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Superconducting proximity effect in topological insulator and superconductor hybrid structure has attracted
intense attention in recent years in an effort to search for Majorana fermions in condensed matter systems. Here
we report on the superconducting proximity effect in a Bi2Se3/NbSe2 junction fabricated with an all-dry transfer
method. Experimentally measured differential conductance spectra exhibit a bias-independent conductance
plateau (BICP) in the vicinity of zero bias below 7 K and a zero-bias conductance peak (ZBCP) appears below
2 K. We show that the BICP is due to the strong superconducting proximity effect between the superconductor
and the topological surface states while the ZBCP is due to the bulk states of Bi2Se3. Our study gives direct
evidence that the topological surface states can be strongly coupled to a superconductor and clarifies the different
roles of surface states and bulk states in superconducting proximity effect.
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I. INTRODUCTION

Majorana fermions are long-sought fundamental parti-
cles, whose antiparticles are identical to themselves [1]. In
condensed matter systems, Majorana fermions follow non-
Abelian statistics and have great potential applications in fault-
tolerant topological quantum computation [2,3]. Motivated by
the promising applications, much effort has been devoted to the
search for the signature of Majorana fermions [4–9]. Recently,
theoretical work has predicted that the Majorana fermions
might reside in the interface of the topological insulators
and s-wave superconductors heterostructures [10–14], when
superconducting vortices are created. But the basic assumption
is that the topological surface states must acquire a super-
conducting gap from the parent superconductor to become
an effective two-dimensional px + ipy wave superconductor
residing on the surface of the topological insulator [10,11].
While many experiments have been performed on topological
insulator and superconductor heterostructures [15–20], there
is no clear experimental evidence that the topological surface
states acquire a proximity gap from the superconductor
as the observed proximity gap could be due to bulk states
of the topological insulators instead of the surface states.
Moreover, it is generally believed that the induced proximity
gap on the topological surface states should be smaller than
the superconducting gap of the parent superconductor due to
surface barrier and momentum mismatch etc. [21–23].

In this paper, by studying the four-terminal differential
conductance of a Bi2Se3/NbSe2 heterostructure, we provide
experimental evidence that NbSe2 can induce a proximity
gap almost as large as the bulk superconducting gap on the
surface state. Particularly, a bias-independent conductance
plateau (BICP) is observed in the differential conductance
below 7 K. Judging from the width of the BICP and theoretical
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calculations, the proximity gap induced on the surface states
is about 70% of the parent superconducting gap of NbSe2.

When the temperature is lowered to below 2 K, a zero-bias
conductance peak (ZBCP) emerges. We attribute this ZBCP
to the Andreev reflections caused by proximity effects of the
bulk states of the topological insulator. We estimated that the
induced bulk proximity gap in Bi2Se3 is much smaller than
the induced proximity gap on the surface states. The observed
ZBCP is in sharp contrast to the ZBCPs observed in other
superconducting topological systems in which the ZBCP were
associated with surface Majorana modes.

We believe that this paper provides strong experimental
evidence that the topological surface states may acquire a large
proximity gap from the parent superconductor for the realiza-
tion of Majorana fermions. It also clarifies the different roles
of surface states and bulk states in superconducting effects in
topological insulator/superconductor heterostructures.

II. EXPERIMENTAL METHODS AND RESULTS

Bi2Se3/NbSe2 heterostructures were fabricated based on
an all-dry transfer method [24]. The NbSe2 flakes and
Bi2Se3 flakes were mechanically exfoliated from the high-
quality single crystals and were transferred to Si substrates
with a 300-nm-thick SiO2 and PDMS-based gel supplier,
respectively. Using a micromanipulator and digital camera,
the Bi2Se3 flakes were further transferred onto the selected
NbSe2 flakes for device fabrication using e-beam lithography.
Au/Cr electrodes with the thickness of 275 nm/25 nm were
deposited via thermal evaporation.

The optical image of a fabricated device was illustrated in
Fig. 1(a). The overlap areas of the Bi2Se3 flake and NbSe2 flake
is marked as the purple dash box, with the width and the length
of about 2 μm and 13 μm, respectively. The thickness of the
NbSe2 flake and the Bi2Se3 flake is confirmed by the atomic
force microscope measurements, which is about 110 nm and
60 nm, respectively. A four terminal measurement across the
Bi2Se3/NbSe2 junction was performed in a PPMS Dilution
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FIG. 1. Bi2Se3/NbSe2 hybrid structure device and magnetotrans-
port characteristics. (a) Optical image of the Bi2Se3/NbSe2 hybrid
structure devices. The purple box indicates the overlap area of the
Bi2Se3 flake and NbSe2 flake.(b) Normalized resistance-temperature
curves of the Bi2Se3/NbSe2 hybrid structures at different applied
magnetic fields above 2 K; the resistance is normalized to a normal-
state value at 15 K of about 40 � and (c) between 100 mK and
4 K, the resistance is normalized to a normal-state value at 3.5 K of
about 8 �, showing the superconducting phase transition of NbSe2

and superconducting proximity effect induced superconductivity
in Bi2Se3. (d) Normalized resistance-magnetic field curves of the
Bi2Se3/NbSe2 hybrid structures measured at various temperatures;
the resistance is normalized to a normal-state value at 5 T of about
40 �.

Refrigerator system with the temperature down to 100 mK. The
resistance versus temperature (R-T ) curves were measured
using Keithley 6221 and 2182A as the current source and
voltmeter, respectively. Keithley 6221 and lock-in amplifiers
with a frequency of 741 Hz were adopted for the differential
conductance, dI/dV , spectra measurements.

Prior to putting the devices into the PPMS dilution
refrigerator, we first measured the R-T curves with T > 2 K in
the PPMS base chamber at different magnetic fields indicated,
as shown in Fig. 1(b). The resistance of the Bi2Se3/NbSe2

junction first increases as temperature decreases and suddenly
drops at a critical temperature Tc ∼ 7 K, corresponding to
the superconducting phase transition of the NbSe2 flake. As
the applied magnetic field increases, the Tc decreases from
∼7 K at zero magnetic field to temperatures lower than
2 K at 4 T. Interestingly, besides this sharp drop of the
resistance at Tc ∼ 7 K, a second resistance drop starts to
appear below 3 K at zero magnetic field, which is attributed
to the proximity-induced superconductivity in the topological
insulator Bi2Se3 flake. The observation of superconducting
proximity effects induced superconductivity in the hybrid
structure suggests that the interface is of high transparency
in our devices [19].

In order to investigate in details the proximity effect
induced superconductivity in Bi2Se3 flake, we focus on
the magnetotransport properties and differential conductance
spectra of the Bi2Se3/NbSe2 junction at low temperatures
ranging from 0.1 K to 4 K. Figure 1(c) shows the measured
R-T curves for 0.1 K < T < 4 K at different magnetic fields
with resistances normalized to the values at T = 3.5 K. At
zero magnetic field, with decreasing temperature the resistance
decreases slowly first and then starts to drop quickly below
∼2 K. Tin ∼ 2 K corresponds to the transition temperature of
the proximity-induced superconductivity in Bi2Se3 flake. The
ratio of R(0.1 K)/R(3.5 K) is about 0.84 at zero magnetic
field. By applying magnetic fields this ratio increases to 0.97
at 1.5 T, and Tin shifts to lower temperatures as expected.

Magnetoresistance (MR) of the junction at different tem-
peratures is shown in Fig. 1(d). Two important MR features are
noticed at the lowest T of 0.1 K, one forming a sharp MR dip
at low magnetic field region and the other forming a broader
resistance valley at high magnetic field region, revealing the
two critical magnetic fields for the superconducting phases
existed in this hybrid structure. As temperature is increased, the
sharp MR dip is quickly suppressed at ∼2 K, which coincides
with the critical temperature Tin of the Bi2Se3 flake observed
in R-T curves shown in Fig. 1(c). At the same time, the broad
resistance valley shrinks significantly from ∼5 T at 0.1 K to
∼2 T at 4 K, which is consistent with the superconductivity
transition of NbSe2 flake observed in R-T curves shown in
Fig. 1(b). The upper critical field Hc2 at given T was estimated
as detailed in Appendix A. The HI

c2 and HII
c2 at 0.1 K is

about 1.08 T and 4.17 T, respectively. These results indicate
the suppression of the Cooper pair formation and thus the
destruction of the superconductivity at high temperatures and
high magnetic fields.

The above R-T and MR results clearly demonstrate the
occurrence of the superconducting proximity effect in our
Bi2Se3/NbSe2 junction. To gain more insight into the effect,
we have performed the four-terminal differential conductance
spectroscopy measurements of the junction. Figure 2(a) shows
the measured differential conductance spectra (dI/dV vs V )
at temperatures from 0.5 K to 4 K. One can see that a
BICP appears in the vicinity of zero bias. As temperatures
decrease below 2 K, a very sharp ZBCP is emerged and
superimposed on the BICP. We will focus on the behavior
of the BICP first. As shown in Fig. 2(a), the height of the
flat conductance plateau changes little from 0.5 K to 4 K,
but its width decreases obviously with increasing temperature.
In Fig. 2(b) the width of the flat conductance plateau against
measurement temperature is plotted as black solid dots and the
temperature dependence of NbSe2 superconducting gap based
on BCS theory is plotted as a solid red line for reference. Its
width at 0.5 K is estimated to be ∼2 meV, which is comparable
to the superconducting gap of NbSe2 flake estimated from
the BCS theory 2�(0) = 3.52kBTc ∼ 2.12 meV [25]. As
temperature increases the width is reduced due to suppressed
superconductivity of NbSe2 flake. We note that the width
reduction is faster than that expected from the BCS theory.
This deviation may be caused by the anisotropy and Fermi-
surface-sheet dependence of the superconducting gap of NbSe2

[25,26]. Besides the strong temperature dependence, the width
of the plateau also shows strong dependence on the applied
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FIG. 2. Bias-independent conductance plateau (BICP) in
Bi2Se3/NbSe2 hybrid structure device. (a) Differential conductance
spectra dI/dV of the Bi2Se3/NbSe2 hybrid structures at temperatures
ranging from 0.5 K to 4 K and zero magnetic field; the width of BICP
is defined by the points (indicated by the green triangles) where
the dI/dV starts to drop from the flat shoulder. The curves are
successive offset by 0.01 S in the y direction for clarity. (b) The
BICP width as a function of temperatures as indicated by black solid
dots. For comparison, the temperature dependent superconducting
gap of NbSe2 calculated by the BCS theory with three different Tc is
also plotted. (c) Differential conductance spectra dI/dV at different
magnetic fields and 0.5 K; the width of BICP is defined by the points
indicated by the green triangles. The curves are successive offset by
0.002 S in the y direction for clarity. (d) The BICP width as a function
of magnetic field at 0.5 K is shown as black solid dots, and the solid
line is a guide to the eyes.

magnetic field. Figure 2(c) shows the dI/dV spectra at
different magnetic fields with a constant temperature of 0.5 K.
It is clear that the plateau width is greatly reduced by increasing
magnetic field [see Fig. 2(d)] and completely suppressed at
∼5 T, in agreement with the critical magnetic field of NbSe2

flake measured in Fig. 1(d).
Generally speaking, Andreev reflection is expected to

greatly enhance the conductance across a normal metal
and superconductor junction with an electrically transparent
interface. A BICP within the superconducting gap � would
be thus observed around zero voltage bias in the differential
conductance spectra [27–29]. The evident BICP shown in
Fig. 2(a) indicates that an electrical transparent interface has
been achieved in our Bi2Se3/NbSe2 device. The calculated
energy difference between the Fermi level and the Dirac point
is about 270 meV (see Appendix B), which is consistent
with the ARPES observations on Bi2Se3 [30,31], indicating
the Fermi level lies close to the bottom of the conduction
band of the Bi2Se3. Since the Fermi level of our Bi2Se3 flake
lies in the conduction band, either TSS or bulk electrons can
be responsible for the BICP. As the wave function of TSS
electrons is more localized at the interface than that of bulk
electrons, it is very likely that superconducting transition by
proximity effect occurs first in TSS once NbSe2 flake becomes

FIG. 3. Zero-bias conductance peak (ZBCP) in Bi2Se3/NbSe2

hybrid structure device. (a) Differential conductance spectra dI/dV

of the Bi2Se3/NbSe2 hybrid structures at temperatures ranging from
0.1 K to 3 K and zero magnetic field; the width of ZBCP is defined
by points indicated by the green triangles. The curves are successive
offset by 0.01 S in the y direction for clarity. (b) The ZBCP peak
intensity (black open circles) and width (blue open squares) as a
function of temperatures at zero magnetic field. Solid lines are guides
to the eyes. (c) Differential conductance spectra dI/dV at different
magnetic fields and 0.1 K; the width of ZBCP is defined by points
indicated by the green triangles. The curves are successive offset by
0.002 S in the y direction for clarity. (d) The peak intensity (black
open circles) and width (blue open squares) as a function of magnetic
field at 0.1 K. Solid lines are guides to the eyes.

superconducting. Indeed, in our detailed numerical results
presented in Fig. 4 (see Appendix C for details), we show
that the BICP is solely due to the superconducting TSS and
the proximity gap induced on the TSS by the NbSe2 is almost
70% of the superconducting gap in NbSe2.

We now turn the attention to the ZBCP emerged below
2 K. Figure 3(a) shows the measured differential conductance
spectra at different temperatures within a smaller bias range
of ±1 mV. The ZBCP is pronounced at 1.5 K and becomes
stronger and sharper as temperature decreases. The emergence
of the ZBCP coincides with the second resistance drop
observed in R-T curves [see Figs. 1(b) and 1(c)]. This means
the ZBCP is associated with the proximity-induced super-
conductivity in Bi2Se3 flake. The temperature dependence of
the ZBCP intensity and width (as defined in Appendix D) is
plotted in Fig. 3(b). As it can be seen, the ZBCP intensity
is first reduced slowly as temperature increases from 0.1 K to
0.5 K, then faster as temperature further increases, and finally is
immeasurable around 2 K. More interestingly, the ZBCP width
is almost constant below 0.5 K, which has a value of about
0.13 meV about 10% of 2�(0) and then is quickly broadened
above 1 K, which qualitatively agrees with our numerical
simulation results (see Appendix E). Such behaviors are in
sharp contrast to the case of the BICP [see Fig. 2(b)], where
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the height changes little but the width decreases obviously with
increasing temperatures. This indicates that the ZBCP width
is associated with thermal energy and the energy magnitude
involved in the ZBCP is at the same order as the thermal energy.
For any realistic system, the finite temperature would make the
Andreev reflections decoherent over a short length and thus
the short lifetime. Considering the Heisenbergs uncertainty
principle, �E�τ ∼ h̄, the effective energy broadening term
would be induced leading to the overall broadening of the
conductance spectrum for the ZBCP [32,33]. The magnetic
field dependence of the ZBCP at 0.1 K is illustrated in Fig. 3(c).
With increasing applied magnetic field, the width of the ZBCP
is broadened and the intensity is reduced. Figure 3(d) plots the
magnetic field dependence of the ZBCP intensity and width.
The ZBCP intensity decreases with the applied magnetic field.
When the magnetic field is above 1 T, the ZBCP cannot be
measured, in agreement with the critical magnetic field of
Bi2Se3 flake measured in Fig. 1(d).

The ZBCP has been reported in various superconductor-
normal metal hybrid structures [15,20,34–38], but its physical
origin is still under debate. The ZBCP can be induced by the
pair current across superconductor-semiconductor interfaces
[39]. But the ZBCP width is expected to increase with decreas-
ing temperatures, which is contrary to the thermal broadening
behavior observed in our experiment. The ZBCP can also
arise from the incoherent accumulation of Andreev reflection,
and it begins to appear in the differential conductance spectra
right below Tc [40]. However, the ZBCP in our devices can
only be observed below 2 K, which is much lower than
Tc. Furthermore, the Andreev bound state of an anisotropy
superconductor [28,41–43] or the Majorana zero mode in the
core of the vortices of topological superconductor [12,44] can
also give rise to the ZBCP. ZBCPs of these kinds usually show
a weak dependence on the magnetic field. However, these
are apparently not our case. The ZBCP observed is quenched
quickly by small external magnetic field [see Fig. 3(c)].

In addition, we note that some differential conductance
ripples appear outside the BICP in Fig. 2(a) and the ZBCP
in Fig. 3(a). Similar ripples were observed in differential
conductance spectra outside the superconducting gap region
in the study of an Al-Al2O3-Pb tunneling junction [45]. The
phenomenon was ascribed to the multiphonon effect, revealing
the important role of phonon interactions in the supercon-
ductivity of Pb. Besides, in the study of UPd2Al3-AlOx-Pb
tunneling junctions, the observation of such ripples was
associated with some magnetic excitations, which is essential
to the emergence of unconventional superconductivity in heavy
fermion compound UPd2Al3 [46]. At the present stage, the
physical origin of the ripples observed in our work is still
unknown and needs further exploration. But these ripples show
the same temperature and magnetic field dependence as the
BICP or the ZBCP, indicating the close relationship between
the ripples and the SPE induced superconductivity in TSS or
bulk states of Bi2Se3.

III. ORIGINS OF THE BICP AND ZBCP

To summarize the experimentally measured differential
conductance spectra at low temperature and zero magnetic
field exhibit two distinct features: One is the sharp ZBCP

with its width approximately 10% of 2�(0) and the other
is the BICP with its energy range comparable to 2�(0).
In order to understand the physical origins of both the
ZBCP and the BICP, we theoretically calculate the dI/dV

spectra for our Bi2Se3/NbSe2 junction. In our theoretical
calculations (see Appendix C for details), we simulate the
Bi2Se3/NbSe2 junction with the schematic set-up in Fig. 4(a),
which realistically represents our device structure, where
the chemical potential of the TI is just touching the bulk
conduction band bottom [e.g., EF = μ1, indicated by the red
dashed line in the inset of Fig. 4(b)]. The μ1 = 274 meV is
used in our numerous calculation, which is consistent with our
experimental observations and the previous ARPES studies
on Bi2Se3 [30,31]. In this case, the Fermi surface consists
of multiple Fermi circles, where the outermost Fermi circle
derived from the TSS encloses the inner one derived from
the bulk states. Therefore, both the bulk states and the TSS
from Bi2Se3 would participate in the proximity effects and
drive currents across the Bi2Se3/NbSe2 junction via Andreev
reflections.

The dI/dV spectra from our numerical simulations with
EF = μ1 is shown in Fig. 4(b). Remarkably, both features
of BICP and ZBCP are reproduced in a qualitatively excel-
lent agreement with the experimental data [see Figs. 2(a)
and 3(a)]. More importantly, by increasing the number of
quintuple layers N of Bi2Se3, the sharp ZBCP is enhanced,
while the BICP remains almost unaffected. Their contrasting
dependence on N suggests that the ZBCP may be associated
with the bulk states near the conduction band minimum, while
the BICP likely originates from the TSS. For each fixed
momentum k (assuming momentum is conserved parallel to
the surface), there is only one mode from the surface states
to contribute to Andreev reflection processes. However, for
each momentum k, there are a large number of modes in the
bulk to involve in Andreev reflections. Therefore, as shown
in Fig. 4(b), the height of the peak indeed depends on the
number of quintuple layers. The larger the number of layers,
the larger the number of bulk states at each fixed k which
induces a higher ZBCP. Therefore, within the energy window
in which the bulk states can induce Andreev reflections, the
ZBCP can be quite high as shown in our numerical calculations
and experimental observations. When the magnetic field is
applied, the proximity induced superconductivity in the bulk
states of Bi2Se3 is gradually suppressed, and the height of
the ZBCP decreases. As the magnetic field exceeds 1 T, the
proximity effect in the bulk states of the Bi2Se3 is destroyed.
As a result, the ZBCP vanishes [Fig. 3(c)], and the second
resistance drop around 2 K also disappears [Fig. 1(c)].

To further verify the physical origins of the peak and the
plateau, we calculate the dI/dV spectra for our Bi2Se3/NbSe2

junction in another two separate cases. First, we study the case
where only the TSS in Bi2Se3 is involved in the proximity
effect. By setting the chemical potential in Bi2Se3 to lie within
the bulk gap [EF = μ2 indicated by the green dashed line in
the inset of Fig. 4(c)], we exclude the contributions from the
bulk states and the Andreev reflections at low-voltage bias
are driven by the TSS only. As shown in Fig. 4(c), the ZBCP
vanishes, while the BICP remains intact and its height is almost
unchanged with the quintuple-layer number N . Therefore, we
confirm that the BICP indeed originates from the proximity
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FIG. 4. Numerical simulations of the differential conductance
spectra dI/dV and the superconducting proximity effect for the
Bi2Se3/NbSe2 hybrid structure. The insets in (b)–(d) show the energy
spectrum of Bi2Se3 near the � point with kx = 0 in the surface
Brillouin zone. The dashed lines indicate the locations of the Fermi
energy in each individual case. (a) Schematic showing the Andreev re-
flections and the superconducting proximity effect in the topological
insulator/superconductor junction. (b),(c) Zero-temperature dI/dV

spectra for topologically nontrivial Bi2Se3 with different numbers of
quintuple layers N = 9, 12, 15, 20. The Fermi energy of Bi2Se3 in
(b) is set to be EF = μ1 (see inset) such that both the surface states
and the bulk states near the conduction band minimum are filled.
Both features of the zero-bias conductance peak and bias-independent
conductance plateau are reproduced in qualitatively good agreement
with the experimental data. The Fermi energy of Bi2Se3 in (c) is set
to be EF = μ2 (see inset) such that only the surface states are filled.
The zero-bias conductance peak disappears while the flat plateau
remains almost unaffected by the number of quintuple layers N .
(d) Zero-temperature dI/dV spectra for topologically trivial Bi2Se3

with N = 20. The Fermi energy of Bi2Se3 is set to be EF = μ3 (see
inset) such that only the bulk conduction band minimum is filled.
The zero-bias conductance peak remains while the bias-independent
conductance plateau disappears. (e) The spectral weight of the
bottom quintuple layer of a section of TI placed right on top of
superconducting NbSe2 thin flakes. The Fermi energy of Bi2Se3 is
the same as in (b). The double arrows in yellow/white indicate twice
the induced gaps 2�′

S/2�′
B on the surface/bulk states. Evidently, �′

S

is significantly greater than �′
B .

effect in the TSS. Second, we study the case where only
the bulk states near the conduction band bottom of Bi2Se3

are filled at the Fermi energy. This is done by tuning the
tight-binding parameters of Bi2Se3 such that it becomes a
trivial band insulator with EF = μ3 as shown in the inset of
Fig. 4(d) indicated by the blue dashed line. In this case, the
BICP disappears in the dI/dV spectra with only a sharp ZBCP
left [Fig. 4(d)], confirming that the sharp ZBCP arises from the
proximity effect in the bulk states near the conduction band
bottom.

Their contrasting signatures in the dI/dV spectra suggest
that the bulk states and surface states in Bi2Se3 behave
very differently in the superconducting proximity effect. To
understand their distinct roles in the proximity effect, we
calculate the spectral function of Bi2Se3 with EF = μ1 placed
right on top of superconducting NbSe2, as shown in Fig. 4(e).
Evidently, the outermost Fermi circle associated with the
TSS acquires a sizable induced gap �′

S [2�′
S is indicated

by the double arrow in yellow in Fig. 4(e)] that is about 70%
compared to the parent superconducting gap �. This result is
consistent with the experimentally obtained width of the BICP
at low temperature [see Fig. 2(b)]. In contrast, the induced gaps
on the inner Fermi circles �′

B [2�′
B is indicated by the double

arrow in white in Fig. 4(e)] are an order of magnitude smaller
in size, which is also in agreement with the experimentally
obtained ZBCP width [see Fig. 3(b)]. In other words, the
proximity effect in the TSS are much stronger compared to
that in the bulk states. The strong proximity effect and large
induced gap in the TSS give rise to the BICP observed in
our experiment at temperatures a bit below the host Tc [see
Fig. 2(b) dashed curves, estimated as 6.5 K]. On the other
hand, the weak proximity effect and small induced gap in
the bulk states are responsible for the ZBCP observed below
2 K, which is much lower than the host Tc. In brief, the BICP
is a result of Andreev reflection driven by the surface states
through a very transparent interface between the topological
insulator Bi2Se3 and the superconductor, corresponding to the
Z ≈ 0 case with Z being the interface barrier strength in the
Blonder-Tinkham-Klapwijk (BTK) theory [27]. The ZBCP is
due to the Andreev reflections driven by the bulk states of
Bi2Se3 for energies lower than the small proximity induced
gap �′

B .
To understand the different proximity gaps induced in the

surface states and that on the bulk states, we note that the
wave functions of the surface states are localized at the surface,
while wave functions of the bulk states are predominantly in the
bulk. Effectively, the surface states couple much more strongly
to the superconductor than the bulk states. Consequently, the
proximity-induced gap on the surface states is much larger than
that in the bulk resulting in different Tc. We also note that high
interfacial transparency is crucial for the observation of the flat
BICP as clearly illustrated in Appendix F. The BICP can only
be observed when the interface is highly transparent. When
the coupling strength, or interfacial transparency, between the
topological insulator and the superconductor is reduced, the
width of the BICP is reduced. Further reducing the interfacial
transparency will remove the BICP completely. This gives
strong evidence that a highly transparent junction is achieved
in the experiment. The Thouless energy of the bulk states of
Bi2Se3 was also estimated as illustrated in Appendix G, which
is about 0.036 meV, close to the ZBCP width we measured
from the experimental dI/dV spectra in Fig. 3(a) [47,48].
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IV. CONCLUSIONS

In conclusion, the superconducting proximity effect is in-
vestigated in Bi2Se3/NbSe2 hybrid structure with transparent
interface. Two distinct features in the measured differential
conductance spectra are revealed: One is the BICP observed
once NbSe2 becomes superconducting and the other is the
sharp ZBCP emerged at much lower temperature. Both
features are reproduced in our theoretical calculations. We
identify that the ZBCP originates from the proximity effect
in the bulk states, while the pronounced BICP results from
the proximity effect in the TSS. Our experiment provides
direct evidence that the topological surface state acquires a
large proximity gap from the NbSe2. As a result, the effective
px + ipy superconductor can be realized. This suggests our
Bi2Se3/NbSe2 junction can be a promising candidate for
realizing Majorana fermions at the vortex core on the surface of
a 3D topological insulator. Our work not only provides new in-
sight into the different roles of TSS and bulk states in the super-
conducting proximity effect of topological insulators, but also
proposes a new physical mechanism for ZBCP, which would
have some implications to the search for Majorana fermions
in topological insulator and superconductor hybrid structures.
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APPENDIX A: CRITICAL FIELDS Hc2 FOR
THE SUPERCONDUCTING TRANSITION

As in ordinary superconductors, the upper critical fields can
be defined as the strength of fields at which the resistance of
the system is restored to the normal state value. In our system,
when the magnetic field increases, the resistance increases
linearly for B field from about 1 T to 3 T [fitted by the dashed
line 1 in Fig. 5(a) for measurements conducted at 0.5 K]
[49]. Below 1 T, the resistance is reduced below the linear
regime. We expect that this reduction in resistance is due to
proximity effect induced superconductivity in Bi2Se3. Since
the resistance is restored to the weak-antilocalization regime at
about 1.08 Tesla, we determine that the upper critical field for
the proximity effect induced superconductivity, HI

c2, is 1.08
Tesla. This value of HI

c2 is also consistent with the fact that
the zero-bias conductance peak vanishes at around 1 Tesla in
Fig. 2(c) of the paper. The vanishing of the zero-bias peak

FIG. 5. Magnetoresistance measurements of upper critical fields
Hc2 in Bi2Se3/NbSe2 hybrid structures. (a) R-H curve of
Bi2Se3/NbSe2 hybrid structures measured at 0.5 K. The determi-
nation procedure of HI

c2 and HII
c2 is indicated. (b) The upper critical

fields HI
c2 and HII

c2 as a function of T .

indicates that the proximity effect of the bulk states are killed
by the magnetic field.

As the magnetic field keeps increasing up to 4.17 Tesla, the
normal state resistance for the junction is restored (fitted by
the dashed line 2). Therefore, we determine that the Hc2 for
the NbSe2 thin film, HII

c2 , is 4.17 Tesla. This value of HII
c2 is

very reasonable as the Hc2 for bulk NbSe2 is about 5 Tesla (for
magnetic field perpendicular to the NbSe2 planes) [50]. The
upper critical fields, HI

c2 and HII
c2 , as a function of temperature

are plotted in Fig. 5(b).

APPENDIX B: MAGNETORESISTANCE PROPERTIES
OF n-Bi2Se3 FLAKES

For comparisons, the magnetoresistance properties of the
n-Bi2Se3 flakes exfoliated onto SiO2 (290 nm)/Si substrates
from the same piece of n-Bi2Se3 bulk crystals supplied
by the 2D Semiconductor Company were also investigated.
Figure 6(a) shows the magnetoresistances of the n-Bi2Se3

flakes measured at 3 K with magnetic fields perpendicular
with the planes of the n-Bi2Se3 flakes, namely θ = 0o, where
θ is the angle between the normal direction of the sample
plane and the magnetic fields. Hall measurements confirm
the n type of the Bi2Se3 flakes with the carrier density
of 2.27 × 1019/cm3. The SdH oscillations superimposed on
the smooth polynomial backgrounds were clearly observed
at the high magnetic fields above ∼7 T. To analyze the
SdH oscillations, �Rxx-1/B curve was plotted by removing
the smooth polynomial background. As shown in Fig. 6(b),
the �Rxx exhibits periodic dependence on the 1/B at high
magnetic fields. By applying the fast Fourier transformation
to the oscillations, the oscillation frequencies F was estimated
to be 168.67 T, as shown in Fig. 6(c), and was almost the same
with our previous reports [51].

The angle dependence of the magnetoresistance was also
measured, as plotted in Fig. 7(a). It can be seen that the
SdH oscillations are only dependent on the perpendicular
component of the magnetic fields. When θ increases, the
amplitudes of the SdH oscillations decreases as well, and the
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FIG. 6. Magnetoresistance and SdH oscillations of the exfoliated n-Bi2Se3 flakes. (a) the magnetoresistance of the n-Bi2Se3 flakes at 3 K,
where the SdH oscillations superimposed are clearly observed. Left top inset is the Hall measurements at 300 K, while the right bottom inset
is the schematic drawing of the n-Bi2Se3 flakes in magnetic fields with tilted angle θ . (b) The �Rxx as a function of 1/B. (c) The oscillation
frequencies calculated by fast Fourier transformation.

FIG. 7. SdH oscillations of the exfoliated n-Bi2Se3 flakes and band structure. (a) Angle dependence of the SdH oscillations at 3 K. (b) The
Landau level fan diagram of n-Bi2Se3 flakes. The integer (n) and half integer (n+1/2) marked as star and circle, respectively, correspond to
the maxima and minima of the conductivity �Rxx . The linear fitting (red line) gives the n-axis intercept of 0.48. (c) Temperature dependence
of the SdH oscillations at θ = 0◦. (d) The SdH oscillation amplitude as a function of temperature; the red line is the fitting using L-K theory
providing the cyclotron mass m∗ = 0.224m0. The inset is the schematic of the band structure based on the quantitative estimations of the SdH
oscillations; the Fermi energy EF is estimated to be about 270 meV.
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SdH oscillations are hardly recognized when θ increases to
about 48◦. The angle dependent SdH oscillations were also
reported in previous studies on topological insulators, which is
due to the SdH oscillations come from the topological surface
states that has the two-dimensional (2D) nature. To verify it, we
plotted the Landau level fan diagrams based on the oscillations
shown in Fig. 7(b). According to the standards Lifshitz-
Kosevich (L-K) theory, the 2D SdH oscillations follow the
equation, �Rxx = R(B,T ) cos[2π (F/B − 1/2 + β)], where
R(B,T ) is the amplitude of the SdH oscillations, and 2πβ

is the Berry phase that is π for ideal Dirac fermions and
0 for normal electrons. The Landau level indexes with the
half-integer/integer were obtained by considering the min-
ima/maxima of the �Rxx . By linear fitting the Landau indexes,
the intercept β is calculated to be about 0.48, indicating the
SdH oscillations are arising from the nontrivial topological
surface states.

The SdH oscillations are also systemically investi-
gated at different temperatures at high magnetic fields, as
shown in Fig. 7(c). With the temperature increases, the
SdH oscillations amplitude decreases gradually. According
to the L-K theory, the oscillations amplitude R(B,T ) =
R0

2π2kBT

(h̄ωc sinh(2π2kBT /h̄ωc) exp(−(2π2kBTD)/(h̄ωc)), where R0 is
the zero field resistance, kB is the Boltzmann constant, ωc =
eB/m∗ is the cyclotron frequency, and m∗ is the cyclotron
mass, TD = h̄/(2πτDkB) is the Dingle temperature, and τD is
the Dingle scattering time corresponding to dephasing of the
Landau states. Based on the equation, the m∗ can be estimated
by fitting the temperature dependence of SdH amplitude at
fixed B. As shown in Fig. 7(d), the fitting gives rise to
m∗ = 0.224m0, where m0 is the electron rest mass.

For Dirac fermions, the linear energy dispersion relation of
the topological surface states leads to the Fermi velocity vF =
h̄kF /m∗, where k2

F = 2eF/h̄ is given by the Onsager relation.
Thus the Fermi velocity vF is calculated as 5.92 × 105m/s, and
the energy difference between the Fermi level and the Dirac
point is further estimated by considering E = h̄vF kF , which
is about 270 meV, as shown in the schematic drawing in the
inset of Fig. 7(d). These quantitative estimations are consistent
with the ARPES observations on Bi2Se3, from which the band
structure is adopted in our numerical calculations [30,31].

APPENDIX C: NUMERICAL CALCULATIONS
OF DIFFERENTIAL CONDUCTANCE

FOR Bi2Se3/NbSe2 JUNCTION

In this section, we present the detailed descriptions of
the tight-binding model used in our numerical simulations.
The total Hamiltonian for the Bi2Se3/NbSe2 junction can be
written as:

Htot = HT I + HSC + Hc, (C1)

where HT I/HSC refer to the Hamiltonians for the 3D topolog-
ical insulator Bi2Se3 and the NbSe2 thin flakes, respectively.
Hc is the coupling Hamiltonian at the topological insula-
tor/superconductor (TI/SC) interface.

First, we model HT I using the tight-binding Hamilto-
nian for Bi2Se3 in Refs. [52,53], which in the basis ck =
(ck,+↑,ck,+↓,ck,−↑,ck,−↓)T is written as:

HT I =
∑

k

c†kHT I (k)ck, (C2)

where the ± sign refers to the spatial parity of the basis wave
functions, and ↑ , ↓ label the spin indices. The 4 × 4 matrix
HT I (k) takes the form:

HT I (k) = E(k)I4×4

+

⎛
⎜⎝
M(k) 0 B(k) A−(k)

0 M(k) A+(k) −B(k)
B(k) A−(k) −M(k) 0
A+(k) −B(k) 0 −M(k)

⎞
⎟⎠ (C3)

and its matrix elements are defined as:

E(k) = C0 − EF + 2C1[1 − cos(kzc)]

+ 2C2[2 − cos(kxa) − cos(kya)]

M(k) = M0 + 2M1[1 − cos(kzc)]

+ 2M2[2 − cos(kxa) − cos(kya)]

A(k) = A0[sin(kxa) + i sin(kya)]

B(k) = B0 sin(kzc).

Here, a refers to the lattice constants in the ab plane, and c

denotes the distance between neighboring quintuple layers in
Bi2Se3. The parameters C0,C1,C2,M0,M1,M2,A0,B0 are in
the units of energy (eV) with their values given in Table I. EF

denotes the chemical potential of the TI.
Second, we model the superconducting NbSe2 layers by a

quasi-2D s-wave superconductor with square lattice geometry.
In the Nambu basis �k = (ψk,↑,ψk,↓,ψ

†
−k,↑,ψ

†
−k,↓)T , the bulk

Hamiltonian for the superconductor is given by:

HSC =
∑

k

�
†
kHSC(k)�k

HSC(k) = [2t(cos(kxa) + cos(kya) + cos(kza))

−μs]σ0τz + �σyτy. (C4)

Here, t,μs,� refer to the hopping amplitude, the chemical
potential, and the mean-field order parameter of the supercon-
ductor.

Third, to simulate the TI/SC junction, we introduce the
coupling Hamiltonian Hc at the TI/SC interface. In our
transport experiment, the junction is formed with a section
of Bi2Se3 placed right on top of superconducting NbSe2 thin
films [Fig. 1(a) of the main text]. For a realistic simulation
of the experimental junction, the coupling Hamiltonian Hc

TABLE I. Parameters for the Hamiltonian Htot. All the parameters are set in units of eV.

C0 C1 C2 M0 M1 M2 A0 B0 μ1 t � μs tc

−0.0083 0.024 1.77 −0.28 0.216 2.60 0.80 0.32 0.274 −0.20 0.02 −1.0 −0.20
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at the TI/superconductor interface is modeled by hopping
matrices which connect a section of the Bi2Se3 bottom
surface to the sites right below on the top surface of the
superconductor.

As shown in Fig. 4(a), once the TI/SC junction is formed,
translational symmetries in the x,z directions are broken.

Therefore, we use the real-space Hamiltonian derived from
HT I (k) and HSC(k) with open boundary conditions in x/z di-
rections. Assuming translational invariance in the y direction,
we can still treat ky as a good quantum number and the separate
parts of the Hamiltonian—HT I , HSC , and Hc—can be written
in block-diagonal form as:

HT I =
∑
ky

H0(ky) HSC =
∑
ky

Hs(ky) Hc =
∑
ky

Hc(ky), (C5)

where for each fixed ky we have:

H0(ky) =
Nx∑

m=1

Nz∑
n=1

∑
ss ′,σσ ′

c†mn,sσ (ky)[HT I,mn(ky)]sσ,s ′σ ′cmn,s ′σ ′(ky)

+
Nx∑

m=1

Nz−1∑
n=1

∑
ss ′,σσ ′

c
†
(m,n+1),sσ (ky)[Hz(ky)]ss ′,σσ ′c(m,n),s ′σ ′(ky) + H.c.

+
Nx−1∑
m=1

Nz∑
n=1

∑
ss ′,σσ ′

c
†
(m+1,n),sσ (ky)[Hx(ky)]ss ′,σσ ′c(m,n),s ′σ ′(ky) + H.c. (C6)

Here, (m,n) labels the lattice vectors R = max̂ + ncẑ of the
3D TI in the xz plane and s/σ are the parity/spin indices,
respectively. The matrices Hx/z are the hopping matrices along
the directions defined by unit vectors x̂/ẑ, which are obtained
from HT I (k) by partial Fourier transforms. Similarly, for the
quasi-2D superconductor we have:

Hs(ky) =
N ′

x∑
l=1

N ′
z∑

p=1

ψ
†
lp,σ (ky)[2t cos(kya) − μs]ψlp,σ (ky)

+ [�ψ
†
lp,↑(ky)ψ†

lp,↓(−ky) + H.c.]

+
N ′

x∑
l=1

N ′
z−1∑

p=1

∑
σ

t(ψ†
(l,p+1),σ ψ(l,p),σ + H.c.)

+
N ′

x−1∑
l=1

N ′
z∑

p=1

∑
σ

t(ψ†
(l+1,p),σ ψ(l,p),σ + H.c.). (C7)

Here, (l,p) labels the lattice vectors R′ = lax̂ + paẑ of the
superconductor in the xz plane. By assuming the TI and the
superconductor are coupled at the interface by hopping terms
that preserve spins σ and momenta ky , we have:

Hc(ky) =
∑

〈R,R′〉,sσ
tcψ

†
R′,σ (ky)cR,sσ (ky) + H.c.

=
∑
m,s,σ

tcψ
†
(m,N ′

z),σ (ky)c(m,1),sσ (ky) + H.c., (C8)

where m ∈ interface.
In our simulations for the differential conductance Gc =

dI/dV measured in the experimental setup, we consider a
semi-infinite Bi2Se3 with a small section of its bottom layer
attached to the top layer of the superconductor as shown
in Fig. 4(a) in the main text. On the other end of the
superconductor, we also attach a semi-infinite lead which

has the same lattice geometry as the superconductor and is
modeled by the same tight-binding parameters as in HSC
except � = 0. With the model Hamiltonians HT I ,HSC,Hc

above, the dI/dV spectra for our TI/SC junction can be
calculated using the scattering matrix approach:

Gc(E) = e2

h
T r{Iσ0 − ree(E)†ree(E) + r

†
he(E)rhe(E)},

(C9)

where ree, rhe refer to the scattering matrices for nor-
mal/Andreev reflections, respectively. By current conservation
law, the same value of Gc(E) can be obtained from scattering
matrices defined at any interface in the semi-infinite Bi2Se3.
To calculate the scattering matrix in a convenient way, we
choose the interface between the semi-infinite Bi2Se3 and the
section of Bi2Se3 on top of the s-wave superconductor as
shown schematically in Fig. 4(a) in the main text.

Due to translational invariance in the y direction, the total
scattering matrix can be brought into block-diagonal form,
with each sub-block characterized by a momentum ky . Using
the recursive Greens function method [54], the sub-block for
a fixed ky is obtained as:

rαβ(E,ky) = −Iσ0δαβ + i�1/2
α (E,ky)GR

ii(E,ky)�1/2
β (E,ky).

(C10)

Here, α,β ∈ {e,h} are the electron/hole indices, σ0 is the
identity matrix in the spin space, and I is the identity matrix in
the rest of the Hilbert space. GR

ii(E,ky) = [E + iηHtot(ky)]−1
ii

is the retarded Greens function at the interface between the
semi-infinite Bi2Se3 and the Bi2Se3/NbSe2 junction. � is
the broadening function defined as �(E,ky) = i[�(E,ky) −
�†(E,ky)], where �(E,ky) is the self-energy of the semi-
infinite Bi2Se3. The total differential conductance is obtained
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FIG. 8. Estimation of the width for the ZBCP at 0.1 K of the
NbSe2/Bi2Se3 hybrid structures. The width was determined by the
bias positions of the inflection points, as indicated by the blue arrows.
The red double-headed arrow represents the intensity of the ZBCP.

by summing the traces of all sub-blocks:

Gc(E) = e2

h

∑
ky

T r{Iσ0 − ree(E)†ree(E) + r
†
he(E)rhe(E)}.

(C11)

APPENDIX D: ESTIMATION OF THE WIDTH
AND INTENSITY OF THE ZBCP

The width of ZBCP in Fig. 3 in the main text was determined
by the bias positions of the inflection points, as indicated by
the blue arrows shown in Fig. 8, while the ZBCP intensity
is determined by the peak conductance value relative to the
inflection point, as indicated by the red double-headed arrow.

APPENDIX E: THEORETICALLY MODELING THE
TEMPERATURE DEPENDENCE OF ZERO-BIAS

CONDUCTANCE PEAKS

In this section, we demonstrate the thermal smearing
effects on zero-bias conductance peaks (ZBCPs) based on
the differential current formula derived in Ref. [55]. The
conductance formula under finite temperature is given by [55]:

Gc(E,T ) = e2

h

∫
dE′T r[I−r†ee(E′)ree(E′) + r

†
he(E′)rhe(E′)]

×
[

− ∂fFD(E′,T )

∂E′

]
. (E1)

Here, the scattering matrices ree,rhe are defined as Eq. (C9) in
Appendix C. fFD(E,T ) = 1/[exp( E

kBT
+ 1] is the Fermi-Dirac

distribution function.
In general, thermal fluctuations have two major effects on

ZBCPs: One is the reduction of peak intensity, and the other
is the broadening of the peak width. These two effects are
demonstrated in Fig. 9(a) by calculating the dI/dV spec-
tra under finite-temperature conditions. The dimensionless

FIG. 9. Numerical simulation of the dI/dV spectra at different
αT , where αT denotes the ratio between the thermal energy kBT and
the pairing gap �. (a) The dI/dV spectra at different αT . (b) The
peak intensity and peak width as a function of αT . By increasing αT ,
the peak intensity is reduced, while the peak width is broadened.

parameter αT denotes the ratio between the thermal energy
kBT and the pairing gap �. The peak widths are indicated by
double arrows in Fig. 9 as similarly defined in Appendix D.
Both the peak intensity and the peak width are plotted as a
function of temperature in Fig. 9(b). Evidently, by increasing
temperatures, the peak width gets broadened, while the peak
intensity is reduced.

APPENDIX F: EVIDENCE FOR A TRANSPARENT
INTERFACE BETWEEN TOPOLOGICAL INSULATOR

AND SUPERCONDUCTOR

In this section, we demonstrate by our numerical simu-
lations that the topological insulator/superconductor (TI/SC)
interface in our transport measurements is very transparent.
In particular, we show that by reducing the interfacial trans-
parency, both features of flat bias-independent conductance
plateau (BICP) and pronounced zero-bias conductance peak
(ZBCP) differ qualitatively from the experimental results.

Both the surface states and the bulk states are properties
of the topological insulator. Tuning the coupling strength tc
between the bottom layer of the topological insulator and the
top layer of the superconductor controls the transparency of
the interface. By reducing the interfacial coupling strength
tc, which effectively reduces the interfacial transparency, the
superconducting proximity effects on both the topological sur-
face states and the bulk states in the TI become less effective.
As a result (Fig. 10), the flat BICP due to superconducting TSS
evolves into a broad conductance peak, and the intensity of the
pronounced ZBCP due to the bulk states is also suppressed. In
other words, a well-defined BICP can be seen only when the
interface is very transparent (for example, when the hopping
tc between the TI and the superconductor is almost the same
as the hopping t in the superconductor).

APPENDIX G: ESTIMATION OF THE THOULESS
ENERGY OF THE BULK STATES OF Bi2Se3

(i) For bulk states of Bi2Se3 flakes
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FIG. 10. Zero-temperature dI/dV spectra at different tc, where tc
is the coupling strength. Due to reduced interfacial transparency, the
proximity effects in both the surface states and the bulk states become
less effective. As a result, the original bias-independent conductance
plateau shrinks into a broad conductance peak, and the intensity of
the original zero-bias peak is also reduced.

The diffusion constant in 3D bulk states should be [56]

D = 1
3vF ls = 1

3vF (vF τ ), (G1)

where vF is the Fermi velocity, ls is the mean free path, and τ

is the diffusion time. The Fermi velocity of the bulk states can

be calculated by

vF = h̄kF

m∗ , (G2)

where h̄ is the reduced Planck constant, the kF = (3π2n3D)
1
3

is the Fermi wave vector with n3D as the carrier density of
the 3D bulk states of Bi2Se3, and m∗ is the effective mass of
the electrons in the bulk states, which roughly equals to the
standard electron mass. The diffusion time τ is calculated by

τ = μm∗

e
, (G3)

where μ is the mobility, and e is the elementary charge. The
carrier density n3D is about 2.27 × 1019/cm3 calculated from
the Hall measurements on our Bi2Se3 flakes, and the mobility
is estimated to be about 0.034 m2/Vs. Combining all the
equations and parameters together, we arrive at

Eth = h̄D

L2
= 1

3

h̄3μ

m∗eL2
(3π2n3D)

2
3 ∼ 0.036 meV (G4)

Lth =
√

h̄D/(2πkBT ) ∼ 28 nm/
√

T . (G5)

The distance L in Eq. (G4) should be the thickness of the
Bi2Se3 layer as our NbSe2/Bi2Se3 hybrid structure is vertically
aligned, as indicated in Figs. 1(a) and 4(a) in the main text. It
can be seen that the Thouless energy of the bulk states is about
0.036 meV, which is close to the ZBCP width we measured
from the dI/dV spectra in Fig. 3(a).

(ii) For topological surface states of Bi2Se3 flakes
Based on the measured magnetoresistance properties of

Bi2Se3 flake in Appendix B, the Fermi velocity vF and the
length of mean free path ls is 5.92 × 107 cm/s and 28.2 nm,
respectively, for the topological surface states of Bi2Se3 flake.
However, as the surface states are localized at the interface,
the distance L cannot be identified readily to be the thickness
of the Bi2Se3 in our heterostructures.
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