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Molecular polarizability of water from local dielectric response theory
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We propose a fully ab initio theory to compute the electron density response under the perturbation in the
local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92,
241107(R) (2015)], which provides a rigorous theoretical framework to treat local electronic excitations in both
finite and extended systems beyond the commonly employed dipole approximation. We have applied this method
to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal
that the crystal field of the hydrogen-bond network has strong anisotropic effects, which significantly enhance
the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The
contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability
by 5–6%. Our study provides insights into the dielectric properties of water, which form the basis to understand
electronic excitations in water and to develop accurate polarizable force fields of water.
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I. INTRODUCTION

Water is one of the most important substances for life, many
fields of science, and numerous technological applications.
Despite its simple molecular structure, water has many
anomalous behaviors, e.g., its density reaching the maximum
at 4 ◦C, that have attracted intensive research for decades. One
intriguing aspect of the fundamental properties of water is the
electronic excitation, which is essential to the understanding
of a broad range of problems, such as solvation, water/solid
interfaces, and electrochemical reactions in liquid solution.
The quantum theory of electronic excitation has been widely
used to interpret, e.g., the x-ray absorption [1–4] and optical
absorption spectra of water [5,6], which in turn provide
important physical insights into the atomic structures and
the electronic structure of water. Besides, it has been well
established that van der Waals dispersion forces, arising from
the coupling of instantaneous and induced excitations, play a
critical role in accurately describing the structure of water in
ab initio molecular dynamics simulations [7–11].

In the linear response regime, how to describe the electronic
part of the molecular polarizability of water (αH2O) remains a
subject of debate, despite the rather simple textbook picture
of dielectrics [12]. Experimentally, αH2O is known in the gas
phase only [13]. In the condensed phase, the average value
of the molecular polarizability is typically estimated from
the refraction index measurement using the Lorentz-Lorenz
relation [14]. Although this approach is suitable for gases and
nonpolar liquids, it fails for polar liquids, such as water, due
to the inaccurate description of the local field experienced
by the polar molecule. Many competing models have been
proposed to improve Debye’s dipole theory [14], including
models from Onsager [15] and Kirkwood [16]. Due to the
deficiency of a classical treatment of the local field in liquid
water, this problem has not been solved yet. Besides the actual
value of αH2O, it is more important to understand how αH2O

changes in different chemical environments (e.g., from the gas
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phase to the condensed phase) or under different boundary
conditions (e.g., bulk water or confined water, such as water
at the solid/water interface).

From the computational point of view, although the macro-
scopic average of the dielectric response of water is very well
captured by the density functional theory (DFT) or beyond-
DFT methods, such as the many-body perturbation theory
[5,6], the chemical nature of the microscopic counterpart, e.g.,
the microscopic electric susceptibility (χ ), remains poorly
understood. Currently, a rigorous, fully ab initio theory
to compute αH2O is lacking, and existing models predict
contradicting trends in αH2O. Using point charge models to
represent the solvent molecules, Gubskaya and Kusalik [17]
found an increase of αH2O in liquid. Morita [18] proposed a
cluster model, where the solute polarizability in the cluster
is approximated by the difference of the polarizability of the
cluster and that of the solvent only, �α = αtot − αsolv. The
nonadditive correction was taken into account by introducing
a dielectric continuum model of the solvation shell [18]. In
contrast to the point charge model, the cluster model predicts
the isotropic molecular polarizability, ᾱH2O = 1

3 Tr (αH2O), in
the liquid is reduced from that in the gas phase by 7–9%,
and the reduction was attributed to the electron repulsion of
the ambient solvent molecules that perturb and confine the
spatially diffuse tail of the electron cloud of the solute [18].

Most of other computational studies employed an extension
[19] of the interactive dipole model (IDM) [20–22] to the
condensed phase, where the electrostatics of the electron den-
sity response is approximated at the dipole-dipole interaction
level. IDM calculations found that ᾱH2O in the liquid water is
reduced by less than 2% [23,24] or the same as [25] that of
the gas phase. These results also showed an anisotropic effect,
with the in-plane components reduced, while the out-of-plane
component enhanced [23–25]. The origin of these changes is
unclear, as the effects of the crystal field are intertwined with
structural changes of water monomer geometries under the
thermal fluctuation.

Because of the uncertainties in determining αH2O from
both experiment and theory, there is no clear recipe on how
to choose the right αH2O in a polarizable force field, given
the knowledge of the gas phase value [26]. To address this
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open question, in this paper we proposed a fully ab initio
method to compute αH2O based on our recently developed
local dielectric response theory (LDRT) [27], which is among
the techniques to compute the dielectric response function
without explicitly referring to the empty states [28–34]. The
new method is general and can be used to study αH2O in
different chemical environments. We proved that the widely
used IDM is the dipole limit of our theory. In the numerical
study of αH2O in liquid water, we paid special attention to
separate the environmental effects due to the crystal field and
charge transfer from those caused by intramolecular thermal
fluctuations.

II. METHOD

A. Molecular polarizability in extended systems
under the dipole approximation

In order to quantify molecular polarizabilities in an ex-
tended system, it is necessary to express the dielectric response
of a many-electron system in a local representation, instead of
the Bloch representation. A formal way to proceed is to use
the Wannier function (WF) formalism, such as the maximally
localized Wannier function (MLWF) [35–37], where the WFs
(|wRn〉) are constructed from unitary transformations of the
Bloch orbitals (|ψk

m〉). In systems with a finite band gap, we
consider only the occupied bands:

|wRn〉 = �

(2π )3

∫
BZ

dke−ik·R
nv∑

m=1

U (k)
mn

∣∣ψk
m

〉
, (1)

where nv is the total number of the occupied bands, and
� is the real space primitive cell volume. Unitary matrices
(U (k)) in the MLWF formalism minimize the spatial spreads
of the WFs labeled by the lattice vector (R) and the Wannier
center index (n). In this study, we focus on isolated systems or
periodic systems with a large supercell, where a single �-point
sampling in the reciprocal space is used. The extension to
general cases of the k-point sampling, although in principle
feasible, is beyond the scope of this paper. In the �-point
formulation, the above expression is simplified to

|wn〉 =
nv∑

m=1

Umn|ψm〉. (2)

Within the modern theory of the electric polarization in crys-
talline dielectrics [38–41], the dipole moment of a subsystem
(e.g., an ion or molecule labeled by M) is defined in atomic
units as

μM =
∑
i∈M

Zi Rion
i − 2

∑
n∈M

rn, (3)

where Zi and Rion
i are the charges and positions of ions.

Positions of the Wannier centers that belong to M , rn =
xnî + ynî + znk̂ can be computed from [35]

xn = − L

2π
� ln〈wn|e−i 2π

L
x |wn〉, (4)

where L is the size of the supercell.
Upon a small perturbation from an external electric field

(E) at a given frequency, the electronic contribution to the net

induced dipole of M in the gas phase is given by

�μM = α
gas
M E, (5)

where α
gas
M is the frequency-dependent gas phase molecular

polarizability tensor. Here we dropped the explicit frequency
dependence to simplify the notation. Once the molecule is
embedded in a chemical environment, e.g., a cation in a solid
or a solute molecule surrounded by solvent molecules, the
induced dipole arises from the response to the local field
that is the sum of the external field and the induced field
from the environment, Eloc

M = E + Eind
M . Unlike E, Eind

M is
a microscopic quantity, whose direction and amplitude vary
within the size of the molecule. In practice, this finite size effect
is often ignored, which leads to the approximate expression,

�μM = αM Eloc
M , (6)

where αM is the environment-dependent molecular polariz-
ability tensor.

Under the dipole approximation, Eind
M in the IDM is

approximated by the dipole field of environment molecules
(N �= M),

Eind
M ≈

∑
N �=M

TMN �μN, (7)

where TMN = ∇∇r−1
MN is the dipole-dipole interaction tensor

with rMN the intermolecular distances. Substituting Eq. (7)
into Eq. (6), one can derive an equation of interacting dipoles
[19–22],

�μM = αM

⎛
⎝E +

∑
N �=M

TMN �μN

⎞
⎠. (8)

αM in Eq. (8) can be solved conveniently, once �μ are obtained
from finite external field calculations [19,24] or linear response
theory [25].

B. Local dielectric response theory

Although the IDM combined with DFT has been widely
used to calculate molecular polarizabilities [19,23–25,42],
it has several drawbacks. First of all, as mentioned above,
Eq. (6) neglects the finite size effect in the induced field of the
environment. Secondly, the dipole approximation neglects all
the higher order terms. It might be justifiable at the far field,
but when molecules get close to each other, the validity of
the dipole approximation is questionable. More severely, the
use of TMN does not satisfy the positive definite requirement of
Eq. (8) [22]. As a consequence, molecular polarizabilities from
the IDM can diverge or become negative in simple systems,
e.g., the cooperative (head to tail) induced dipoles in the
direction of the line connecting the two [22,43,44]. Finally, at
the interface between M and the environment [see Fig. 1(b)],
wave functions of excited environmental electrons can have
finite overlap with the occupied valence electron orbitals of
M , leading to a charge transfer (CT) type of density response
on M . The CT contribution is a quantum effect and cannot be
captured at the level of dipole-dipole interaction.

In order to develop a rigorous, fully quantum mechanical
treatment of αM , let us first consider a slightly broader
scenario: The local excitations of a molecule embedded a
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FIG. 1. (a) Schematics of local excitations of a molecule inside a
chemical environment. (b) Three regions in the quantum mechanical
description of the problem, R1 ∈ R2 ∈ R3. R1: the region of the
molecule of interest, R3: the whole system providing the crystal field
(CF), and R2: a subset of R3 coupled to R1 through charge transfer
(CT) upon local excitations.

chemical environment as shown in Fig. 1(a). The whole system
can thus be divided into three regions (R1 ∈ R2 ∈ R3) as
shown in Fig. 1(b), R1: the region of the molecule of interest
(M), R3: the whole system providing the crystal field (CF),
and R2: a subset of R3 coupled to R1, such that CT can happen
between R2 and R1 upon local excitations. We will introduce
a formal theory based on the microscopic susceptibility χ .
We note that Allen [44] developed a model of charge-dipole
interaction along the same line, where charges are treated by
quantum mechanics, and charge interactions are solved in the
random phase approximation (RPA). The remaining obstacle
in our approach is to reformulate χ , a nonlocal quantity by
definition, in the local representation.

An early proposal was made by Hanke to address this issue
by localizing electrons and holes separately when building an
explicit electron-hole pair basis [45]. In practice, this method
is inconvenient, because of (a) the difficulty to numerically
converge the number of unoccupied bands and (b) even if
the convergence can be reached, the poor locality of the high
energy unoccupied bands. Both limitations of Hanke’s method
[45] can be avoided, because it is unnecessary to localize the
unoccupied bands. In other words, we formulate the theory
on the occupied manifold only, without using the explicit
electron-hole pair basis. In the following, we first summarize
the recently developed local dielectric response theory (LDRT)
[27] that provides the theoretical framework to study local
excitations. Then we use the LDRT to develop a fully ab initio
theory to calculate the dielectric response of the perturbation
in the local field.

The central quantities in the linear response theory are the
bare, χ0(ω; r,r ′), and the screened susceptibility, χ (ω; r,r ′),
which are the functional derivatives of the charge density
response with respect to perturbations in the self-consistent
field potential (δVscf) and the external potential (δVext):

χ0(ω; r,r ′) = δρ(ω; r)/δVscf(ω; r ′),

χ (ω; r,r ′) = δρ(ω; r)/δVext(ω; r ′). (9)

In the following, we adopt the shorthand notation: �ρ =
χ0 �Vscf = χ �Vext, where integration on common variables
is implied. χ can be solved from χ0 through Dyson’s equation
[46], χ = χ0 + χ0 K χ , where K = vH + Kxc with vH and

Kxc being the Coulomb and exchange-correlation kernel,
respectively. In the language of the linear response theory,
χ0 is the building block.

Under the Bloch representation, both �ρ and χ0 can be
partitioned according to occupied bands,

�ρ =
∑

v

�ρv, χ0 =
∑

v

χ0
v ,

�ρv = χ0
v �Vscf = 2 (|�ψ+

v 〉 + |�ψ−
v 〉)〈ψv|, (10)

where |�ψ±
v 〉 are the solution of the Sternheimer equation at

+ and − frequencies [29],

(εv − Ĥ − αP̂ ± ω)|�ψ±
v 〉 = Q̂�Vscf|ψv〉. (11)

Here εv are energy levels of the occupied states of the
Kohn-Sham (KS) Hamiltonian (Ĥ ); P̂ = ∑

v |ψv〉〈ψv| and
Q̂ = Î − P̂ are projectors onto the occupied and unoccupied
state manifolds, which are introduced to avoid the explicit
reference to the unoccupied states [29]. The term αP̂ is
introduced to remove the singularity of Eq. (11).

The essence of the LDRT is to recognize that �ρ is invariant
under the unitary transformation of the occupied orbitals,
which allows �ρ and χ0 to be formulated under the Wannier
representation,

�ρ =
∑

n

2 (|�W+
n 〉 + |�W−

n 〉)〈Wn|, (12)

where |�W±
n 〉 are solutions of the generalized Sternheimer

equation [27],∑
n′

(ε̃nn′ − Ĥ − αP̂ ± ω)|�W±
n′ 〉 = Q̂�Vscf|Wn〉. (13)

Since |Wn〉 are not the eigenstates of the KS Hamiltonian,
εv are replaced by the coupling matrix elements, ε̃n,n′ =
〈Wn|H |Wn′ 〉. In contrast to Eq. (11), linear response equations
in Eq. (13) are entangled due to ε̃n,n′ . The variation of |Wn〉
caused by the perturbation at |Wn′ 〉 can be obtained from

|�W±
n 〉 =

∑
n′

|�W±
nn′ 〉

≡
∑
n′

[ε̃ − (Ĥ + αP̂ ∓ ω) Î ]−1
nn′ Q̂ �Vscf|Wn′ 〉, (14)

where Î is an Nv × Nv identity matrix. The indices of �Wnn′

denote the perturbation site (right) and the response site
(left), respectively. For systems with a finite band gap, Ge
and Lu [27] proved that the spatial distribution of |�W±

nn′ 〉
decays exponentially in real space, and its magnitude decays
exponentially as the distance between sites n and n′.

Combining Eqs. (13) and (14), one can formally construct
the partial response densities and partial microscopic suscep-
tibilities (PMSs) on Wannier centers according to

�ρ =
∑
nn′

�ρnn′ , χ0 =
∑
nn′

χ0
nn′ ,

�ρnn′ = χ0
nn′ �Vscf = 2 (|�W+

nn′ 〉 + |�W−
nn′ 〉)〈Wn|. (15)
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FIG. 2. Schematics of partitioning χ 0 (χ ) of a system with two
occupied Wannier orbitals into four partial microscopic susceptibil-
ities. Diagrams at the top indicate all four possible scenarios on one
site: local perturbation (LP), local response (LR), local perturbation
plus local response (LPR), and an empty site (ES).

Similarly, χ can also be partitioned into PMSs through the
Dyson’s equation,

χnn′ =
∑
n′′

∞∑
m=0

χ0
nn′′ (K χ0)mn′′n′ . (16)

The partition of χ0 (χ ) into PMSs is illustrated in Fig. 2 for
a system with two occupied Wannier centers. On each site,
there are four possible diagrams: local perturbation (LP) only,
local response (LR) only, local perturbation plus local response
(LPR), and an empty site (ES). Therefore, χ0 (χ ) of the whole
system can be partitioned into four terms: two diagonal terms
(LPR on site 1 and 2) and two off-diagonal terms (LP on one
site and LR on the other site).

PMSs like χnn′ are important quantities to study the
nonlocality of the response functions. In particular, χnn′

associates the response density at site n to the external
perturbation, �Vext, at site n′. In the quantum chemistry
language, similar notions have been introduced based on the
local basis set formalism in the conceptual density functional
theory [47], to define the local reactivity index [48], the
atom-condensed linear response matrix [49], and a measure
of aromaticity [50,51]. It is worth noting that PMSs defined
through the LDRT are formally additive and do not suffer
basis set-dependent errors in the local basis set approach.
By summing over the perturbation index, one can construct
local response density, �ρn = ∑

n′ �ρnn′ , and local suscepti-
bilities, χ0

n = ∑
n′ χ

0
nn′ and χn = ∑

n′ χnn′ , or their symmetric
form, χ̃0

n = 1
2

∑
n′(χ0

nn′ + χ0
n′n) and χ̃n = 1

2

∑
n′ (χnn′ + χn′n).

A Dyson-like relation exists between χn and χ0
n ,

χn = χ0
n (1 − Kχ0)−1. (17)

χn provides a local measure of excited state properties
projected onto a Wannier orbital, such as the bond polariz-
ability [27].

C. Electronic density response of the local perturbation

We start by dividing the Wannier centers of the whole
system into two subsystems: the molecule of interest (M) and

the environment (E) as shown in Fig. 1(b). It is convenient
to define local quantities associated with each subsystem, S

(S = M or E): �ρS = ∑
n∈S �ρn, χ0

S = ∑
n∈S χ0

n , and χS =∑
n∈S χn. A quantum mechanical description of the molecular

polarizability embedded in a medium relies on the density
response to the perturbation in the local field, or in short, the
local perturbation. Conceptually, within the linear response
theory it implies (a) to freeze both the external perturbation
potential and the induced potential due to the polarization of
the environment and (b) to obtain the self-consistent solution of
the response density of the molecule. In the same spirit, Buin
and Iftimie [24] proposed the frozen orbitals polarizability
model within the IDM based on the MLWFs, as an alternative
to Heaton et al.’s formulation [19]. In practice, one has to
“unscreen” (US) the PMSs on the molecule (χS) to remove the
screening effects from the environment. For this purpose, we
define the unscreened molecular susceptibility (χus

M ) as

�ρM = χus
M �Vloc, (18)

where �Vloc = �Vext + K �ρM is the perturbation in the local
potential. Clearly, this quantity is different from χ that is
related to external perturbation, �Vext, and χ0 that is related to
the self-consistent field perturbation, �Vscf . The unscreening
procedure implies that

χus
M = χ0

M + χ0
M K χ0

M + χ0
M

(
K χ0

M

)2 + · · ·= χ0
M + χ0

M K χus
M .

(19)

The molecular polarizability is given by

αM,ij = −
∫

dridr ′
j ri χ

us
M (ω; r,r ′) r ′

j ≡ −T r
[
ri

(
χus

M r ′
j

)]
,

(20)

where i and j denote Cartesian axes. Because χ0
M and χM are

additive, so is the effective molecular polarizability, αeff
M,ij =

−T r[ri(χMr ′
j )]. On the other hand, because χus

M is not additive,
neither is αM .

In order to reveal the relation between the above quantum
mechanical description and the IDM of Eq. (8), we similarly
define χus

E as the unscreened susceptibility of the subsystem
E under the perturbation of the local field,

�ρE = χus
E �Vloc. (21)

It allows us to express the unscreened and screened suscepti-
bilities of each subsystem,

χus
S = χ0

S (1 − Kχ0
S )−1,

χS = χ0
S (1 − Kχ0)−1. (22)

Employing the additivity relation, χ0 = χ0
M + χ0

E , we have

χM = χus
M + χus

M KχE, (23)

χE = χus
E + χus

E KχM. (24)

Consider �Vext(r) = Ej rj . Multiply −ri from left and
Ejr

′
j from right on both sides of Eq. (23) and integrate. It

follows that

�μM,i = αM,ij Ej − T r
[
ri

(
χus

M KχE r ′
j

)]
Ej . (25)
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Ignore Kxc in K and take the dipole approximation to expand
vH = ∑

N∈E |(rM + r ′′) − (rN + r ′′′)|−1 to the second order
of rMN . The only nonvanishing terms arise from r ′′ TMN r ′′′
due to the charge neutrality condition,

∫
d r�ρ(r) = 0. Con-

sequently, the second term on the right hand side of Eq. (25)
becomes

∑
N∈E

∑
kl〈ri |χus

M |r ′′
k 〉 TMN,kl 〈r ′′′

l |χE|r ′
j 〉Ej , where

TMN,kl = ∂k∂lr
−1
MN . It is straightforward to show that

�μM,i = αM,ij Ej +
∑
N∈E

∑
kl

αM,ik TMN,kl �μN,l, (26)

which reproduces Eq. (8). Alternatively, by dividing Ej on
both sides of Eq. (26), one obtains the IDM without explicit
dependence on the external field,

αeff
M = αM +

∑
N∈E

αM TMN αeff
N . (27)

We have proved that the IDM is the classical limit of Eq. (23)
under the dipole approximation.

One may also arrange the screened and unscreened PMSs
in the matrix form through(

χM

χE

)
=

(
1 −χus

M K

−χus
M K 1

)−1(
χus

M

χus
E

)
. (28)

By expanding the matrix inversion in Taylor series, the
first and second order corrections to χM are χus

M K χus
E and

χus
M K χus

E K χus
M , respectively. In the limit that M and E are

spatially fully separated, Dobson [52] derived the same low
order correction terms to χM , which have been used by one of
us to derive three-body terms in the RPA correlation energy
[53]. Because Eq. (28) includes contributions at infinite orders,
it is also valid in the regime where the electron densities of M

and E overlap. We also note the similarity between Eq. (23)
in this paper and Eq. (41) in the linear response theory of
subsystem TDDFT [54,55].

III. COMPUTATIONAL DETAILS

In this study, ground state and linear response calculations
were performed using the Perdew-Burke-Ernzerhof (PBE)
[56] exchange-correlation functional with the SG15 opti-
mized norm-conserving Vanderbilt (ONCV) pseudopotentials
[57–59] together with the �-point sampling. The kinetic
energy cutoff of the plane-wave basis set was chosen at 65
Rydberg. All the gas phase calculations were performed using
a simple cubic supercell of 20 Å. MLWFs were constructed
with Wannier90 [60]. αM is calculated from the self-consistent
solution of χus

M according to Eq. (19) through the DFPT
implemented in a customized version of QUANTUM ESPRESSO

[61]. At each self-consistent step, the generalized Sternheimer
equations are solved, and the density response is projected
onto M as �ρM = χ0

M�Vloc. The converged density response
is used to compute αM .

In practice, we first compute the ground state of the system,
which can be either a finite system in a supercell or an extended
system described under the periodic boundary condition. Since
we are using a �-point formalism for extended systems, the
unit cell size has to be sufficiently large. Next we construct
Wannier orbitals for occupied states, and associate Wannier
orbitals to their corresponding water molecules. Different

environmental effects can be quantified separately based on
the choices of R1, R2, and R3 denoted by (nR1 : nR2 : nR3 ) in
the subsequent linear response calculations. Each of R1, R2,
and R3 denotes a subset of water molecules. Specifically in
the study of αH2O, R1 is restricted to one water molecule, i.e.,
nR1 = 1. For the CF effect, R3 contains the whole system,
which means that Vscf of the whole system is used in the
Sternheimer equations. We restrict the charge transfer effects
inside the subsystem defined by R2. If nR2 = nR3 , no truncation
is applied, and the generalized Sternheimer equations are
solved for all the occupied Wannier orbitals. If nR2 < nR3 ,
the generalized Sternheimer equations are truncated so that
only the occupied Wannier orbitals corresponding to R2 are
included.

The effect of the crystal field is investigated by comparing
water clusters with different sizes with extended systems. To
this end, we consider two extended systems (ice Ih and liquid
water) and three types of water clusters: water monomers
(nR3 = 1), water clusters including the first solvation shell
(nR3 = 5), and water clusters including the first and second
solvation shells (nR3 = 17). The structures of gas phase water
clusters are fixed at the same geometry as those in ice Ih or
liquid water in order to eliminate the ambiguity due to the
structural changes. To study the distance dependence of the
CT effect, the region of R2 is varied in size, with the lower
limit being one water molecule (R1) and the upper limit being
the whole system (R3).

The ice Ih structure is modeled by an orthorhombic
supercell (nR3 = 96; a = 13.30 Å, b = 15.36 Å, and c =
14.47 Å) constructed from the hexagonal unit cell (a = b =
7.78 Å, c = 7.33 Å, and γ = 60◦) of Ref. [62]. Although
the effect of proton disorder can in principle be studied by
using different proton-ordered, energetically quasidegenerate
ice Ih structures, it is beyond the scope of the current paper. The
structures of liquid water were taken from the trajectories of the
ab initio molecular dynamics simulation of 64-molecule water
samples at 400 K, the water PBE400 dataset [63] (nR3 = 64).
The supercell size is 12.41 Å. αH2O are averaged over the first
20 snapshots of the PBE400 64 subset, resulting in 1280 water
molecule geometries.

IV. RESULTS AND DISCUSSIONS

A. Water monomer in the gas phase

αH2O of the gas phase water monomer optimized with
the PBE exchange-correlation functional is listed in Table I.
ᾱH2O = 1.59 Å3, and the three principal components are αxx =
1.58 Å3, αyy = 1.60 Å3, and αzz = 1.58 Å3, respectively. The
principal axes are defined as the following: x along the bisector
direction, y along the in-plane perpendicular direction, and z

along the normal direction of the molecular plane. These values
are in close agreement with the previous PBE results [25]. ᾱH2O

overestimates the experimental value by 8%, in line with the
error expected from PBE. This overestimation is associated
with the underestimation of band gap and band width well
known for semilocal approximations to the exchange and
correlation potential and in line with Penn’s model [64] of
the dielectric constant. Nevertheless, our main focus is to
understand the general trend of the environmental effects on
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TABLE I. Molecular polarizability of water (in Å3) of the gas phase monomer, ice Ih, and liquid water. Results in liquid water are the
statistical average (〈α〉) and the standard deviation (σ ). The x axis is the dipole axis, and the z axis is the normal direction of the molecular
plane. Gas phase molecules in the rows of ice Ih and liquid water have the same geometry as in the condensed phase. CF and CT denote the
crystal field and charge transfer, respectively.

αxx σxx αyy σyy αzz σzz ᾱH2O σ

monomer PBEa 1.58 1.60 1.58 1.59
BLYPb 1.60 1.63 1.59 1.61

BLYPb,c 1.47 1.53 1.42
expd 1.468 ± 0.003 1.528 ± 0.013 1.415 ± 0.013 1.470 ± 0.003

gas phase 1.65 1.71 1.61 1.66
ice Ih CF 1.58 1.44 1.76 1.60

CF + CT 1.69 1.54 1.88 1.70

gas phase 1.64 0.05 1.69 0.08 1.61 0.03 1.65 0.05
water CF 1.66 0.10 1.55 0.09 1.78 0.14 1.66 0.08

CF + CT 1.76 0.11 1.63 0.10 1.86 0.16 1.75 0.09
BLYPb 1.45 1.42 1.48
BLYPc 1.44 0.03 1.41 0.03 1.49 0.03

aThis work.
bReference [23].
cReference [24].
dReference [13].

αH2O in the condensed phase, i.e., changes in αH2O, not the
absolute value.

We also checked our gas phase results using the BLYP
functional [65,66] in order to compare with the BLYP results
in the literature [23,24]. As shown in Table I, BLYP results
in Refs. [23,24] are systematically smaller than our results,
with ᾱH2O about 8% smaller than our result. This difference
is caused by the supercell size convergence issue in the finite
field calculations [67] in previous studies [23,24]. As pointed
out by Buin and Iftimie [24], αxx obtained from a 10 Å cubic
box is known to underestimate the fully converged value by
8%, and similar underestimations are likely to occur also in
their liquid water calculations. Their observation is consistent
with the fact that αxx in Refs. [23,24] is about 8% smaller
than our result. On the other hand, our linear response method
does not suffer this convergence issue. For example, gas phase
αii calculated with 20 Å and 30 Å cubic supercells are within
0.04%. If we compare PBE and BLYP results in this paper,
ᾱBLYP

H2O is slightly larger than ᾱPBE
H2O by 1%.

B. Isotropic molecular polarizability of water

Environmental effects on ᾱH2O in ice Ih are shown in Fig. 3.
Because the geometries of each water molecule in the ground
state ice Ih model are almost identical, the computed ᾱH2O

differ by less than 0.15%. Therefore we present the results from
a single water molecule in ice Ih. We consider four systems:
three gas phase water clusters with nR3 = 1 (monomer), 5 (first
shell), and 17 (second shell) and ice Ih with nR3 = 96. Here gas
phase clusters refer to water molecules with the same geometry
as in ice Ih to enable a straight comparison. First, we focus on
the CF effect by fixing nR2 = 1 and varying n = nR3 . The effect
of the CF is to reduce ᾱH2O. Compared to ᾱH2O = 1.66 Å3 of
the gas phase monomer, ᾱH2O decreases by 3.1% caused by
the CF of the first solvation shell. When the full CF of ice Ih
is included, ᾱH2O decreases by 3.8%. Gubskaya and Kusalik

[17] reported an opposite trend, i.e., an increase of ᾱH2O by
1.2 ∼ 5.3%, which is likely due to the approximate nature of
their local field models represented by the electrostatic field of
a few point charges.

Next, we analyze the CT effect in ice Ih by fixing nR3 = 96
and varying n = nR2 . In general, we expect the CT effect to
enhance αM , as the excitation of neighboring water molecules

0 20 40 60 80 100
n

1.55

1.6

1.65

1.7

1.75

α H
2O

 (Å
3 )

crystal field (1: 1: n)
charge transfer (1: n: 96)
combined effect (1: n: n)

FIG. 3. Environmental effects on the isotropic molecular po-
larizability of water (ᾱH2O) in ice Ih. Notation (nR1 : nR2 : nR3 )
corresponds to the number of water molecules in the molecular region
(nR1 ), the charge transfer region (nR2 ), and the crystal field region
(nR3 ) as defined in Fig. 1 and Sec. III. Inset shows the isosurface
of the electron density response due to the charge transfer under a
uniform electric field along the x axis (the red arrow), i.e., ��ρCT =
�ρ(1,96,96) − �ρ(1,1,96). Yellow indicates electron accumulation;
blue indicates electron depletion. Water molecules are visualized in
the ball-and-stick representation with oxygen and hydrogen atoms
represented by red and white spheres. The four water molecules
tetrahedrally H-bonded to the central water molecule are highlighted
in purple. The isosurface plot was generated with VMD [68].
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has a constructive contribution. Indeed after we include the
CT effect from the first solvation shell, ᾱH2O increases from
1.60 to 1.70 Å3, which is more significant than the total CF
effect. Since the CT effect is short ranged, it saturates readily at
nR2 = 5. At nR2 = 96, ᾱH2O further increases by only 0.003 Å3.
Finally, we combine the CF and CT effects by simultaneously
varying n = nR2 = nR3 . As shown in Fig. 3, the CT effect
dominates within the first solvation shell, and ᾱH2O reaches
the maximum at 1.72 Å3. Beyond that, the CT effect fades
away, and the tail of the CF effect takes over. ᾱH2O decreases
slowly by 0.01 Å3 at n = 96. Overall, ᾱH2O in ice Ih is larger
than the gas phase value by 2.8%.

The inset of Fig. 3 shows the isosurface of the electron
density response in ice Ih due to the charge transfer under
a uniform electric field along the x axis (the red arrow),
i.e., ��ρCT = �ρ(1,96,96) − �ρ(1,1,96). Clearly one can
see a positive induced dipole moment emerging from the
four nearest neighbor water molecules (highlighted in purple)
that are H-bonded to the central water molecule. Previously,
Lu et al. [69] applied the MLWF procedure to localize
the eigenvectors of the static dielectric matrices in ice Ih
and liquid water and identified dominant screening modes
that are either localized on individual water molecules or
involving H-bonded water dimers. Based on our study, the
physical origin of these modes becomes clear, which are
intramolecular excitations and intermolecular charge transfer
excitations.

Next we compute ᾱH2O in liquid water, where the thermal
disorder effects play a key role in contrast to the results of ice
Ih at zero temperature. Here we divided the thermal disorder
effects into intramolecular contributions on individual water
molecules and intermolecular contributions from the crystal
field including H-bonds and long-range electrostatic effects.
To isolate the intramolecular component, we sampled ᾱH2O

of gas phase water monomers with the same geometries as
those in liquid water. The intermolecular contributions were
extracted by comparing ᾱH2O of the gas phase and liquid water
that includes environmental effects.

As shown in Table I and Fig. 4, 〈ᾱH2O〉 is 1.65 Å3 in the gas
phase, which is averaged over 1280 monomer configurations.
Here 〈· · · 〉 denotes the statistical average. This mean value
is nearly the same as that in ice Ih (1.66 Å3), and the
intramolecular thermal disorder in the PBE water leads to
a standard deviation of σ = 0.05 Å3. However, once the CF
effect is included, 〈ᾱH2O〉 slightly increases to 1.66 Å3, which
is substantially larger than that in ice Ih (1.60 Å3) by 4%. At
the same time, σ increases to 0.08 Å3, indicating a notable
intermolecular contribution. The effect of the CT in liquid
water is similar to that in ice Ih, which further increases ᾱH2O

by 0.09 Å3 with σ almost unaffected. This suggests that the
crystal field is the primary source of the intermolecular thermal
disorder effects.

C. Anisotropic effects of the molecular polarizability of water

The crystal field in the condensed phases can modify the
electronic properties of individual water molecules signifi-
cantly. For example, solvated water molecules form hydrogen
bonds (H bonds) with their neighbors in a tetrahedral geometry,
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FIG. 4. Distributions of the isotropic molecular polarizability of
water (ᾱH2O) in liquid water. Short vertical lines indicate correspond-
ing values in ice Ih.

which has a strong influence on the Wannier function centers
(WFCs: two from the O-H covalent bonds and two from
the oxygen lone pairs). As a consequence, the O-H bond
WFCs are pulled in and the lone pair WFCs are pulled out
as compared to the gas phase monomer [70]. In order to
gain insights into the chemical origin of the CF and CT
effects, we examine the anisotropic effects in ice Ih and liquid
water by decomposing the αH2O tensor onto three internal
principal axes and correlating the changes in the molecular
polarizability (�αii, i = x,y,z) with the changes in the O-
WFC pair correlation function, g(r), in terms of �rO-WFC.

As shown in Table I, the CF of ice Ih causes αxx and αyy to
decrease by 4% and 16% and αzz to increase by 9%. It appears
that the in-plane suppression effect is more pronounced in
the y direction. Interestingly, this anisotropic CF effect can be
qualitatively captured using the point charge model [17] except
for the x component, which yields �αxx = 4%, �αyy = −4%,
and �αzz = 16% from their model II. This strong anisotropic
CF effect is thus characteristic of the H-bond network in the
condensed phase. On the other hand, the effect of the CT is
mostly isotropic, increasing each component by about 0.1 Å3.

Similar to the isotropic molecular polarizability, 〈αii〉 of
gas phase monomers in liquid water (1.64, 1.69, and 1.61 Å3)
are very close to those in ice Ih (1.65, 1.71, and 1.61 Å3) as
shown in Table I and Fig. 5, with the largest deviation of 1%
from the y direction. The largest spread is also found in the
y direction (σyy = 0.08 Å3), followed by x (σxx = 0.05 Å3)
and z (σzz = 0.03 Å3). The CF in liquid water also exhibits a
significant anisotropic effect, which leads to �〈αii〉 = +1%,
−9%, and +11% as compared to the gas phase values. Another
important feature is that the z component acquires the largest
spread (σzz = 0.14 Å3), and the spreads in x and y directions
are much smaller (σxx = 0.10 Å3 and σxx = 0.09 Å3). The
CT effect in liquid water increases 〈αii〉 almost uniformly by
0.1 Å3, and the spreads are only slightly increased.

The origin of the CF effects in ice Ih and liquid water
was investigated using �rO-WFC, which are the differences
of O-WFC distances between the condensed phases and the
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FIG. 5. Distributions of the molecular polarizability of water in
liquid water along three principal directions (x: bisector direction, y:
in-plane perpendicular direction, and z: out-of-plane direction). Short
vertical lines indicate corresponding values in ice Ih.

gas phase. As shown in Fig. 6, in ice Ih �rO-WFC = 0.05
and −0.04 Å for the oxygen lone pair and the O-H bond,
respectively. In other words, O-H bond WFCs are pulled in
from 0.53 Å by 0.04 Å, while lone pair Wannier centers
are pulled out from 0.30 Å by 0.05 Å as compared to the
gas phase monomer, in line with the established trend in
liquid water [70]. The formation of the H bonds therefore
weakens the intramolecular O-H bond, making it more ionic,
and loosens the oxygen lone pairs. Since the O-H WFs
become more tightly bound to the oxygen atom, the in-plane
components of αH2O are suppressed. In contrast, since the lone
pair WFs become more loosely bound to the oxygen atom,
the out-of-plane component is enhanced. In liquid water, both
changes get smaller, i.e., �〈rO-WFC〉 = 0.03 and −0.03 Å,
indicating overall softer H bonds than ice Ih. Consequently, the
CF effects have a smaller impact on the in-plane components
of liquid water (�〈αxx〉 = 1% and �〈αyy〉 = −9%) than ice
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FIG. 6. Pair correlation function of the oxygen-Wannier function
centers (O-WFCs) in liquid water. Short vertical lines indicate
corresponding values in ice Ih.
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FIG. 7. Correlation between the crystal field (CF) and charge
transfer (CT) contributions in the molecular polarizability of water in
liquid water.

Ih (�αxx = −4% and �αyy = −16%), while �〈αzz〉 in both
systems are comparable (11% and 9%). The oxygen lone
pair has a larger spread (σO-WFC = 0.015 Å) than the O-H
bond (σO-WFC = 0.012 Å), which is consistent with the largest
spread in αzz (see Fig. 5 and Table I).

To investigate any possible correlation between the CF and
CT effects in liquid water, we track �αii from CF and CT
effects for each water molecule. As shown in Fig. 7, while
the distribution of �αCF

xx is nearly symmetric around zero,
the signs of �αCF

yy and �αCF
zz are opposite, with one being

predominantly negative and the other positive. No apparent
correlation was found for the in-plane components, while there
is a weak correlation between �αCF

zz and �αCT
zz . Therefore our

procedure of treating CF and CT effects separately is justified.
The main differences between our model and previous

models can be understood as the following. In the point
charge model [17], the CF is over-simplified. In the IDM,
although the full CF is included at the ground state level, the
Coulomb kernel is approximated by the dipole interaction. It
is not straightforward to compare the absolute values of αH2O

of this work with the IDM results in the literature [23,24],
because different exchange-correlation functionals (PBE and
BLYP) were used, and results in previous studies are likely
not fully converged. A likely meaningful comparison is the
trend of the environmental effects on αH2O with respect to
the gas phase values computed from the optimized geometry.
In this paper, the relative changes of 〈αii〉 are 11%, 6%, and
18% in x, y, and z, respectively. The trends are qualitatively
different from the IDM that yields −2 ∼ −1%, −8 ∼ −7%,
and 4 ∼ 5%, respectively [23,24]. Besides the effects from
different functionals, these differences may be attributed to
several limitations in the IDM, such as the lack of the finite
size effect and the use of the dipole-dipole approximation.

In summary, we have developed a fully ab initio method
to compute the electron density response to the perturbation
in the local field based on the local dielectric response
theory. We applied this method to compute the molecular
polarizability of water in condensed phases. Using the same
molecular geometries as in the condensed phases, we found
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that the effects of the crystal field is to reduce αyy and
enhance αzz and that the charge transfer effect increases all the
principal components uniformly. Our study provides a rigorous
theoretical framework to determine αH2O, essential to both the
physical understanding of water and computer simulations us-
ing polarizable force field models. As the electron-based spec-
troscopy techniques, e.g., electron energy loss spectroscopy
(EELS), has reached subangstrom spatial resolution [71], we
expect these experimental techniques can provide more details
about the microscopic dielectric response of water in the
future.
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