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Theory of quantum oscillations of magnetization in Kondo insulators
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The Kondo lattice model of spin-1/2 local moments coupled to the conduction electrons at half filling is studied
for its orbital response to magnetic field on bipartite lattices. Through an effective charge dynamics, in a canonical
representation of electrons that appropriately describes the Kondo insulating ground state, the magnetization is
found to show de Haas-van Alphen oscillations from intermediate to weak Kondo coupling. These oscillations are
ascribed to the inversion of a dispersion of the gapped charge quasiparticles, whose chemical potential surface is
measured by the oscillation frequency. Such oscillations are also predicted to occur in spin-density wave insulators.
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I. INTRODUCTION

Typically realized in rare-earth compounds, the Kondo
insulators are dense arrays of local moments interacting with
the conduction electrons at half filling [1–3]. They exhibit in-
sulating behavior at low temperatures due to singlet formation
between the local moments and the conduction electrons. Re-
cent observations of de Haas-van Alphen oscillations in SmB6

have greatly renewed the interest in Kondo insulators [4,5].
The de Haas-van Alphen (dHvA) effect refers to the quan-

tum oscillation of magnetization as a function of the (inverse)
magnetic field. It is considered a hallmark of the metallic
response and a direct probe of the Fermi surface (FS) [6–8].
The dHvA oscillations are a manifestation of the Landau
quantization of electronic states in uniform magnetic field. An
insulator is not expected to show dHvA oscillations. But the
case of SmB6 presents a counterexample to this conventional
view and poses a question of principle on the occurrence of
dHvA oscillations in the insulators. This question has been
given some attention recently, with some studies getting the
hitherto unexpected dHvA oscillations in mostly the band-
theoretic models of insulators [9–14]. But the situation in a
Kondo insulator (KI) is more precarious, where the electrons
are correlated and localized, and one is not quite sure which
quasiparticles, if any, cause dHvA oscillations, and what
surface, Fermi or otherwise, is being measured.

Topologically protected conducting surface states in a
topological Kondo insulator with an insulating bulk could
in principle give quantum oscillations [13,15]. But the FS
measured from quantum oscillations in SmB6 corresponds
to the half of its bulk Brillouin zone (BZ) [5]. This cannot
be accounted for by the surface states and calls for an
understanding of the dHvA oscillations within the bulk
insulating behavior of the KI’s.

Another scenario treats the Kondo insulating state on
bipartite lattice (SmB6 has a simple cubic structure) at half
filling as a scalar Majorana Fermi sea spread over half of
the bulk BZ [12]. While it may look agreeable on the size
of the observed FS, it has gapless quasiparticles, and this
gapless Majorana sea cannot describe an insulator [16]. A
recent experiment also rules this out [17].
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In this paper, we study the Kondo lattice model using a
canonical representation of electrons [18] that appropriately
describes the Kondo insulating state on bipartite lattices and
gives the quantum oscillations of magnetization as a general
bulk property for the Kondo coupling ranging from interme-
diate to weak. We get these oscillations due to the inversion
of a dispersion of the charge quasiparticles whose effective
chemical-potential surface they measure. These quasiparticles
are gapped and occupy half of the bulk BZ. This approach
also applies to the Hubbard model and predicts the dHvA
oscillations to occur in the insulating spin-density wave state.

II. KONDO LATTICE MODEL

To understand dHvA oscillations in Kondo insulators, we
study the orbital response to magnetic field in the ground state
of the basic Kondo lattice model (KLM), Ĥ , of local spin-1/2
moments coupled via antiferromagnetic exchange, J > 0, to
the conduction electrons at half filling with nearest-neighbor
hopping, t > 0, on square and simple cubic lattices.

Ĥ = −t
∑
r,δ,s

ei e
h̄

∫ r+δ

r A·drĉ†r,s ĉr+δ,s + J

2

∑
r

Sr · τ r (1)

Here, r runs over the lattice sites, δ is summed over the nearest
neighbors of r, and s = ↑,↓ is the spin label. The ĉr,s (ĉ†r,s)
are the annihilation (creation) operators of the conduction
electrons, whose spin operators are denoted as Sr. The Pauli
operators, τ r = (τ x

r ,τ
y
r ,τ z

r ), denote the local moments. The
uniform external magnetic field, Bẑ, is coupled here to the
electronic motion via Peierls phase in terms of the vector
potential, A = −Byx̂.

To set up our scheme of calculation, we first discuss the
KLM without magnetic field. A canonical representation of
electrons in terms of the spinless fermions and Pauli operators
has been found to be fruitful in describing the correlated
electrons [18–20]. Following Ref. [18], we use it here to rewrite
the KLM for B = 0 on bipartite lattice as follows:

Ĥ = − it

2

∑
r∈A

∑
δ

[ψ̂a,rφ̂b,r+δ + ψ̂b,r+δφ̂a,r(σ r · σ r+δ)]

+ J

4

[∑
r∈A

n̂a,r(σ r · τ r) +
∑
r∈B

n̂b,r(σ r · τ r)

]
, (2)
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where φ̂a,r = â
†
r + âr and iψ̂a,r = â

†
r − âr are the Majorana

operators corresponding to the spinless fermion operators,
âr, on A sublattice, and likewise, φ̂b,r and ψ̂b,r for b̂r

on B sublattice. Moreover, n̂a(b),r = â
†
r âr (b̂†rb̂r) are their

number operators, and σ r’s are the Pauli operators. In this
representation by Kumar

ĉ
†
r↑ = φ̂a,rσ

+
r , ĉ

†
r↓ = 1

2

(
iψ̂a,r − φ̂a,rσ

z
r

)
(3)

and Sr = 1
2 n̂a,rσ r for r ∈ A sublattice, and

ĉ
†
r↑ = iψ̂b,rσ

+
r , ĉ

†
r↓ = 1

2

(
φ̂b,r − iψ̂b,rσ

z
r

)
(4)

and Sr = 1
2 n̂b,rσ r for r ∈ B sublattice [18]. Moreover, the

number operator for total ↑ and ↓ electrons on a site r ∈ A(B)
is: n̂r↑ + n̂r↓ = 1 + σ z

r (1 − n̂a(b),r).

A. Effective charge and spin dynamics

The form of Eq. (2) clearly suggests that, if J � t , then σ r
and τ r would locally form singlet in the ground state, while
the spinless fermions describe the residual charge dynamics
through

Ĥ ∗
c = − it

2

∑
r∈A

∑
δ

ψ̂a,rφ̂b,r+δ − 3J

4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]

(5)

with a charge gap, �c =
√

(3J/4)2 + (zt/2)2 − zt/2 [21].
Here, z is the nearest neighbor coordination. This singlet state
also has a spin gap, �s = J , and keeps the local occupancy at
one electron per site. But for B �= 0, we do not get quantum
oscillations in this idealized model of strong-coupling KI.
Hence, we improve upon it by correcting the local singlets for
the exchange interaction caused by hopping and also correcting
in return the charge dynamics self-consistently.

To this end, we decouple the Pauli operators from the
spinless fermions in Eq. (2) and write an approximate version
of the KLM: Ĥ ≈ Ĥc + Ĥs + e1L, with

Ĥc = − it

2

∑
r∈A

∑
δ

[ψ̂a,rφ̂b,r+δ + ρ1ψ̂b,r+δφ̂a,r]

+ Jρ0

4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]
, (6a)

Ĥs = tζ

4

∑
r,δ

σ r · σ r+δ + J n̄

4

∑
r

σ r · τ r, (6b)

and e1 = −(ztζρ1 + J n̄ρ0)/4. Here, L is the total number
of sites, ρ0 = 1

L

∑
r〈σ r · τ r〉, ρ1 = 1

zL

∑
r,δ〈σ r · σ r+δ〉, n̄ =

1
L
〈∑r∈A n̂a,r + ∑

r∈B n̂b,r〉 is the density of spinless fermions,
and ζ = 2i

zL

∑
r∈A

∑
δ〈φ̂a,rψ̂b,r+δ〉. These mean-field param-

eters, ρ0, ρ1, ζ , and n̄, are determined self-consistently by
solving Ĥc and Ĥs [22].

B. Kondo insulator in zero magnetic field

The effective charge dynamics, Ĥc of Eq. (6a), in the
diagonal form is given by

Ĥc = Jρ0L/8 +
∑

k

∑
ν=±

Ekν(η̂†
k,ν η̂k,ν − 1/2), (7)

where k ∈ the half BZ, Ek± = Ek ± 1
2 t(1 + ρ1)|γk| > 0, γk =∑

δ eik·δ ,

Ek =
√

(Jρ0/4)2 + [t(1 − ρ1)|γk|/2]2, (8)

and η̂k,ν are the fermionic quasiparticle operators. In terms
of these quasiparticle operators, the original spinless fermions
in the k space are: âk = 1√

2
(ãk − b̃k) and b̂k = 1√

2
(ãk + b̃k),

where ãk = cos θk η̂k,− − sin θk η̂
†
−k,+, and b̃

†
−k= sin θkη̂k,−+

cos θk η̂
†
−k,+. Here, âk =

√
2
L

∑
r∈A e−ik·r âr and b̂k =

√
2
L∑

r∈B e−ik·r b̂r. The equations for n̄ and ζ in the ground state
of Ĥc (i.e., the vacuum of the gapped charged quasiparticles)
are:

n̄ = 1

2
− Jρ0

4L

∑
k

1

Ek
, and (9a)

ζ = t(1 − ρ1)

zL

∑
k

|γk|2
Ek

. (9b)

We study the Ĥs of Eq. (6b) using bond-operator represen-
tation of σ r and τ r [23,24], wherein we write σrα ≈ 1

2 s̄(t̂†rα +
t̂rα) ≈ −τrα (for α = x,y,z) and σ · τ ≈ −3s̄2 + t̂

†
rαt̂rα , with a

local constraint, s̄2 + t̂
†
rαt̂rα = 1. Here, t̂rα denotes the bosonic

triplon excitation with respect to the local Kondo singlet of
mean amplitude s̄. The effective spin dynamics in the diagonal
form reads as:

Ĥs ≈
∑

k

∑
α=x,y,z

εk(t̂†kαt̂kα + 1/2)

+L[λs̄2 − 5λ/2 − J n̄(s̄2 − 1/4)], (10)

where εk =
√

λ(λ + tζ s̄2γk) is the triplon dispersion with λ

as Lagrange multiplier, and t̂kα = 1√
L

∑
r e−ik·r t̂rα for k ∈ the

full BZ. The mean-field parameters for this part are given as:
ρ0 = 1 − 4s̄2 and ρ1 = 4s̄2(J n̄ − λ)/ztζ , where

s̄2 = 5

2
− 3

4L

∑
k

2λ + tζ s̄2γk

εk
, and (11a)

λ = J n̄ − 3λtζ

4L

∑
k

γk

εk
. (11b)

We compute n̄, ζ , ρ0, and ρ1 by solving Eqs. (9) and (11) for
different values of t , with J = 1. At t = 0, their exact values
are: ρ0 = −3, ρ1 = 0, n̄ = 1, and ζ = 0. For t > 0, we get
−3 < ρ0 � ρ1 < 0, and 0 < ζ < 0.5 < n̄ < 1, as shown in
Fig. 1. We correctly find the Ĥc to have a nonvanishing charge
gap, �c, whereas Ĥs exhibits a spin gap, �s , for t < tc in the
Kondo singlet phase. The �s goes continuously to zero at tc,
causing a transition to Néel antiferromagnetic (AFM) state, as
shown in Figs. 2(c) and 2(d) for square lattice. Our calculation
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zt/J

FIG. 1. Mean-field parameters of the effective charge and spin
dynamics as a function of t/J on square and simple cubic lattices.
The black dots indicate the critical hopping tc below which the
insulating ground state is a Kondo singlet and above which it is
antiferromagnetically ordered [see Fig. 2(d) for the spin and charge
gaps].

slightly overestimates the tc, as compared to its values from
other methods [25–27].

C. Quasiparticle band inversion

A special feature of the Kondo insulating state that
we discover here is the inversion of a charge quasiparticle
dispersion that has direct bearing on quantum oscillations. The
dispersions, Ek± > 0, always touch each other at |γk| = 0, at a
value of J |ρ0|/4, which is the chemical potential of the spinless
fermions in Ĥc. For small t/J , Ek−(+) is lowest (highest)
at k = 0, and highest (lowest) at |γk| = 0. But for t > ti ,
the k = 0 becomes a point of local maxima of Ek−, whose
lowest value (�c) now lies on the contour, |γk| = J |ρ0|(1 −
|ρ1|)/{4t(1 + |ρ1|)

√|ρ1|}, while Ek+ is always maximum at
k = 0 [28]. A similar shift in the band minimum at a similar
value of ti has also been noted in Ref. [29]. Furthermore, for
t > tL > ti , the k = 0 becomes the global maxima of Ek−,
which leads to a second branch of the chemical-potential
surface (CPS) given by |γk| = J |ρ0|(1 − |ρ1|)/{4t |ρ1|}, in
addition to |γk| = 0 [see Figs. 2(a), 2(b), 4(c) and 4(d)]. This
is akin to Lifshitz transition [30] but in a Kondo insulator.

We will see that, for dHvA oscillations, the CPS in KI
plays the role of Fermi surface in metals. Sufficiently above
tL, the Ek− nearly fully inverts and looks similar to Ek+.
This inversion of Ek−, shown in Fig. 2(a) for square lattice,
is generic to Kondo insulators, at least on bipartite lattices.
Having obtained this novel and other expected features of the
KI’s using Ĥc + Ĥs , we now study this minimal approximate
model in a uniform magnetic field.

ti tL tc
square lattice 0.38 0.52 0.89

simple cubic lattice 0.33 0.48 0.62
(12)

(a)
(b)

(c)

(d)

FIG. 2. Key features of the Kondo insulating ground state from
Eq. (6) on square lattice (with J = 1). (a) Dispersion, Ek−, of Ĥc

undergoes inversion for t > ti . (b) The chemical-potential surface
(CPS), Ek− = J |ρ0|/4, for t > tL, where tL is the point of Lifshitz-like
transition, below which |γk| = 0 is the CPS, and above tL, the CPS has
a second t dependent branch that approaches |γk| = 0 with increasing
t . (c) Triplon dispersion εk of Ĥs . It is gapped (Kondo singlet) for
t < tc and gapless (Néel antiferromagnetic) for t > tc. See Eq. (12)
for ti , tL, and tc. (d) The charge (�c) and spin (�s) gaps vs. t/J . Also
indicated are the ti and tL, in addition to the tc.

III. OSCILLATIONS OF MAGNETIZATION IN KONDO
INSULATING GROUND STATE

By rewriting Eq. (2) for B �= 0, and keeping only those
terms that couple to n̄, ζ , ρ0, and ρ1, we get the following B

dependent minimal models of charge and spin dynamics of a
Kondo insulator.

Ĥ [B]
c = − it

2

∑
r∈A

∑
δ

{[ψ̂a,rφ̂b,r+δ + ρ1ψ̂b,r+δφ̂a,r]

× cos (2πα ry x̂ · δ̂)} + Jρ0

4

[∑
r∈A

n̂a,r +
∑
r∈B

n̂b,r

]

(13a)

Ĥ [B]
s = tζ

4

∑
r,δ

cos (2πα ry x̂ · δ̂)σ r · σ r+δ + J n̄

4

∑
r

σ r · τ r

(13b)

These are Hofstadter [31] type models, but of Majorana
fermions and hard-core bosons. Here, α = eBa2/h is the
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(a) (b)

(c)

FIG. 3. The dHvA oscillations from Eq. (13a) in the Kondo
insulating ground state on square lattice. (a) Magnetization vs. α,
where M± are the contributions from the two charge quasiparticle
bands, and M = M+ + M−. (b) M/α vs. 1/α. (c) Fourier transform
of M/α, with an inset showing the dominant frequency of oscillation,
f0, and its amplitude vs. t/J . The f0 = 0.5 is t independent, and
it corresponds to the area of the half-BZ enclosed by the |γk| = 0
contour [see Fig. 2(b)].

magnetic flux, a is the lattice constant, integer ry is the y

coordinate of r, and δ̂ = δ/|δ|. We put zero-field values of ρ0,
ρ1, n̄, and ζ in Eqs. (13) and compute magnetization M =
−∂eg/∂α as a function of α = p/q for integer p = 1,2, . . . q

with q up to 709 on square lattice and 401 on simple cubic
lattice [32]. Here, eg is the ground state energy per site of
Eqs. (13). As the contribution to M from Ĥ [B]

s happens to be
quite (∼100 times) small compared to that from Ĥ [B]

c , and
we see dHvA oscillations only through the charge dynamics,
therefore, below we discuss the results for Ĥ [B]

c only.
In Fig. 3(a), we show the evolution of magnetization

behavior with t on square lattice. For t < ti , we see no
quantum oscillations of M with respect to α, except an
overall sinusoidal variation of negligible magnitude. This is
because the nontrivial oscillatory contribution to M from
Ek− states (M−) cancels that (M+) from Ek+. It is like
two opposite cyclotron orbits from two oppositely curved
dispersions canceling each other. This cancellation gets weaker
as Ek− starts inverting. But only when t is sufficiently above
tL, with Ek− nearly fully inverted, do we begin to clearly
see the oscillations of M in the ground state of Ĥ [B]

c . These
oscillations are weak in the Kondo singlet phase for t � tc but
become pronounced when t increases into the Néel phase,
as Fig. 3(b) shows. The Fourier transform of M/α (with
flat background subtracted) for 4 < 1/α < 20 is presented in
Fig. 3(c), where the dominant Fourier peaks for different t’s
occur at the same frequency, f0 = 0.5, while their amplitudes
grow with t [empirically, as (t − t∗)2 with t∗ ≈ 0.57 � tL].

The semiclassical relation, F = (2π/a)2f , between the
area F of an extremal orbit perpendicular to magnetic field
on a constant energy surface in k space and the frequency
f (in units of h/ea2) of dHvA oscillations [8], implies that

(a) (c)

(d)

(b)

FIG. 4. (a) M/α vs. 1/α in the Kondo insulating ground state on
simple cubic lattice. (b) Fourier transform of M/α. The dominant
frequency, f0 = 0.185, is the same as the area enclosed by the blue
orbit in (c). It is a t independent extremal orbit on the |γk| = 0 CPS.
(d) The second branch of CPS. It tends to the first one with increasing
t . The dotted octagons in (c) and (d) denote the boundary of the half
BZ on the kz = 0 plane.

the f0 = 0.5 corresponds to the area of the half BZ, which
unmistakably points to the |γk| = 0 in Fig. 2(b) as its origin.
From this, we infer that the dHvA oscillations in a KI measure
the CPS of its charge quasiparticles [33]. We think of the CPS
as a generalization of the FS to the cases with gapped fermion
quasiparticles. In the gapless Fermi systems, say metals, the
CPS would be the Fermi surface.

Similarly, we also get quantum oscillations of magneti-
zation on simple cubic lattice, as shown in Fig. 4(a). Its
Fourier transform in Fig. 4(b) gives the dominant frequency
at f0 = 0.185, which is independent of t/J and corresponds
precisely to the area enclosed by the blue-colored orbit shown
in Fig. 4(c). It is an extremal orbit on the |γk| = 0 branch of
the CPS on the kz = 0 plane. It is very clear that the dHvA
oscillations measure the CPS, in corroboration of what we
found on the square lattice.

A. Quantum oscillations in SDW insulators

The above findings for the KLM prompted us to also study
dHvA oscillations in the Hubbard model, for which the present
approach was invented [18]. For small t , in units of the local
repulsion U , the Mott insulating Néel ground state at half
filling on bipartite lattices is described here by the gapped,
oppositely curved dispersions, Ek±. We take ρ1 = −1.338
(quantum Monte Carlo value [34]) on square lattice and
−1.194 (spin-wave theory) on simple cubic lattice. Here, Ek+
on square (simple cubic) lattice starts inverting at ti = 0.016
(0.007) and undergoes a Lifshitz-like transition at tL≈ 2ti . For
the same α = p/q as taken for KI’s, the data in Fig. 5 shows
clear oscillations for t � 0.5, with f0 = 0.5 and 0.185 coming
from the |γk| = 0 CPS on square and simple cubic lattices.
This calculation predicts the dHvA oscillations to occur in
spin-density wave (SDW) insulators, because the insulating
state of the half-filled Hubbard model for such large values of
t describes the SDW insulators.
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(a)

(b) (d)

(c)

FIG. 5. The dHvA oscillations in the insulating Néel ground state
of the Hubbard model (with U = 1) at half filling on (a) square
and (c) simple cubic lattices. Their Fourier amplitudes (divided by
t for better visibility at smaller t’s) are plotted in (b) and (d). The
dominant frequency f0 in the two cases here is the same as that for
the corresponding KI’s.

IV. CONCLUSION

To understand the quantum oscillations of magnetization in
Kondo insulators, we have studied the spin-1/2 Kondo lattice

model at half filling on square and simple cubic lattices. The
key finding of our study is that the dHvA oscillations in Kondo
insulators occur as a bulk phenomenon, which manifests itself
through the inversion of a Hofstadter-quantized dispersion
of the gapped charge quasiparticles whose chemical-potential
surface these oscillations measure. We have found this through
a minimal effective dynamics, in a certain canonical repre-
sentation of electrons, that appropriately describes the Kondo
insulating ground state and reveals the inversion and Lifshitz-
like transition for charge quasiparticles. This approach also
gives the same oscillations in the Néel insulating ground
state of the half-filled Hubbard model, with an amplitude that
grows with hopping. It clearly suggests that the spin-density
wave insulators would also exhibit quantum oscillations of
magnetization. This needs to be investigated further and
will be discussed elsewhere. It would also be interesting to
investigate the quasiparticle band inversion, that we have found
on bipartite lattices, on nonbipartite Kondo lattices.
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