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The density correlations of some singular Fermi liquids with anomalous properties such as resistivity varying
linearly with T at low temperatures and a T log T contribution to the entropy and thermopower are expected to be
quite different from that in Landau Fermi liquids. A possible statistical mechanical model for the quantum-critical
fluctuations in diverse systems with such properties is the 2D dissipative quantum XY model. Exact relations
between the density correlations and singular irreducible vertices due to coupling of fermions to the topological
excitations of the 2D dissipative quantum XY model are used to derive results which have become measurable
only recently because of advances in experimental techniques. The density correlations are unusual at all
momenta q and energy ω, from the hydrodynamic limit to that for large momenta and energy. The hydrodynamic
limit together with the continuity equation gives the linear in T resistivity. The density correlations are almost
independent of frequency up to a high-frequency cutoff for qZB � q � ω/vF ; qZB is the Brillouin zone boundary
and vF is the Fermi velocity. The results should be applicable to loop-current quantum criticality in cuprates,
and to 2D Fe-based compounds near their antiferromagnetic quantum criticality. The relation of the results to the
temperature and frequency dependent conductivity and to Raman response is also discussed.
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I. INTRODUCTION

The dynamic structure function S(q,ω) of a system is
related to the absorptive part of the density correlation function
χρρ(q,ω) through use of linear response theory and detailed
balance [1]:

χ ′′
ρρ(q,ω) = −π (1 − e−βω)S(q,ω). (1)

It contains information on the single-particle excitations, the
incoherent multiparticle excitations, as well as the collective
oscillations. χ ′′

ρρ(q,ω) is related to the current-current correla-
tions at long wavelengths through the continuity equation. It
enshrines the f -sum sum rule and the sum rule imposed by
particle conservation. It has played a historic role in strongly
interacting condensed matter physics. Feynman [2,3] used the
sum rules on S(q,ω) to derive that in superfluid helium the
only long-wavelength excitations are sound waves as well as
to derive rotons at higher momenta, both suggested earlier
by Landau [4] through phenomenological arguments. The
Landau theory of Fermi liquids [5,6] has provided precise
relations at long wavelength and low energies for neutral
systems as well as the collective longitudinal (plasmons)
and transverse excitations in charged systems. The devel-
opment of field theory methods in statistical physics [7,8]
has provided a detailed understanding of how the Pauli
principle restricts the form of the multiparticle excitations in
interacting Fermi liquids at both low and high energy and
momenta.

This paper concerns the density correlation function in
some metals [9–14], which do not obey the quasiparticle
paradigm of Fermi liquids in a characteristic region in the
vicinity of a quantum-critical point. This class includes
the cuprates [9], the Fe-based compounds [12–14], and
the heavy-fermion compounds [11]. In order to understand
a wide variety of anomalous properties—the temperature
dependence of the resistivity, the frequency dependence of
the optical conductivity, the Raman response, the specific heat
or thermopower, as well as the anomalous nuclear relaxation

rate—through a single phenomenological hypothesis, it was
suggested that there must exist fluctuations of some operator
to which the fermions couple, which over over most of the
momentum q has the form [15]

C ′′(q,ω) = −N (0)
ω

T
, ω � T ,

= −N (0), T � ω � ωc,

= 0, ω � ωc. (2)

N (0) is the order of the density of states. Since the real part
C ′(q,ω) has a log(T/ωc) singularity for T � ω, fluctuations
around a quantum-critical point were indicated. It was not
clear, when this idea was proposed, what the operator is whose
fluctuations are of the form (2).

Scattering of fermions from fluctuations of the form (2)
gives a single-particle self-energy which is linear in max(ω,T )
and nearly independent of momentum [15,16] for ω � ωc

and constant thereafter. This prediction required technical
developments in ARPES to be verified fully through the
measurement of the inelastic part of the single-particle spectral
function [17–19]. The resistivity (and the optical conductivity)
was obtained earlier [15] from a simple microscopic calcula-
tion using the renormalized one-particle propagators which
include such self-energies. The calculation works only due
to the astonishing assumption of q independence (or very
weak q dependence) of the fluctuations of (2) throughout
the Brillouin zone. Then there are no vertex corrections in
the calculation of the conductivity. No alternative form for
fluctuations or calculations based on any other ideas have
given such results. Similarly the Raman response, on which
a brief comment is made later, is also obtained. The same
fluctuation spectra has been deduced as the gluing interaction
for d-wave fermions in a family of cuprates through analysis
of high-resolution ARPES experiments in the superconducting
state [20].

From the requirement that the density fluctuations χ ′′
sc must

be proportional to q2 in the hydrodynamic regime [21], it was
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suggested that they are given for vF q � ω by

χ ′′
sc(q,ω) = −κ

xq2

ω(ω2 + π2λ2x2)
,

x = max(|ω|,πT ). (3)

Here χsc is the density fluctuations of “screened” fermions
or fermions with short-range interactions. The relation of the
screened density response and the actual density response in
a charged system of fermions is well known [1] and given
below. Here κ may be identified as the compressibility and
λ is a coupling constant. The frequency and temperature
dependence of the long-wavelength density correlations is
unlike a Fermi liquid in the hydrodynamic regime, in that
the effective diffusion constant in (3) is frequency and
temperature dependent [22]. Equation (3) was designed to
give the observed temperature dependence of the resistivity
on using the continuity relation between the current-current
and the screened density correlations, as well as the frequency
dependence of Raman scattering. As mentioned above, such a
resistivity was already calculated by scattering of fermions by
fluctuations of the form (2).

The singular correlations in cuprates (and in the Fe-based
compounds) in the quantum-critical region are obviously
not of the density. The quantum-critical fluctuations in the
Fe-based compound are due to an antiferromagnetic critical
point. In hole-doped cuprates, the critical fluctuations are of
a translation-preserving orbital current order [23–25] in the
form of multiple loops within a unit cell. Both models map to
the dissipative quantum XY (DQXY) model in 2D [16,26].
This model, just as the classical 2D XY model, does not
fall in the universality class of the Ginzburg-Landau-Wilson
type. The critical correlations are determined by topological
excitations in space and time, unlike the soft-mode theories of
the dynamics of critical phenomena of the Ginzburg-Landau-
Wilson type. They have been derived analytically [27] and
tested by quantum Monte Carlo calculations [28,29].

The density correlation function Eq. (3) for vF q � ω has
been derived [22] to follow from the critical fluctuations of the
DQXY model of the form Eq. (2). Our purpose here is to derive
the density fluctuations using Eq. (2) in the other limit and to
show that they bear resemblance in their frequency dependence
to Eq. (2) itself in the opposite limit. The density correlations
in the entire (q,ω) region are thereby shown to inherit the
singularities related to those of the critical correlations.

The impetus for presenting the results for S(q,ω) for
singular Fermi liquids comes from the recent development
of experimental tools [30,31] through which it can be reliably
measured over the entire Brillouin zone and energies up to
several eV with high resolution. Such measurements in the past
[32] have been available either through electron energy loss
experiments in the forward direction, which only measures
plasmons resonances, or through inelastic x-ray scattering
[33,34] which gives results with poor energy and momentum
resolution in the range of interest for conduction electron
density correlations. The calculations lay a basis with which
the forthcoming experimental results may be compared. Some
preliminary results have been presented [35]. Some other
related matters are also discussed.

FIG. 1. (a) The exact relation between the density-density cor-
relation function χsc(q,ω) in terms of the total vertex 	(k,k′; q) in
the particle-hole channel and the single-particle Green’s functions.
The density vertex at either end of the diagram itself is 1. (b)
Bethe-Salpeter equation for the total particle-hole vertex 	 in terms of
the irreducible particle-hole vertex I . The irreducible vertex is defined
so that it cannot be cut into two parts by cutting a particle and a hole
line in the channel carrying the energy momenta (ω − ω′,k − k′)
(c) The relation of the single-particle self-energy to the irreducible
vertex [8], with momenta energy (q,ω) = 0. The irreducible vertex
is assumed to be regular in the channel carrying q but may have
singularities in the other particle-hole channel.

II. DENSITY CORRELATIONS

The screened density correlation function χsc(q,ω) is
obtained from the total vertex function in the particle-hole
channel 	(k,k′,q) and the single-particle Green’s function
G(k), as shown in Fig. 1(a) [8]. (A lower case k stands for
momenta and energy. Spin labels will not be explicitly written
down in this paper.) The total vertex is related to the irreducible
particle-hole vertex I (k,k′,q) by the Bethe-Salpeter equation
which is also shown in Fig. 1(b). In a Landau Fermi liquid,
I (k,k′,q) is regular. One of the ways in which a Fermi liquid
may be singular is for such vertices to be singular in one
of the two particle-hole channels [10]. The singular channel
is transverse to the one which carries the density; i.e., in the
diagram as drawn, it is in the vertical direction in the irreducible
particle-hole vertex I as well as the total vertex 	 which carries
(k − k′).

In a charged system of fermions, it is convenient to first
consider a screened problem with only short-range interactions
in the irreducible vertices and obtain a “screened” χsc(q,ω)
with the above procedure. The actual density correlation
χρρ(q,ω) is then obtained from χsc(q,ω) by summing the
polarization graphs [1]:

χ ′′
ρρ(q,ω) = χ ′′

sc(q,ω)

|ε(q,ω)|2 , (4)

ε(q,ω) = 1 − V (q)χsc(q,ω). (5)

It is therefore enough for a theory to provide χsc(q,ω) provided
V (q) is known. For a 3D system V (q) = 4πe2/q2. This is

075122-2



DYNAMIC STRUCTURE FUNCTION OF SOME SINGULAR . . . PHYSICAL REVIEW B 96, 075122 (2017)

also true for a 2D system with 3D electromagnetic fields.
However, for a layered system in which the fields are 3D but
the electronic correlations are 2D, V (q) depends differently
on the momentum perpendicular to the layers qz and on the
2D momentum in the layers q2D . In (4) we have taken the
background dielectric constant to be 1. Fermions on a lattice
always have interband scattering. If one is interested in effects
only due to intraband scattering and they are in an energy
region smaller than most of the interband scattering, one can
reasonably replace the 1 on the right side of the equation for
ε(q,ω) by an appropriate ε0.

We will be concerned only with χsc(q,ω) in this paper with
q in the plane, since for the problems of interest the many-body
effects come dominantly from scattering within the planes.
(The momentum in the plane in the rest of the paper will be
denoted by q.) This will mean that we will not be concerned
with plasmons which are expected to dominate the response
at small q for ω � vF q. It is expected that the physics of the
plasmons remains essentially unaltered from that in a Fermi
liquid by the singularities of interest. It should be noted that
the current-current correlation is directly related to χsc(q,ω)
rather than to χρρ(q,ω):

Limq→0χ
′′
jj (q,ω) = Limq→0

ω2

q2
χ ′′

sc(q,ω). (6)

This together with the relation that the real part of the
conductivity

σ (ω,T ) = 1

ω
χ ′′

jj (0,ω) (7)

gives the observed anomalous conductivity.

III. IRREDUCIBLE VERTEX AND THE DENSITY
CORRELATION FUNCTION OF FERMIONS COUPLED TO

THE 2D DISSIPATIVE QUANTUM XY MODEL

As mentioned already, a number of 2D metals of exper-
imental interest have quantum-phase transitions which may
be described by the dissipative quantum XY model (DQXY).
These include models with ferromagnetic or antiferromagnetic
transitions with appropriate anisotropies and the loop-current
transition in cuprates and in some iridates. The critical
fluctuations in such models are not in the density channel,
but they change the density-density correlations irrespective
of their microscopic origin from those of a Fermi liquid in a
characteristic manner, which may be measurable.

Let us denote the propagator of the fluctuations of the 2D-
DQXY model by C(q,ω) and let them couple to fermions
by a vertex g(k,k′). C(q,ω) is closely related to C(q,ω) of
Eq. (2) assumed in the phenomenology. An irreducible vertex
I (k,k′; q) may be constructed as

I (k,k′; q) = g(k,k′)C(k − k′)g(k′,k). (8)

For the quantum phase transition of the DQXY model of
interest, C(q,ω) is found through RG calculations [27], and
checked by quantum Monte Carlo calculations [28,29],

C ′′(k − k′,ω − ω′,T )

≈ −χ0 tanh

(
(ω − ω′)√

(2T )2 + ξ−2
τ

)
1

|k − k′|2 + ξ−2
r

. (9)

ξτ and ξr are the correlation length in time and in space,
respectively. The 2D-DQXY model has the property that
in dimensionless units ξr ∝ ln(ξτ ), or a dynamical critical
exponent z → ∞.

These results come from the calculations of the correlations
of topological excitations of the 2D-DQXY model, which
dominate the critical dynamics. Although at the starting level
in the pure electronic Hamiltonian they arise from particle-hole
excitations with strong interactions (not confined to near the
chemical potential), their final form represents composite
objects which bear no resemblance to them, in contrast to
the collective excitations such as spin waves which do. There
is no choice but to represent their coupling to fermions as an
irreducible vertex.

The effective coupling g(k,k′) of the fermions to the critical
fluctuations are through the potential energy of the 2D rotors
or to the kinetic energy of the rotors [16]. It is important
for us here only to note that symmetry ensures that the
magnitude of both these couplings at small momenta are pro-
portional to the magnitude of the momentum transfer, |k − k′|.
Therefore,

I (k,k′,q) ∝ g2
0 |k − k′|2

|k − k′|2 + ξ−2
r

, (10)

where g0 is a coupling constant. In all diagrams shown in
Fig. 1, the dependence on k and k′ is integrated over 2D. Since
the topological defects have a spatial variation of the order of
a lattice constant, there is no important q dependence either.
The momentum dependence of the irreducible vertex is then
unimportant. We will therefore ignore the k,k′,q dependence
of I (k,k′,q) in the calculations. Given also that the frequency
dependence depends on (ω − ω′), we can represent I (k,k′,q)
by a wiggly line passing between a particle and a hole line
with arbitrary momentum transfer. This makes the calculations
straightforward.

To construct the vertex 	 from the irreducible vertex I using
the Bethe-Salpeter equation, we also need the single-particle
Green’s function G(k,ω). The single-particle self-energy
�(q,ω) can be evaluated (nonperturbatively) in terms of the
irreducible vertex; see Fig. 1(c). (A clear derivation of the
relation of the self-energy to the irreducible vertex is given
in Ref. [8].) This gives the marginal Fermi liquid form of the
self-energy near criticality:

�(q,ω) = λ
(
ω log

∣∣∣ωc

x

∣∣∣ − i(π/2)x
)

; λ = πg2
0N (0)χ0. (11)

Here x = max(ω,πT ). This form is only true for a circular
Fermi surface with constant Fermi velocity. If the velocity
varies around the Fermi surface, the self-energy has a
corresponding angular dependence in magnitude but the
frequency dependence remains the same [19]. This form
of self-energy has an upper cutoff ωc. For ω � ωc, the
self-energy is a constant.

A. Hydrodynamic region

In Ref. [22], the vertex 	 and the density correlation χ (q,ω)
have been derived by evaluating the diagrams in Fig. 1 in the
limit vF q � ω. The fact that the imaginary part of � is itself
proportional to ω leads to subtle complications due to branch
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cuts in G(k,ω) for calculations in this regime, which are dealt
with following Eliashberg’s method for calculation of sound
velocity in liquid He3. The results are that at for vF q � ω and
T � ω,

χ ′′
sc(q,ω) ≈ N (0)(v2

F /2)
q2

(ω2 + |�(ω)|2)
. (12)

In Ref. [22], residual Fermi-liquid factor corrections in (12)
have also been given which replace N (0) by the Fermi-liquid
compressibility. �(ω) is the same as �(ω) except that its real
part has log(2ωc/ω), rather than log(ωc/ω). Equation (12)
is then the same as Eq. (3) except that the upper cutoff is
at ω ∼ 2ωc. It properly obeys the continuity equation and
the compressibility sum rule and gives the conductivity as
discussed above. The imaginary part of the self-energy as well
as the logarithmic part in its real part has |ω| replaced by
πT for T � |ω|. Then the dc resistivity (in fact resistivity for
ω � T ) is ∝ T without any logarithmic correction to the mass.
The cancellation of the diverging mass in the zero-frequency
limit is due to the fact that the theory obeys the continuity
equation or the equivalent Ward identity.

The hydrodynamic regime in a (pure) marginal Fermi liquid
is worth dwelling on a bit. A hydrodynamic regime is usually
defined for q� � 1 and ωτ � 1, where � is the mean-free path
and τ is the scattering time. Then the density correlations have
a diffusive form with the diffusion coefficient D ∝ v2

F �. Here
we have the scattering rate itself ∝ max(ω,T ), so that the limit
in which the density correlations in a marginal Fermi liquid are
hydrodynamic is qvF � ω � T , when one can write them in
a diffusive form ∝ D(T )q2/[iω + D(T )q2] with a diffusion
coefficient D(T ) proportional to the temperature. For ω �
T � vF q, we may need a new term for the derived behavior,
also observed through optical conductivity experiments; I
suggest the “quantum-hydrodynamic” regime.

It is important to note that the upper cutoff in frequency
for the density fluctuations is calculated to be 2|ωc|, whereas
it is |ωc| in the fundamental fluctuation spectra, as it is in the
one-particle or one-hole spectral function. As derived in [22],
this comes about because the density fluctuations acquire the
upper cutoff which is the sum of the extent of the branch cuts
in the one particle and in the one-hole spectra.

B. High q region

Now let us consider the limit that vF q � ω, where the
calculation does not require the subtle mathematical consider-
ations in the complex plane in the opposite limit. In both limits,
essential use is made of the effective momentum independence
of the irreducible vertex I . This allows a simple evaluation
of the T matrix in Fig. 1(b) because the summation over
momentum can be carried out in any particle-hole section
independently of others. Also, For T → 0, the irreducible
propagator is a constant donated by I (�), in the frequency
range in the vertical channel −ωc � � � ωc.

Let us first consider the series for 	 = (I + IGGI +
IGGIGGI + · · · ), and calculate the second term represented
by Fig. 2. This figure gives for external energy-momenta

FIG. 2. Diagram with one particle-hole section of the Bethe-
Salpeter equation relating the full vertex to the irreducible vertex,
which is calculated in the text. The irreducible vertices depend only
on the energy transfer. In such a case, the irreducible vertices may
be expressed simply by a propagator connected to the fermions by a
point vertex.

k′ = (k′,ω′),k′′ = (k′′,ω′′),q = (q,ω),

2i(πT )2
∑
�m

I (�m)I (ω′′
n + �m − ω′

l)

×
∑

k

G(k + q,i(ω′′
n + �m + ω))G(k,i(ω′′

n + �m)). (13)

For vF q � ω, the self-energy is unimportant in the G′s. (On
the other hand, for vF q � ω, the branch cuts introduced by
the self-energy are crucial [22].) In doing the sum over the
frequency �m, it is important to take into account that εk have
finite upper and lower limits given by the bandwidth −W to W .
For considering the contribution in the sum due to the poles in
the G’s, we note that since I ’s are constant for their argument
in the interval (−ωc,ωc), only a restriction on (ω′′

n − ω′
�) in the

range (−ωc,ωc) is placed on them if we sum over �m over
the same range only for the product of the G’s alone for the
contribution of their poles. The pole contribution then yields
a result of O(ω/qvF ), which can be ignored. The important
contribution comes due to the finite bandwidth of εk. For this
part we sum over k first:∫

dθkqN (0)
∫ W

−W

dεk

(
1

i(fl + ω) − εk+q

)(
1

ifl − εk

)
, (14)

where fl = ω′′
n + �m. On doing the integration over εk

assuming free-electron bands with a finite bandwidth, one gets,
for ω � vF q,∫

dθkq

1

vq cos θkq + q2/2m

× ln

(∣∣∣∣ W + ifl + vq cos θkq + q2/2m

−W + ifl + vq cos θkq + q2/2m|
∣∣∣∣
∣∣∣∣−W + ifl

W + ifl

∣∣∣∣
)

.

(15)

We note that there is no dependence on ω in the limit
considered. Consider the q dependence. At small vq/W � 1,
we may expand the logarithm to find that the first term is a

075122-4



DYNAMIC STRUCTURE FUNCTION OF SOME SINGULAR . . . PHYSICAL REVIEW B 96, 075122 (2017)

constant, the term linear in vF q vanishes on doing the angular
integral, and the term of O(v2

f q2) gives a nonzero contribution.
Note that in general a smooth q dependence F (q) is obtained
and that there is only logarithmic dependence on fl for general
fl which vary on the scale of ωc which is comparable to W

as known from the ARPES experiments [19,20]. The leading
contribution to the sum over �m in Fig. 2 may thus be estimated
from

N (0)F (q)iπT
∑
�m

I (�m)I (ω′′
n + �m − ω′

l). (16)

The most important result then is that (to logarithmic cor-
rection) the significant dependence on frequencies is only
through (ω′′ − ω′); i.e., two irreducible ladders produce sim-
ilar frequency dependence as the single irreducible vertex.
Consider the result at T = 0 and convert the sum over
the frequency to an integral. The result then is a func-
tion of (ω′ − ω′′), which comes from the convolution of
the integral over � in the limits (−ωc,ωc). If IN (0) � 1, this
contribution is small to the same order.

If we consider larger number of rungs in the ladder, the
magnitude is reduced in each order by IN (0) and the frequency
carried by the irreducible vertex is further restricted. Each extra
rung brings in an extra fermion loop so that the signs alternate.
The net effect is a reduction in the leading vertex and this
reduction is analytic and considerable. We conclude therefore
that the total vertex is given well by the irreducible vertex for
vF q � ω.

Finally we come to calculating the density-correlation
function, i.e., Fig. 1(a). Now we have two pairs of Green’s
functions with independent momentum integration but coupled
to each other in frequencies which appear in the vertex
function. The strategy of the calculation is the same as in
evaluating Fig. 2; we drop the self-energy compared to vF q

(noting at the end that the external frequency |ω| has a cutoff
at 2|ωc due to the self-energy, as discussed earlier), and do
not consider the contributions of the poles because they are
of O(ω/vq). The leading contribution to the imaginary part
comes from the imaginary part of I and the real parts of the
products of the pairs of Green’s functions. The result is

χ ′′
sc(ω,q) = iπT

∑
ω′

m,ω′′
n

I (ω′
m − ω′′

n)
∫

dθk′′q
1

vq cos θk′′q + q2/2m
ln

(∣∣∣∣ W + iω′′
n + vq cos θk′′q + q2/2m

−W + iω′′
n + vq cos θkq + q2/2m|

∣∣∣∣
∣∣∣∣−W + iω′′

n

W + iω′′
n

∣∣∣∣
)

×
∫

dθk′q
1

vq cos θk′q + q2/2m
ln

(∣∣∣∣ W + iω′
m + vq cos θkq + q2/2m

−W + iω′
m + vq cos θkq + q2/2m|

∣∣∣∣
∣∣∣∣−W + iω′

m

W + iω′
m

∣∣∣∣
)

. (17)

The most important result is that for vF q � ω, there is no dependence of χ ′′
sc(ω,q) on ω except for the cutoff mentioned. Next

we consider the q dependence. In the limit that vf q � W and for ω = 0, we may again expand the logarithms and find that the
leading term is a constant in q, followed by a term proportional to q2; the term linear in q is absent. The actual q dependence
depends on the details of the band structure. We note that there is no restriction put on ω except that it is smaller than vF q, which in
effect amounts to ω less than O(W ). In cuprates, this is similar to 2ωc. Also the results in the crossover region must be continuous
with the results for ω � vF q, where the upper cut-off for ω is 2ωc. We may write the final result for vF q � ω and at T = 0 as

χ ′′
sc(q,ω) ≈ −sgn(ω)G(q)λN(0)I0, − 2ωc � ω � 2ωc,G(q) = (G0 + G2q

2a2 + · · · ). (18)

The real part, χ ′
sc(q,ω), using the Kramers-Kronig transforma-

tion is ∝ log |2ωc/ω|. At finite T , sgn(ω) in (18) is expected
to be changed to tanh(ω/2T ).

The results above are for T = 0 and at criticality, i.e., for
ξ−1
r = ξ−1

τ = 0. For departure from criticality on the Fermi-
liquid side, the low-energy (and long-wavelength) properties
revert to Fermi liquid but only at low temperatures and
energies compared to the crossover scale. For much higher
temperatures and energies, there is a crossover back to the
same results as at criticality.

The calculation above is straightforward. The leading
results, ignoring logarithmic corrections, etc., are very simple.
The calculation itself is done in unusual limits compared to
Fermi-liquid calculations, because of the unusual nature of
the irreducible vertex and its large cutoff. Calculations of the
regime between the quantum-hydrodynamic and the opposite
limit are forbidding and so therefore is the determination of
the crossover between the two.

Let us discuss the compressibility sum rule,

∫ ∞

0
dωωS(q,ω) = q2/2m, (19)

or its generalization for a tight-binding band [36]. In the hydro-
dynamic region(s), since S(q,ω) ∝ q2/ω2 this is satisfied to
logarithmic order and an appropriate cutoff function is required
to take care of the logarithms. In the collisionless limit, it is
satisfied with the constant term G0 in G(q) only if the upper
limit for this regime is fixed at w = vF q. For higher powers
of q2 in G(q), it is satisfied if the range of integration is not
decided by q but is of O(ωc). As discussed, the crossover
between the two regions is very hard to calculate.

IV. S(q,ω) FOR AFM QUANTUM CRITICALITY
OF THE XY CLASS

The transport anomalies as well as the entropy in the AFM
quantum-critical fluctuation region of several compounds
are similar to those in the cuprates. It has been argued
that due to either Ising anisotropy with incommensurate
AFM fluctuations or due to XY anisotropy itself, the AFM
quantum-critical fluctuations in 2D also belong to the class
of the dissipative quantum XY model. The crossover to the
anisotropic quantum-critical point [37] is expected to be
over a much wider region of temperature above the T = 0
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quantum-critical point than the range of (T − Tc)/Tc near
classical-critical points. It is of interest to ask what will be
the dynamic structure function S(q,ω) in this case.

The quantum-critical fluctuations in the 2D- DQXY model
for AFMs are expected to be of the same form as Eq. (9),
except that (i) (k − k′) is replaced by (k − k′ − Q), where Q
is the set of AFM Bragg vectors, and (ii) k and (k′ + Q) carry
opposite spin. The vertex g(k,k′; Q) is also modified so that
it is proportional to (k − k′ − Q). This is sufficient to give a
linear scattering rate nearly independent of momentum and a
resistivity due to inelastic scattering ∝T as well as a T log T

contribution to the entropy. Even though the spin fluctuations
are peaked in momentum near Q, the self-energy is linear in
(ω,T ) all around the Fermi surface; the entire Fermi surface
is hot. These conditions also imply that the dynamic structure
function will also be of the forms given in this paper. These
are unexpected predictions for AFM quantum criticality. If
they are satisfied a quite different picture for AFM quantum
criticality in 2D emerges.

V. SUMMARY

I summarize here the results for the screened density
correlations χ ′′

sc(q,ω) for the 2D-DQXY model in relation to
several experiments including some forthcoming experiments.
Some of these results were proposed for cuprates long ago
on the basis of phenomenological spectra when it was not
clear what the critical modes were or the relevant statistical
mechanical model for them. It has been argued elsewhere
that the 2D-DQXY model is the appropriate model for the
quantum-critical fluctuations of the loop-current order in
cuprates as well as for incommensurate antiferromagnetic
criticality of 2D metals. The critical correlations of this model
are driven by topological defects and are quite unlike the
anharmonic soft-mode fluctuations which are the province
of the Ginzburg-Landau-Wilson form of criticality. The
quantum-hydrodynamic limit of the density correlations which
are inherited from such critical fluctuations were calculated
earlier; the results for the momentum and frequency region
outside such a regime are given in this paper here. Experiments
in metals measure χ ′′

ρρ(q,ω). The relation between the two
correlation functions is given by Eq. (2). Outside the small-
momentum regime in which plasmons are observed, the
frequency dependence of the two is expected to be essentially
identical, because outside this region the dielectric function
ε(q,ω) is frequency independent up to the high-frequency
cutoff.

The observed linear temperature dependence of the resis-
tivity is consistent with the derived χ ′′

sc(q,ω) through Eqs. (6)
and (7). This tests the hydrodynamic limit of the correlation
function. No alternative explanation for the linear resistivity
exists. The frequency-dependent conductivity and the Raman
response test the results for q → 0 over a range of frequency
up to about 0.5 eV. In comparing the measured conductivity,
it is important to bear in mind that there is an upper cutoff in
the fluctuation spectra (or of the irreducible vertex) such that
the real part of the self-energy modifies the optical response
from the scale-invariant response which is a continuation of the
zero-frequency response at above about 0.2 eV. The gradual
departure from the scale-invariant response depends on the

sharpness of the cutoff. This is important to emphasize as
it has led to some confusing fits to frequency dependence
of the conductivity in an intermediate scale to power-law
forms. Such fits to a problem born of infrared singularities
as at quantum-critical points do not have significance. In
fact, one should in general expect nonuniversal features in
experimental results at frequencies due to other reasons as
well. It is the simplicity of the band structure of the cuprates
that universal features are observed to a good approximation
from the lowest frequencies to those up to about 0.2 eV in some
measurements and even higher in some other measurements.
We should not expect this in the Fe-based compounds due to
their considerably more complicated band structure.

No tools have existed to reliably measure the density
fluctuation spectra over the complete relevant momentum
and frequency region until recently. Outside the quantum-
hydrodynamic regime, the screened density correlations are
independent of frequency in this region up to the zone
boundary except for the high-frequency cutoff which occurs
at about twice the cutoff ωc in the irreducible vertex. They
will in general have a momentum dependence. The irreducible
vertex is also given in experiments such as angle-resolved
photoemission which measures the single-particle relaxation
rate as a function of frequency and is about 0.5 eV. We can
combine the results for all momenta and frequency so that
the theory can be easily compared with the experiments. The
results in the limit of validity of Eq. (12) and Eq. (18) may be
written as

Imχsc(q,ω) ≈ −sgn(ω)χ0
v2

F q2

ω2
, for vF q � ω; (20)

≈ −sgn(ω)[G(q)/G0]χ0, for 2ωc � ω � vF q;

(21)

≈ 0, for ω � 2ωc. (22)

We may conveniently interpolate between the region above and
below the cutoff in frequency by requiring that the correlation
function fall off as 1/ω2 as for free fermions at high frequency:

Imχsc(q,ω) = −χ0[G(q)/G0] tanh{[ωc(q)/ω]2} (23)

with ωc(q) = vF q for vF q � ω and ωc(q) = ω0 for 2ωc �
ω � vF q. It is noteworthy that the cutoff in the density
correlations at about twice those deduced to be dominant in
giving linear in ω scattering rate in the single-particle spectra
is expected.

Finally, it is worth recalling an interesting paper on
the Raman response [38]. A remarkable property of the
experiments on Raman scattering in cuprates, which has not
been much commented on, is that the results are to a first
approximation the same in the A1g,B1g,B2g channels [39]. It
should be recalled that the Raman response in periodic solids
(measured resonantly) is a current-current correlation in the
long-wavelength limit in different irreducible representations.
The fact that similar unusual results are found in different
channels was understood by Shekhter [38] by a calculation in
which the critical fluctuations are used as irreducible vertices
in the cross-channel, just as in the calculations for density
correlations at small q and their extension presented here.
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