and τt̂ .
Finally, the steady-state result, Eq. (9a) contains a term

proportional to Re[E+ ⊗ E−]t̂ . This term stems from the
tensor contribution to the photocarrier excitation rate, i.e.,
the p̂ ⊗ p̂ term in Eq. (3a) and is absent in the absence of
intervalley scattering.

V. SUMMARY AND OUTLOOK

In summary, we have derived and analyzed the disorder
induced relaxation of the photogalvanic effect (PGE) in a
simple model for a Weyl semimetal. We took into account intra
and intervalley scattering as well as leading order corrections
due to finite tilt of the Weyl spectrum.

The major findings, which are pictorially summarized
in Figs. 2–4, are that (i) intervalley scattering can
lead to nonmonotonic time dependence of the circular
PGE proportional to −i(E+ × E−); (ii) the finite tilt
introduces additional current components proportional to (a)
−i(E+ × E−) × t̂ due to skew scattering, (b) t̂(E+ · E−),
and (c) Re[E+ ⊗ E−]t̂ . As we discussed, the contribution
(ii b) in the direction of the tilt vector t̂ is particularly inert
to elastic scattering as it stems from isotropic generation of
photocarriers and may thus be dominant. Contributions (i) and
(ii a) involving −i(E+ × E−) change sign when the chirality
of the photoactive Weyl node is reversed.

The observation of decisive qualitative and quantitative
consequences of a weak spectral tilt corroborates the findings
of earlier studies on different observables such as the linear
conductivity tensor [36–38], the polarization function [28], as
well as transport through Weyl tunnel junctions [39]. Further
implications on characteristic features of Weyl fermions,
e.g., the natural optical activity [40], will be the subject of a
separate studies [41].

We conclude our paper with an outlook on the experimental
relevance of our findings. First of all, we comment on the
minimal two Weyl node model that we are considering.
Such materials are not discovered, so far, but they were
suggested theoretically in heterostructures [42] and alloys [43]
of Chern insulator materials as well as, most recently, in certain
magnetic Heusler compounds [44]. At the same time, our
simplified model may be applied to present day materials when
pairs of Weyl nodes are well separated in momentum space.

Concerning optical experiments, we are aware of only two
published results on the PGE in Weyl semimetals. The work
of Ref. [9] is devoted to the second harmonic generation,
i.e., a different observable as compared to the focus of this
paper. In the second experiment [11], the chirality of the Weyl
fermions, which is given by the sign of the Berry monopole
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charge, was inferred from the photocurrent response to mid-
infrared light. Two key points are important. (i) Experiment
reveals a current component perpendicular to the direction
of light which strongly depends on the polarization (linear,
circular positive, circular negative) and which is claimed to be
proportional to the chirality of the photoactive nodes. As we
show, skew scattering also induces a term of the very same
tensor structure. (ii) Polarization independent photocurrent is
observed in a direction perpendicular to both light and to
the polarization dependent current. As we show, such terms
may also be induced by the tilt. In addition, unpublished THz
spectroscopy data on the dc PGE in TaAs presented at the
APS march meeting 2017 [45] indicates that the signals of
radiated electric field in direction perpendicular or parallel to
the polar axis show very different behavior and that for the
latter case the signal is nearly independent of the polarization
of incident light and is relatively long lived. The preliminary
interpretation focused on anisotropic scattering and is thus
related to the skew scattering mechanism investigated here.
Another route for interpretation could be contributions similar
to the terms t̂(E+ · E−) considered in this paper. We repeat that
these are indeed long lived and independent on the polarization
of incident light. At the same time, we note that the tilt
of the Weyl fermions in TaAs is substantial (v/u > 2) and,
therefore, our perturbative calculations should not be expected
to quantitatively describe those experiments since our time-
reversal breaking two-node toy model has limited resemblance
with the time reversal conserving 24-Weyl-node material
TaAs. However, we are convinced that the present results
provide a proof of principle for various types of photocurrent
contributions which will trigger future investigations.
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APPENDIX A: MODEL

It is useful to perform a gauge transformation of Eq. (1),
such that

Hkin =
(

ut̂ p + v p · σ + γ 0
0 −ut̂ p − v p · σ − γ

)
κ

,

(A1a)

Hdis =
(

V (x) V (x)e2ibx

V (x)e−2ibx V (x)

)
κ

. (A1b)

The potential term 	(x,t) remains unaffected from the
gauge transformation. The eigenstates of the clean Hamilto-
nian are characterized by the quantum number (multiindex)
l = (ζ,ξ, p), with ζ = ±1, ξ = ±1 and p ∈ R3:

ψl(x) = 〈x|l〉 = ei px |uξ, p〉êζ , (A2)

where ê+ = (1,0)κ and ê− = (0,1)κ and

|uξ, p〉 = 1√
2(1 + ξ p̂3)

(
ξ + p̂3

p̂1 + ip̂2

)
σ

. (A3)

The unperturbed eigenenergies associated to the eigenstates
|l〉 are

εl = ζ (ut̂ · p + ξvp + γ ). (A4)

The following relations will be useful (p̂1 + ip̂2 =√
1 − p̂2

3 eiφ):

〈uξ, p|uξ ′, p′ 〉 = [
√

(1 − ξ p̂3)(1 − ξ ′p̂′
3)ei(φ′−φ)

+ ξξ ′
√

(1 + ξ p̂3)(1 + ξ ′p̂′
3)]/2, (A5a)

|〈uξ, p|uξ ′, p′ 〉|2 = 1 + ξξ ′p̂ · p̂′

2
, (A5b)

|uξ, p〉〈uξ, p| = 1 + ξ p̂ · σ

2
, (A5c)

�ξ ( p) = −ξ
p̂

2p2
. (A5d)

Deformed coordinate system

In view of the tilt, the Fermi surfaces are ellipsoidal. Here
we introduce a coordinate transformation that deforms the
ellipse into a circle at the expense of certain Jacobians.

We first use that at a given energy ε the equienergy surface
of a band characterized by (ξ,ζ ) is an ellipse in the pt − p⊥
plane (pt = t̂ · p, p⊥ =

√
p2 − p2

t ) with center at (pt ,p⊥) =
ξ (ζ ε − γ )( −ξu

v2−u2 ,0). The radius in pt (p⊥) direction is ξ (ζ ε −
γ ) v

v2−u2 (ξ (ζ ε − γ ) 1√
v2−u2 ).

It is useful to choose the following energy dependent
parametrization of the three vector p:

p = ξ (ζ ε − γ )

v

{
k − ξ t̂

u

v

}
. (A6)

The integration measure transforms as

(dp) = ξ (ζ ε − γ )νξζ (ε)
d3k

4π
, (A7)

and, since a delta function in energy space can be written as

δ(εl − ε) = 1 − ξktu/v

ξ (ζ ε − γ )
δ(|k| − 1), (A8)

we can write∫
(dp)δ(εl − ε) · · · = νξζ (ε)

〈(
1 − ξ

u

v
k̂ · t̂

)
. . .

〉
k̂

. (A9)
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Note that, when k is a unit vector, we can write

p̂ = k̂ + ξ
u

v
[k̂(k̂ · t̂) − t̂]. (A10)

We will use the following parametrization of fξ,ζ ( p):

fξ,ζ ( p) = fξ,ζ (ε,k̂), (A11)

where the transformation p → (ε,k̂) depends on the cone
ξ,ζ under consideration. We repeat that the band index ξ is
uniquely determined by ε and ζ .

APPENDIX B: ELASTIC SCATTERING RATES

The scattering probability for scattering from the state l to
the state l′ is

wl′l = 2π |Tl′l|2δ(εl − ε′
l), (B1)

where

Tl′l = 〈l′| Ĥdis + ĤdisG
R(εl)Ĥdis︸ ︷︷ ︸

=T̂ R

|l〉 (B2)

are the matrix elements of the retarded transition matrix. We
next present restrictions on the scattering probability imposed
by the symmetries discussed in the main text.

1. Symmetry considerations

As we mentioned in the main text, our model is not invariant
under any of time reversal, rotation or inversion symmetries.
We find

T̂ H0T̂ = H0|b→−b;t̂→−t̂ , (B3a)

ÎH0Î = H0|γ→−γ ;V (x)→V (−x), (B3b)

R̂
†
UH0R̂U = H0|b→RT

U b;t̂→RU t̂ ;V (x)→V (RU x). (B3c)

We used the representations T̂ = σyK (K is the com-
plex conjugation); Î = κ1I (I : x → −x) and R̂U = URRT

U

(RRU
: x → RU x and UσU † = RUσ is the SU(2)-SO(3)

homomorphism).
The symmetry operations on the wave function are as

follows:

T̂ ψζ,ξ, p(x) = −ie−iφξψζ,ξ,− p(x), (B4a)

Îψζ,ξ, p(x) = −ψ−ζ,−ξ,− p(x), (B4b)

Î T̂ ψζ,ξ, p( p) = ie−iφξψ−ζ,−ξ, p(x). (B4c)

Here, again we used p̂1 + ip̂2 = (1 − p̂2
3)eiφ . For the

rotational symmetry, it is more useful to investigate its action
on a projector onto an eigenstate:

R̂U [ψl(x)ψl(x′)†]R̂†
U = [ψl(x)ψl(x′)†]| p→RT

U p. (B5)

We exploit those transformations in the analysis of the
scattering probabilities in the limiting case u/v = 0. For
the present model, rotational symmetry plays a major role
and we find that, for u = 0 and after average over disorder
configuration,

|Tl′l|2 = |Tl′l|2p′→RT
U p′; p→RT

U p;b→RT
U b, (B6)

which implies that wl′l is a scalar or pseudo scalar under
transformations and can be expanded by the basis functions
1,p̂ · p̂′,p̂ · b,p̂′ · b,(p̂ × p̂′) · b. We can use the fact that after
disorder average, the average translational invariance implies
that b enters only in the form of |Vb|2 under the assumption
of sufficiently short ranged impurities. Therefore rotational
invariance implies that

wl′l = [fζ,ξ ;ζ ′,ξ ′ + gζ,ξ ;ζ ′,ξ ′ p̂ · p̂′]δ(εl − εl′). (B7)

In particular, wl′l is symmetric under the exchange of mo-
menta.

We can further use the implication of TR symmetry and
find

Tl′l = Tll′ | p→− p, p′→− p′,b→−b, (B8)

so that

wl′l = [fζ ′,ξ ′;ζ,ξ + gζ ′,ξ ′;ζ,ξ p̂ · p̂′]δ(εl − εl′) (B9)

and thus the absence of skew scattering: wl′l = wll′ in the limit
u = 0.

2. Scattering probabilities

a. Born approximation

The scattering probability in Born approximation can be
readily evaluated from Eq. (B1)

w
(2s)
l′l = 2πδ(εl − εl′)nimp|V(ζ−ζ ′)b|2 1 + ξξ ′p̂ · p̂′

2
. (B10)

b. Skew scattering

For the skew scattering we expand Tl′l 

〈l′|Ĥdis + ĤdisG

R
0 Ĥdis|l〉 and obtain [46]

w
(3a)
l′l = (2π )2δ(εl − εl′)

∑∫
l′′

δ(εl − εl′′)

×Im[Ĥdis,ll′Ĥdis,l′l′′Ĥdis,l′′l]. (B11)

For our specific model, this leads to

w
(3a)
l′l = (2π )2δ(εl − εl′)

∑
ξ ′′ζ ′′

∫
p′′

δ(εl′′ − εl)

×nimpV(ζ−ζ ′)bV(ζ ′−ζ ′′)bV(ζ ′′−ζ )b

×Im[〈uξ p|uξ ′ p′ 〉〈uξ ′ p′ |uξ ′′ p′′ 〉〈uξ ′′ p′′ |uξ p〉]. (B12)

We use that∫
p′′

δ(εl′′ − εl)|uξ ′′ p′′ 〉〈uξ ′′ p′′ | = 1

2
νξ ′′ζ ′′ (εl)

(
1 − u

v
t̂ · σ

)
,

(B13)
so that we find

w
(3a)
l′l = (2π )δ(εl − εl′)

∑
ξ ′′ζ ′′

(
−ξξ ′πu

2v

)
νξ ′′,ζ ′′ (εl)

×t̂ · (p̂ × p̂′)nimpV(ζ−ζ ′)bV(ζ ′−ζ ′′)bV(ζ ′′−ζ )b. (B14)

This concludes the derivation of Eq. (4b) of the main text.
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3. Scattering rates

It will be useful to expand the distribution function for the
band (ξ,ζ ) by means of representations of the rotation group.
We write

fξ,ζ (ε,k̂) = f
(sc)
ξ,ζ (ε) + k̂if

i
ξ,ζ (ε)

+ k̂i k̂j f
ij

ξ,ζ (ε) + k̂i k̂j k̂kf
ijk

ξ,ζ (ε). (B15)

Furthermore, the kinetic equation and the collision integral
shall be written as a vector f = (fζ=+1,fζ=−1)T in valley

space and denote it by an underbar. Note that, at a given energy
ε, there are two bands involved, one at each valley.

a. Born approximation

We consider the Born scattering from impurities introduce
scattering rates �ζ = 2πnimp|V0|2νξ,ζ (ε) (ξ is determined by
ζ and ε uniquely). We can write the collision integral entering
the equation for electrons in pocket ξ,ζ :

St (2)[{f }]|ξ,ζ = −
∑
ξ ′,ζ ′

3�ξ ′,ζ ′
|V(ζ−ζ ′)b|2

|V0|2
〈

1 − ξ ′ u
v
(k̂′ · t̂) + ξξ ′p̂

(
k̂′ − ξ ′ u

v
t̂
)

2
(fξ,ζ − fξ ′,ζ ′)

〉
k̂′
. (B16)

The notation St[{f }] reflects that in general the collision integral depends on the whole set of distribution functions, i.e., in the
present case on the distribution functions of both nodes. All energies are taken at given εξ,ζ , which is either εe or εh. We employ
the valley space vector notation for the scalar part of the distribution function to O(u/v):

St (2)[{f (sc)}] = −3

2

(
1 − k̂ · t̂ ξ

u

v

) (
�−κ −�−κ

−�+κ �+κ

)
︸ ︷︷ ︸

=:�s

f (sc). (B17)

Here, the matrix ξ = diag(ξ+,ξ−). As we shall see later, for the vector part we don’t need u/v corrections which contain an even

power of vectors k̂. Under this premise (reflected by the sign
.=), only the nontilted contribution survives:

St (2)[{k̂if
i}] .= − ξ

(
�+ + 3�−κ/2 −�−κ/2

−�+κ/2 �− + 3�+κ/2

)
ξ︸ ︷︷ ︸

=:�v

k̂if
i . (B18)

Next, we turn our attention to the matrix distribution function. Here we obtain

St (2)[{k̂i k̂j f
ij }] = −3

2

(
1 − k̂ · t̂ ξ

u

v

) (
�+ + �−κ 0

0 �− + �+κ

)
︸ ︷︷ ︸

=:�t

k̂i k̂j f
ij + 1

2

(
1 − k̂ · t̂ ξ

u

v

) (
�+ �−κ

�+κ �−

)
︸ ︷︷ ︸

=:�tr

f ii . (B19)

The sum over repeated indices is to be understood. We will find later that the solution for the tensorial part of the distribution
function f ijk is first order in u/v. Therefore we only need the zeroth order in u/v from the collision integral, i.e.,

St (2)[{k̂i k̂j k̂kf
ijk}] = −3

2
�t k̂i k̂j k̂kf

ijk + 1

10
ξ�trξf ijk[k̂iδjk + 2 × cycl.]. (B20)

b. Skew scattering

For the skew scattering the leading order is (u/v)1 and we only need to consider the contributions of the scalar part (vanishes),
of the vector part (nonvanishing) and of the matrix part (vanishes) of the distribution function.

After angular integration the skew-scattering collision integral for electrons in band (ξ,ζ ) becomes

St (3a)|ξ,ζ = u

v

∑
ξ ′,ζ ′
ξ ′′,ζ ′′

ξξ ′νξ ′ζ ′νξ ′′ζ ′′
π2

3
k̂ · ( f ξ ′,ζ ′ × t̂)nimpV(ζ−ζ ′)bV(ζ ′−ζ ′′)bV(ζ ′′−ζ )b. (B21)

We define the band dependent skew scattering rate �
(sk)
ζ = π2

3 nimpV3
0 ν2

ξζ . We further use that �+/�− = ν+/ν− to reexpress the
ratios of DOSs. Then

St (3a)[{k̂if
i}] = u

v
ξ

(
�

(sk)
+

(
1 + κ

�−
�+

)
�

(sk)
−

(
1 + �+

�−

)
κ

�
(sk)
+

(
1 + �−

�+

)
κ �

(sk)
−

(
1 + κ

�+
�−

) )
ξ

︸ ︷︷ ︸
=:�(sk)

εijkk̂if
j t̂k. (B22)

Note that �
(sk)
+ �−/�+ = �

(sk)
− �+/�−.
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APPENDIX C: RELAXATION OF PHOTOCARRIERS

We use the notation ζ0 = sgn(εF ) for photoactive node and
we further write ξ0 for the band index in that node at a given
energy εe or εh.

1. Injection term

The injection term, i.e., the collision term in the Boltz-
mann equation generating photoelectrons/photoholes in band
(ξ0,ζ0) in vector notation is given by the Fermi’s golden-rule
expression:

St inj[{f }] = −êζ0

∑
α=±1

{
2πδ(αω + εξ0ζ0 ( p) − ε−ξ0,ζ0 ( p))

×Ai
(ξ0,ζ0),(−ξ0,ζ0)A

j

(−ξ0,ζ0),(ξ0,ζ0)

×
[(

eE i
α

)(
eEj

α

)
eiα2ωt + c.c.

2
+ (

eE i
α

)(
eEj

−α

)]

× [
f

(eq.)
ξ0,ζ0

( p) − f
(eq.)
−ξ0,ζ0

( p)
]}

. (C1)

For the product of transition matrix elements

Ai
(ξ0,ζ0),(−ξ0,ζ0)A

j

(−ξ0,ζ0),(ξ0,ζ0)

= 〈
∂pi

uξ0, p

∣∣u−ξ0, p
〉〈
u−ξ0, p

∣∣∂pj
uξ0, p

〉
, (C2)

we calculate symmetric (round brackets) and antisymmetric
(square brackets) components separately

A(i
(ξ0,ζ0),(−ξ0,ζ0)A

j )
(−ξ0,ζ0),(ξ0,ζ0) = (1 − p̂ ⊗ p̂)ij

4p2
, (C3a)

A[i
(ξ0,ζ0),(−ξ0,ζ0)A

j ]
(−ξ0,ζ0),(ξ0,ζ0) = − i

2
εijk�ξ0,k. (C3b)

This leads to Eq. (3a) of the main text. After the change of
coordinates from p̂ to k̂ the injection term in vector notation
can be written as

St inj = êζ0
δ(ω − 2vp)

{
I (0) + k̂iI

(0)
i + k̂i k̂j I

(0)
ij

+ u

v

[
I (1) + k̂iI

(1)
i + k̂i k̂j I

(1)
ij + k̂i k̂j k̂kI

(1)
ijk

]}
, (C4)

where we introduced (recall E(t) = ∑
± E±e±iωt )

I (0) = 2πv2

ω2
ξ0ζ0e

2

{
E(t)2

2

}
, (C5a)

I
(0)
i = 2πv2

ω2
ξ0ζ0e

2{−iζ0(eE+ × eE−)i}, (C5b)

I
(0)
ij = 2πv2

ω2
ξ0ζ0

{
−E(t)iE(t)j

2

}
, (C5c)

as well as

I (1) = −ξ0 t̂i I
(0)
i , (C5d)

I
(1)
i = −ξ0 t̂j

(
I

(0)
ij + I

(0)
ji

) = −2ξ0 t̂j I
(0)
ij , (C5e)

I
(1)
ij = ξ0 t̂j I

(0)
i , (C5f)

I
(1)
ijk = ξ0 t̂k

(
I

(0)
ij + I

(0)
ji

) = 2ξ0 t̂kI
(0)
ij . (C5g)

As we mentioned previously, we are only interested in the dc
part of these expressions since ω/�ζ0 � 1 implies that second
harmonic generation is only weakly affected by disorder.

2. Static solution to O[(u/v)0]

We expand f = f (0) + (u/v)f (1) and keep only the zeroth
order in (u/v) in this section. Upon equating the full collision
integral St inj + St (2) + St (3a) to zero, we obtain

3
2�sf

(0) + �vk̂if
(0)
i

+ 3
2�t k̂i k̂j f

(0)
ij

= 1
2�trf

(0)
ii

+ ε̂ζ0δ(ω − 2vp)
{
I (0) + k̂iI

(0)
i + k̂i k̂j I

(0)
ij

}
.

(C6)

The solutions for matrix and vector part immediately follow

k̂i k̂j f
(0)
ij

= 2
3�−1

t êζ0
δ(ω − 2vp)k̂i k̂j I

(0)
ij , (C7a)

k̂if
(0)
i

= �−1
v êζ0

δ(ω − 2vp)k̂iI
(0)
i . (C7b)

We insert these solutions back into the Eq. (C6) and then solve
for the scalar part

f (0) .= − 2
3�−1

s

(
1
3�tr�

−1
t − 1

)
êζ0

δ(ω − 2vp)I (0). (C7c)

The symbol “
.=” means that this equation is valid only if

f (0) is multiplied by (1,−1) from the left. This is, because the
scalar symmetric part (fζ=+ + fζ=−) corresponds to a zero
mode of the collision integral:

�s

(
1
1

)
= 0. (C8)

The inverse of �−1
s means [symbolically in the subspace of the

antisymmetric part (fζ=+ − fζ=−)]

�−1
s

.= 1

2κ

(
1

�−
0

0 − 1
�+

)
. (C9)

3. Static solution to O[(u/v)1]

As we shall show below, for the calculation of the current
we only need terms containing an odd number of k̂s in the
linear corrections to the distribution function. We denote this
assumption by a “

.=” in the following equation for the first-
order terms:

�vk̂if
(1)
i

+ 3
2�tf

(1)
ijk

k̂i k̂j k̂k

.= 1
10ξ�trξf (1)

ijk
(k̂iδjk + k̂j δki + k̂kδij )

+ 3
2 (k̂ · t̂)ξ[

�sf
(0) + �t k̂i k̂j f

(0)
ij

− 1
3�trf

(0)
ii

] + �skεijkk̂if
(0)
j

t̂k

+ êζ0
δ(ω − 2vp)

{
k̂iI

(1)
i + k̂i k̂j k̂kI

(1)
ijk

}
. (C10)

After some algebra, this leads to

f (1)
ijk

= 2�−1
t ξ êζ0

δ(ω − 2vp)t̂kI
(0)
ij . (C11a)
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This solution is inserted back into Eq. (C10) and the solution
leads to

f (1)
i

= [(
t̂i I

(0) − 2t̂j I
(0)
ij

){
�−1

v

(
1 − 1

5ξ�trξ�−1
t

)
ξ êζ0

}
+ εijkI

(0)
j t̂k�

−1
v �sk�

−1
v êζ0

]
δ(ω − 2vp). (C11b)

4. Static current response

The current is defined as

j = −e
∑
ξζ

∫
p

[
vζ

(
ξ p̂ + u

v
t̂

)]
fξ,ζ ( p)

= −ev
∑
εe,εh

∫
p
(1,−1)

(
p̂ξ + u

v
t̂

)
f ( p). (C12)

Since we found that distribution function is proportional to
δ(ω − 2vp) it is useful to switch to spherical coordinates in
p space (i.e., we transform back from the k̂ representation).
From this equation, we readily see that in the terms of first
order in (u/v) of f ( p) we need only terms which contain odd
powers of p̂.

We will write

f ( p)
.= δ(ω − 2vp)

[
F (0) + p̂iF

(0)
i + p̂i p̂jF

(0)
ij

+u

v

(
p̂iF

(1)
i + p̂i p̂j p̂kF

(1)
ijk

)]
. (C13)

Here we introduced

F (0) = − 2
3�−1

s

(
1
3�tr�

−1
t − 1

)
êζ0

I (0), (C14)

F
(0)
i = �−1

v êζ0
I

(0)
i , (C15)

F
(0)
ij = 2

3�−1
t êζ0

I
(0)
ij , (C16)

as well as

F
(1)
i = t̂i I

(0)�−1
v

(
1 − 1

5ξ�trξ�−1
t

)
ξ êζ0

+ 2t̂j I
(0)
ij

[
2
3�−1

t − �−1
v

(
1 − 1

5ξ�trξ�−1
t

)]
ξ êζ0

+ εijkI
(0)
j t̂k�

−1
v �sk�

−1
v êζ0

, (C17)

F
(1)
ijk = 2

3�−1
t ξ êζ0

t̂kI
(0)
ij . (C18)

We used that both �t and ξ are diagonal matrices.
In order to present the final result for the current, we define

�̃v = ξ�vξ :

Msc = �̃
−1
v − 1

5 �̃
−1
v �tr�

−1
t − 4

5�−1
t − 2

3�−1
s �tr�

−1
t + 2�−1

s ,

(C19)

M t = 2
( − �̃

−1
v + 1

5 �̃
−1
v �tr�

−1
t + 4

5�−1
t

)
. (C20)

Then we obtain using �̃sk = ξ�skξ ,

ji = − e3

12π

∑
εeεh

1

2

(
(1,−1)�̃

−1
v êζ0

[−i(E+ × E−)i]

+u

v

{
(1,−1)�̃

−1
v �̃sk�̃

−1
v êζ0

εijk[−i(E+ × E−)j ]t̂k

+(1,−1)Mscξκ3êζ0

t̂i E(t)2

2

−(1,−1)M tξκ3êζ0
Ei(t)

(E(t) · t̂)

2

})
. (C21)

Here, κ3 = diag(1,−1)ζ . Bear in mind that the second har-
monic term should not be inferred from this term. The prefactor
e3/12π corresponds to the quantization unit presented in
Ref. [14]. We can readily read off the relaxation times
introduced in Eq. (9a):

τCPGE = 1

2

∑
ε=εeεh

(1,−1)�̃
−1
v êζ0

, (C22a)

τskew = 1

2

∑
ε=εe,εh

(1,−1)�̃
−1
v �̃sk�̃

−1
v êζ0

, (C22b)

τt̂ = −1

2

∑
ε=εe,εh

(1,−1)Mscξκ3êζ0
, (C22c)

τ⊥ = −1

2

∑
ε=εe,εh

(1,−1)M tξκ3êζ0
. (C22d)

The evaluation of these equations in the case ζ0 = +1
leads to

τCPGE = 1

2

∑
ε=εe,εh

�− + �+κ

�−�+(1 + 2κ2) + 3κ
2 (�2− + �2+)

, (C23a)

τskew = 1

2

∑
ε=εe,εh

(1 − κ)
�sk,+�−

[
�− + �+ (3−κ)κ

2

] + �sk,−�+κ
(
�− − �+ 1−3κ

2

)
[
�−�+(1 + 2κ2) + 3κ

2 (�2− + �2+)
]2 , (C23b)

τt̂ = −1

2

∑
ε=εe,εh

[
2

3�−κ
+ 4

15(�+ + �−κ)
+ 2(�− + �+κ)

5
[
�−�+(1 + 2κ2) + 3κ

2 (�2− + �2+)
]
]

sgn(ε − γ ), (C23c)

τ⊥ = −1

2

∑
ε=εe,εh

κ

[
2(�2

− + �2
+ + 2�−�+κ)

5(�+ + �−κ)
[
�−�+(1 + 2κ2) + 3κ

2 (�2− + �2+)
]
]

sgn(ε − γ ). (C23d)

We note that the two relaxation times τt̂ and τ⊥ contain additional factors of sgn(ε − γ /2) and therefore have opposite signs
for photoelectrons and photoholes.

075123-10



PHOTOGALVANIC EFFECT IN WEYL SEMIMETALS PHYSICAL REVIEW B 96, 075123 (2017)

5. Dynamic solution to O[(u/v)0]

In order to obtain the time dependence of the photocurrent
after a sudden illumination, we add the solution of the
homogeneous Boltzmann equation to our steady-state solution,
Eq. (C7b). Under the assumption of thermal equilibrium at
t = 0, we obtain

k̂if
i
= (1 − e−�vt )�−1

v êζ0
δ(ω − 2vp)k̂iI

(0)
i . (C24)

Inserting this into the definition of the current leads to τCPGE →
T (t) with

T (t) = 1

2

∑
ε=εe,εh

(1,−1)(1 − e−�̃v t )�̃
−1
v êζ0

. (C25)

We assume that ζ0 = +1 and find, after some algebra, an
expression by means of � = �++�−

2 and �� = �+ − �− to
be

T (t) = 1

2

∑
ε=εe,εh

∑
±

⎛
⎝1 − exp{−(t/2)[2� + 3κ� ±

√
(��)2(1 − κ)(1 − 2κ) + �

2
κ2]}

[2� + 3κ� ±
√

(��)2(1 − κ)(1 − 2κ) + �
2
κ2]

×
⎡
⎣1 ± ��(1 − κ) + �κ√

(��)2(1 − κ)(1 − 2κ) + �
2
κ2

⎤
⎦

⎞
⎠. (C26)

It is worth to notice that [1 − ��(1−κ)+�κ√
(��)2(1−κ)(1−2κ)+�

2
κ2

] changes sign at �� = 0. This is the origin of the nonmonotonic behavior

reported in Fig. 3.

APPENDIX D: INTRABAND RESPONSE

Here we present details on the contribution from the Fermi surface. We concentrate on the limit u/v = 0. The side jump
contribution modifies the collision integral as follows:

Stζ [f+,f−] = −
∑∫

l′
2π |〈uξ, p|uξ ′, p′ 〉|2nimp|V(ζ−ζ ′)b|2δ(εl′ − εl − eEδr l′l)[f̃l(εl,p̂,t) − f̃l′(εl′ ,p̂

′,t)]

= −2πnimp|V0|2〈|〈uξ, p|uξ ′, p′ 〉|2νζ (εl + eEδr l′l)[f̃ζ (εl,p̂,t) − f̃ζ (εl + eEδr l′l ,p̂
′,t]〉p̂′

− 2πnimp|V2b|2〈|〈uξ, p|uξ ′, p′ 〉|2ν−ζ (εl + eEδr l′l)[f̃ζ (εl,p̂,t) − f̃−ζ (εl + eEδr l′l ,p̂
′,t]〉p̂′ . (D1)

Here, f̃ζ (ε,p̂) = fζ ( p) and the side jump is

δr l′l = Al′ − Al − (∂ p + ∂ p′) arg(〈l′|l〉)

= − p̂ × p̂′

4|〈uξ, p|uξ ′, p′ 〉|2
(

ξ

p′ + ξ ′

p

)
. (D2)

In this appendix, we investigate how the driving term propor-
tional to ṗ excites particle-hole pairs at the Fermi surface. We
concentrate on the circular PGE. The according contribution
to the distribution function is

f = fFD

(
1/2
1/2

)
+ p̂ · Eeiωt evf ′

FD(εl)[i�(μ)]−1

(
ξ+

−ξ−

)

− p̂ · (E × E∗)ve2M−1N{ν[i�]−1f ′
FD}′

(
ξ+

−ξ−

)
+ c.c.

(D3)

Here, M = �v/(2πnimp), i� = iω + �v and

N = −v

6

⎛
⎝ |V0|2

γ−εl

ξ+ξ−γ |V2b|2
γ 2−ε2

l

ξ+ξ−γ |V2b|2
γ 2−ε2

l

|V0|2
γ+εl

⎞
⎠ (D4)

accounts for the side-jump contribution. When evaluated by
means of the definition of the current, which, however, now
contains additional contributions:

j = −e
∑
ξ,ζ

∫
p
v[ζ ξ p̂ − e�ξ × E + δ ṙξζ ]fζ ( p). (D5)

In the present case, the side-jump accumulation is zero,

δ ṙζ ξ =
∑∫

l′
wl′lδr l′l = 0. (D6)

We obtain in linear response

j lin = e2 v2

3
Eeiωt (ξ+,−ξ−)ν[i�]−1

(
ξ+

−ξ−

)
+ c.c. (D7)

The second-order response contains two contributions. First,
the Berry curvature term leads to

j intr = e3

4π2

E × E∗

3
(ξ+,ξ−)[i�]−1

(
ξ+

−ξ−

)
+ c.c. (D8)

Clearly, in the clean limit, contributions from opposite cones
cancel up. Furthermore, there is a contribution from the usual
group velocity combined with the side-jump term:

j sj = v2e3 E × E∗

3
(ξ+,−ξ−)[νM−1N ]′ν[i�]−1

(
ξ+

−ξ−

)
+ c.c.

= −v3

2γ
e3 E×E∗

3
(ξ+,−ξ−)[(1+κR)−1S]′ν[i�]−1

(
ξ+

−ξ−

)
+ c.c. (D9)
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In the second line, we introduced the dimensionless matrices

R(εF ) = 1

2

(
2
(

εF +γ

εF −γ

)2 −ξ+ξ−
−ξ+ξ− 2

(
εF −γ

εF +γ

)2

)
, (D10)

S(εF ) =
⎛
⎝ γ

γ−εF
ξ+ξ−κ

γ 2

γ 2−ε2
F

ξ+ξ−κ
γ 2

γ 2−ε2
F

γ

γ+εF

⎞
⎠. (D11)

Keep in mind that the prime ′ denotes derivative with respect
to energy. In the limit κ → 0 (no intervalley scattering), we
have v3

γ
[(1 + κR)−1S]′ν → diag(1,−1)/[2π2] so that

j sj
κ→0−→ − j intr. (D12)

Remarkably, the contribution from the side jump exactly
cancels up the intrinsic contribution. Generally, we can state
the Fermi surface contributions are �ζ/ω � 1 times smaller
than the contributions from photocarriers.

APPENDIX E: MICROSCOPIC MODEL

As the simplest model of the Weyl semimetal (WSM), we
review the two-band multilayer Chern insulator Hamiltonian
[14,27]. The disorder-free single-particle Hamiltonian on the
cubic lattice reads

H0 = t

2

∑
r

∑
s=1,2

[
C

†
r+as

(iσs − σ3)Cr + H.c.
]

+
∑

r

C†
r (M σ3 − μCr (E1a)

+ 1

2

∑
r

[
C

†
r+a3

(iγ − t σ3)Cr + H.c.
]
, (E1b)

where r = (x y z) is the coordinate of a site on the cubic
lattice, (a1 a2 a3) = (x̂ ŷ ẑ) the set of unit vectors, C

†
r ≡

[c†↑(r) c
†
↓(r)] (Cr) the creation (annihilation) operator of an

electron spinor, and σ = (σ1, σ2, σ3) the Pauli matrices in
the spin space. The Hamiltonian (E1) describes a stack of
Chern insulator layers [Eq. (E1a)] coupled through tunneling
[Eq. (E1b)] and all the model parameters t,γ,M , and μ are
real.

In reciprocal space the Hamiltonian takes the form

H0 =
∑

k

ψ†(k)H0(k) ψ(k), (E2)

with ψ(k) the two-spinor

ψ(k) =
[
c↑(k)
c↓(k)

]
, (E3)

and the Hamiltonian matrix

H0(k) = εk − μ + dk · σ̂ , (E4a)

εk = γ sin kz, (E4b)

dk =
⎛
⎝t sin kx, t sin ky, −M + t

∑
j=x,y,z

cos kj

⎞
⎠. (E4c)

The energy dispersion is

E±(k) = εk − μ ±

√√√√√M2 − 2Mt

⎛
⎝ ∑

j=x,y,z

cos ki

⎞
⎠ + 2 t2

(
cos kx cos ky + cos kx cos kz + cos ky cos kz + 1

2
cos2 kz + 1

)
.

(E5)

For |M/t − 2| < 1, a pair of Weyl valleys form about the
momenta and energies:

Kζ = (0, 0, ζK), K = cos−1(M/t − 2), (E6a)

Eζ = ζE − μ, E = γ sin K, (E6b)

where ζ = ±1 indicates the valleys. For |M/t − 2| = 1 there
is only one band-touching point and for |M/t − 2| > 1 band
gap opens, for which the physics is less interesting.

In the Weyl semimetal regime, |M/t − 2| < 1, we expand
the Hamiltonian (E4) about the Weyl point Kζ to obtain a
low-energy continuous model. Substituting k = Kζ + p into
Eq. (E4), for small momentum deviation |p| � K and up to
linear order in px,y,z, we have

H0(Kζ + p) 
 Eζ + cos K pz

+ t (pxσ1 + pyσ2 + ζ sin K pzσ3), (E7)

and the corresponding low-energy two-spinor (E3) takes the
valley index ζ (chirality):

ψζ (p) ≡
[
ψ↑,ζ (p)
ψ↓,ζ (p)

]



[
c↑(Kζ + p)
c↓(Kζ + p)

]
. (E8)

Introducing the four-spinor

�(p) ≡
(

1 0
0 σz

)[
ψ+1(p)
ψ−1(p)

]
(E9)

and the Pauli matrices κ = (κ1, κ2, κ3) for valley space, we
obtain the Weyl Hamiltonian

Hkin(p) = E κ3 + cos K pz

+ t κ3(pxσ1 + pyσ2 + sin K pzσ3). (E10)

Especially, at M/t = 2, where K = π/2 and E = γ , the Weyl
cones become isotropic and the Hamiltonian (E10) takes the
form of Eq. (1a) at u/v = 0.
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