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Terahertz-pulse driven modulation of electronic spectra: Modeling electron-phonon
coupling in charge-transfer crystals
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We calculate the optical spectra of a charge-transfer crystal modulated by a terahertz pulse, accounting
for electron-vibration coupling. The model Hamiltonian is parametrized against first principle calculations
and adiabatic results are validated against a fully non-adiabatic calculation where relaxation phenomena are
introduced via the coupling of the quantum system to a dissipative bath of classic anharmonic oscillators. The
experiment is well reproduced by the proposed model with no need to introduce any ad hoc assumption on the
temporal dependence of model parameters, but just accounting for the quadratic dependence of the Hubbard U

on non-totally symmetric molecular coordinates.
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I. INTRODUCTION

Delocalized electrons in reduced dimensions are respon-
sible for the complex and intriguing physics of charge-
transfer (CT) crystals [1–3]. The variegated properties of
these materials, their complex phase diagrams [4–8] and their
unique spectral features [9–11] are governed by a subtle
interplay of electron-electron and electron-phonon interac-
tions. In recent years the development of multiple ultrashort
pulse techniques made it possible to artificially modulate
the material properties following the subsequent dynamics in
real time [12,13]. In this respect, the coupling of electronic
and vibrational degrees of freedom is a key player. The
analysis of coherent oscillations following ultrafast electronic
photoexcitation is a well-established tool in molecular physics
to investigate excited state potential energy surfaces [14,15]
and, in the realm of CT crystals, offered a clear demonstra-
tion of anharmonic interactions driven by electron-phonon
coupling in the close proximity of photoinduced phase
transitions [16–18]. Recent technological advances in the
production of well-controlled pulses in the terahertz (THz) and
mid-infrared (MIR) [19–22] regions allow to directly address
the modulation of basic interactions by specific molecular
vibrations or lattice modes, monitoring their spectroscopic
effects on electronic excitations [23,24]. These techniques
offer an invaluable tool to experimentally validate model
Hamiltonians traditionally used to describe coupled electronic
and vibrational motion in CT crystals. To fully exploit the
potential of these advanced spectroscopic techniques it is
important to develop general, reliable and accurate theoretical
interpretative tools to describe the coupled electronic and
vibrational motion of a system driven out of equilibrium by a
specifically designed pulse in the MIR or THz regions.

In this paper we present a comprehensive theoreti-
cal description of a recent experiment by Kaiser and
coworkers [25,26]. The investigated material, bis-(ethylend-
ithyo)-tetrathiafulvalene difluorotetracyano-quinodimethane
(ET-F2TCNQ), is an organic CT crystal characterized by
segregated stacks of ET molecules bearing a positive charge
(half-filling) and regularly spaced, as shown in Fig. 1 [27]. The
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relevant physics is therefore governed by electrons delocalized
in one dimension, along the stack of ET+ molecular ions.
A strong pump pulse in the MIR region (900–1100 cm−1),
polarized perpendicularly to the stack, selectively drives IR-
active (i.e., non-total symmetric) molecular vibrations of ET+

ions out of equilibrium. A second weaker ultrafast probe-pulse
interrogates the system in the NIR (4000–7000 cm−1) region,
as relevant to CT excitations, observing coherent spectral
oscillations at twice the frequency of the driven molecular
mode. We rely on quantum cell models for the description of
the coupled electronic and vibrational system, parametrized
against quantum chemical calculations. Numerical integration
techniques are adopted to explore the dynamics of the driven
system, comparing results obtained via a truly non-adiabatic
description of the coupled electronic-vibrational motion with
the adiabatic solution.

In the next section, we introduce the model and its
parametrization. In Sec. III the model is put in action on

FIG. 1. Top: the ET+ stack, from crystallographic data in
Ref. [27]. Bottom: the chemical structure of ET molecule, the labels
along the axis refer to relevant irreducible representations in the D2

point group.
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an (ET+)2 dimer where a fully non-adiabatic approach is
adopted. In Sec. IV we compare the non-adiabatic results
with those obtained in the adiabatic approximation. Results
are summarized and discussed in Sec. V.

II. SETTING THE STAGE: DEFINITION
OF THE MODEL HAMILTONIAN

The electronic structure of segregated regular stack sys-
tems, like ET-F2TCNQ, is well captured by the extended
Hubbard model:

Ĥel = −t
∑
i,σ

(ĉ†i,σ ĉi+1,σ + H.c.) + U
∑

i

n̂i,↑n̂i,↓

+V
∑

i

ρ̂i ρ̂i+1, (1)

where ĉ
†
i,σ and ĉi,σ are the creation and annihilation operators

for an electron with spin σ on site i, n̂i,σ = ĉ
†
i,σ ĉi,σ counts the

number of electrons having σ spin on site i, and ρ̂i = 2 − n̂i

is the ET ionicity operator. The first term in the Hubbard
Hamiltonian accounts for the electronic delocalization, with
t describing the nearest neighbor hopping. The second term
describes the repulsion of two electrons on the same site, U ,
and the third term accounts for intersite electrostatic repulsions
reduced to nearest neighbor interactions, V .

The Hubbard model only accounts for intermolecular
electronic degrees of freedom, collapsing the molecular com-
plexity to a single site. This common approximation is justified
by the different energy scales of relevant excitations: the lowest
localized excitation in ET+ ions are found at 13 000 cm−1, [28]
approximately 0.9 eV higher than intermolecular CT excitation
described by the Hubbard model for the system at hand. The
molecular complexity is at least in part accounted for assigning
internal vibrational degrees of freedom to the molecular sites,
able to modify on-site properties, in the spirit of the Holstein
model.

Electronic model parameters for ET-F2TCNQ have already
been estimated [25,26,29]. The current estimate t = 0.04 eV, is
in line with our estimate from ZINDO calculations on (ET+)2

dimers in crystallographic geometry [30]. U can be estimated
from single molecule calculations as [31]

U = E(ET) − 2E(ET+) + E(ET2+), (2)

where E is the ground state energy of the ET molecule
in the different oxidation states. Density functional theory
(DFT) results (UB3LYP functional, 6-31G(d) basis set, gas
phase geometry, using GAUSSIAN09 package [32]) lead to
U = 4.06 eV, in good agreement with previous estimate
[31,33]. The extended Hubbard model in Eq. (1) is an effective
model where all intermolecular interactions are collapsed
into an effective nearest neighbor V interaction. Accordingly,
the actual value of V is difficult to estimate from quantum
chemical calculations and is best fixed against experiment.
For a dimeric system, to be discussed in Secs. III and
IV, only U − V enters the Hamiltonian matrix and we fix
U − V = 0.666 eV to reproduce the experimental frequency
of the CT transition, h̄ω � 0.68 eV.

In the pump-probe experiment described in Refs. [25,26],
IR-active molecular vibrations of ET+ are selectively ex-

TABLE I. Selected results on vibrational modes of ET+ as
obtained from DFT calculations in gas phase. Only IR-active modes
in the 900–1100 cm−1 spectral region are shown. For each mode,
we list the calculated frequency, the β coupling constant, the squared
derivative of the molecular dipole moment on the vibrational mode η2,
the squared cosine of the angle between the molecular axis relevant
to each vibration with the b and c crystallographic axis.

mode ωv β η2

(symmetry) cm−1 meV (D/Å)2amu−1 Tb Tc

40 (b2) 902 5.4 0.2281 0.28 0.07
41 (b3) 918 -0.5 0.1611 0.72 0.01
42 (b2) 927 1.0 0.0173 0.28 0.07
43 (b1) 958 -0.6 0.2974 0.0 0.90
45 (b1) 1028 0.2 0.1634 0.0 0.90
47 (b3) 1028 -2.2 0.0017 0.72 0.01
48 (b2) 1031 -3.0 0.7663 0.28 0.07
49 (b3) 1063 4.1 0.0060 0.72 0.01

cited by an intense pump beam at 1000 cm−1 polarized
perpendicularly to the stack axis (i.e., perpendicularly to
the a crystallographic direction). The optical pulse excites
the in-phase motion of the molecules along the stack (the
zone-center mode). In these conditions only on-site energies
may be sizably affected, but the in-phase modulation of the
site energy is irrelevant to the model (the total number of
electrons in the stack being constant) so that, as originally
suggested in Refs. [25,26], the only relevant modulation
involves the Hubbard U (as a matter of fact V modulations
are also possible, but they are negligible, see Supplemental
Material [34]). IR-active vibrations belong to the irreducible
representations b1,b2, and b3 in the D2 molecular symmetry
[35] and, being non-totally symmetric, they can only modulate
U quadratically.

To evaluate the strength of the coupling we resort again
to DFT calculations. After geometry optimization of ET+ in
the gas phase [UB3LYP functional, 6-31G(d) basis set], we
calculate molecular vibrational modes. Selected results for the
900–1100 cm−1 region are reported in Table I, complete results
can be found in the Supplemental Material [34]. Vibrational
frequencies ωv are rescaled according to Ref. [35]. The
quadratic coupling constants are calculated as

βα = ∂2U

∂Qα
2

∣∣∣∣
0

= U (Qα) + U (−Qα) − 2U (0)

Q2
α

, (3)

where Qα is the dimensionless normal coordinate associated
to the α-th molecular mode and U (Qα) is calculated according
to Eq. (2) for the distorted geometry.

For the sake of simplicity we will account for a single
coupled mode, on each molecular site i (the α index will be
removed, accordingly). The Hamiltonian reads

Ĥ = Ĥel + h̄ωv

4

∑
i

(
P̂ 2

i + Q̂2
i

) + β
∑

i

Q̂2
i n̂i,↑n̂i,↓, (4)

where ωv is the frequency of the mode, Q̂i and P̂i are
the dimensionless vibrational coordinate and its conjugated
momentum, of site i. Specifically Q̂i = (â†

i + âi) and P̂i =
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i(â†
i − âi) where â

†
i and âi are the creation and annihilation

operators for the harmonic oscillator.
To discuss optical spectra we must define the dipole moment

operators. CT spectra are addressed by the probe-beam in
the near-IR region polarized along the stack axis, a. The
corresponding dipole moment operator (in units with the
electronic charge and the lattice constant set to 1) is

μ̂a =
∑

i

in̂i . (5)

The pump beam in the mid-IR region forces the oscillation
of molecular vibrations. Accordingly, the relevant dipole
moment operator is

μ̂IR = η
∑

i

Q̂i , (6)

where η is the derivative of the molecular ground state dipole
moment on the molecular coordinate. The squared η values,
calculated for the isolated molecules, listed in Table I, are
proportional to the infrared intensity of vibrational modes.
While we account for a single vibrational mode in our
Hamiltonian, the derivatives of the molecular dipole moment
on the vibrational coordinates are calculated for all molecular
vibrations, as listed in Table I (see also the Supplemental Mate-
rial [34]). Based on the relative IR intensities of the vibrational
modes and on the director cosines (last two columns in Table I),
we expect that the pump beam, perpendicularly polarized with
respect to a, will mainly excite the mode number 48. In the
following we set ωv = 1031 cm−1, β = −3 meV, as relevant
to mode 48.

III. NON-ADIABATIC RESULTS

We attack the problem considering the smallest possible
stack fragment, i.e., an (ET+)2 dimer. Indeed the very small t

value characterizing ET-F2TCNQ suggests a strongly localized
electron system, as to make a dimer calculation relevant.
Thanks to this minimal choice we are able to adopt a fully
non-adiabatic approach to the dynamics. Only singlet states
are relevant to optical spectroscopy, so that the electronic basis
states for the ET+ dimer are just three: | 	〉, |x0〉, and |0x〉,
where x marks a doubly occupied ET site, 0 an empty ET2+

site, and | 	〉 = (2)−1/2(ĉ†1↑ĉ
†
2↓ − ĉ

†
1↓ĉ

†
2↑)|00〉 is the singlet

valence bond state. Higher energy electronic states can be
safely neglected on the basis of the pump and probe pulses
spectral regions used in Refs. [25,26].

The molecular coordinates are conveniently combined
into an in-phase and an out-of-phase displacement Q̂± =
(2)−1/2(Q̂1 ± Q̂2). It is instructive to rewrite the model
Hamiltonian in Eq. (4) for a dimer, using the symmetrized
coordinates

Ĥdim = −t
∑
i,σ

(ĉ†i,σ ĉi+1,σ + H.c.) + Ueff

∑
i

n̂i,↑n̂i,↓

+ h̄ωv

4
(P̂ 2

+ + P̂ 2
− + Q̂2

+ + Q̂2
−)

+β
Q̂2

+ + Q̂2
−

2
(n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓)

+βQ̂+Q̂−(n̂1,↑n̂1,↓ − n̂2,↑n̂2,↓), (7)

FIG. 2. Optical spectra in the CT region calculated for a dimer
with ωv = 1031 cm−1 and β = −3 meV (left panels) and +3 meV
(right panels). Panels from top to bottom show spectra calculated
from the ground state and from |v1〉 and |v2〉 (see text). The dashed
lines show the same spectra calculated for β = 0 (i.e., in the absence
of vibrational coupling).

where Ueff = U − V . Only Q̂+, the in-phase combination of
molecular vibrations, is driven by the pump pulse. However
we will perform a complete calculation, to verify the relevance
to the problem of the coupling between the in-phase and out-
of-phase combination of the modes, through their common
coupling to the electronic system, as described by the last term
in the above equation.

As discussed in different contexts [36,37], the non-adiabatic
approach writes the Hamiltonian matrix on the basis obtained
as the direct product of the three electronic states times the
eigenstates of the harmonic oscillators associated with Q̂+
and Q̂−. The infinite basis associated with the harmonic
oscillators are truncated to a large enough number of states
as to ensure convergence (typically ten states are needed for
each oscillator leading to a total dimension of 300). The
eigenstates of the Hamiltonian matrix are the numerically
exact non-adiabatic (vibronic) states describing the coupled
electronic and vibrational motion and allow to calculate ground
state properties as well as optical spectra.

We start our analysis discussing the effects of the pump
pulse on the absorption spectrum. The pump beam is expected
to populate the first few vibrational eigenstates associated with
Q̂+. To identify the first vibrational eigenstate |v1〉 among
our non-adiabatic vibronic eigenstates, we select the |E〉
state having the largest transition dipole moment from the
ground state, i.e., the largest |〈G|μ̂IR|E〉|2, where |G〉 is the
ground state. The second vibrational eigenstate |v2〉 is obtained
searching for the |E〉 state with the largest |〈v1|μ̂IR|E〉|2
matrix element, and so on. Figure 2 shows the optical spectra
in the CT region, as probed by the probe-beam, calculated
starting from |G〉, |v1〉, and |v2〉 states (top, middle, and lower
panels, respectively), for a system with ωv = 1031 cm−1 and
β = −3 meV (left panels) and +3 meV (right panels).
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As expected, the pump beam in the mid-IR does not
affect optical CT spectra in the absence of electron-vibration
coupling (β = 0, dashed lines in Fig. 2 ). For negative β,
left panels, a progressive red-shift of the absorption band is
observed upon populating excited vibrational states, while a
blue shift is observed for positive β. We expect that in the
experimental conditions only |v1〉 is appreciably populated.
Indeed the direct transition probability from the ground to |vn〉
states are negligible for n > 1, the only possibility to populate
them being the excitation of excited states, a process that will
lead to fast decreasing populations with increasing n. Results
in left panel of Fig. 2, corresponding to model parameters
relevant to mode 48, suggest, for realistic excitations to |v1〉
and |v2〉 states, a red-shift of ∼70 cm−1 of the CT band, in line
with the experimental observation. We notice that with realistic
model parameters and excitation schemes we cannot reproduce
the appearance of the reflectivity peaks at ∼3000 cm−1 and
∼4000 cm−1, as observed in Ref. [25]. Results reported in the
Supplemental Material, [34] show that these features can only
be reproduced by introducing an unphysically large β value,
at least one order of magnitude larger than estimated through
DFT. We underline that the excitation scheme we discuss is
qualitatively different from that proposed in Ref. [25], where
a pump-induced coherent population of the vibrational states
of the electronic ground state is assumed. Indeed this kind
of excitation is only possible via a more elaborate excitation
scheme that implies a sequence of ultrafast (<30 fs) pulses in
a pump and dump experiment [38–41].

To simulate the pump-probe spectra reported in Ref. [26] we
explicitly introduce the pump-pulse in the Hamiltonian Ĥ (t) =
Ĥdim − μ̂IRF (t), where F (t) is the t-dependent electric field
associated with the mid-IR pump. Specifically, we consider a
pump defined by a cosine at the frequency ωIR = 1010 cm−1

weighted by a Gaussian envelope with standard deviation σ =
100 fs, as depicted in panel (a) of Fig. 3 [panel (b) shows
the relevant Fourier transform]. The t-dependent Hamiltonian
reads

Ĥ (t) = Ĥdim −
√

2ηF0 cos(ωIRt)e− t2

σ2 Q̂+, (8)

where F0 is the amplitude of the applied field. The time-
dependent Schrödinger equation for the coupled electronic and
vibrational problem is solved through a numerical integration
of the differential equation via a fourth-order Runge-Kutta
approach (time step 0.1 fs) to obtain the time-dependent
ground-state wave function as a linear combination of the
non-adiabatic basis states.

The blue line in panel (c) of Fig. 3 shows the calculated
expectation value of Q̂2

+. As expected, 〈Q̂2
+〉 oscillates at

twice the frequency of the driving pulse, as shown by the
Fourier transform reported in panel (d). The antisymmetric
Q̂− coordinate, coupled to the driving field only through
Q̂+, oscillates at the same frequency, but with an amplitude
four orders of magnitude smaller than that observed for Q̂+,
confirming that only the Brillouin zone-center modes are
spectroscopically relevant.

Experimental spectra show damped oscillations, that sug-
gest the need to account for some relaxation phenomena and
hence for energy dissipation. To this effect, we introduce a bath
of classical anharmonic oscillators coupled to the quantum

FIG. 3. Quantum dynamics of the coupled electron-vibrational
system (same model parameters as in left panels of Fig. 2) driven
by a mid-IR pulse. (a) and (b) Temporal evolution of the pulse and
its Fourier transform, respectively. (c) and (d) Temporal evolution of
〈Q̂2

+〉 calculated for a non-dissipative (blue line) and a dissipative (red
line) driven system, and their Fourier transform, respectively. (e) and
(f) Temporal evolution of 〈Q̂2

+〉 calculated for a driven system with
friction and accounting for the finite temporal resolution of the probe
pulse (full width at half-maximum 10 fs) and its Fourier transform,
respectively.

system [42,43]. In particular, we considered a linear chain of
20 classical particles [42] connected by anharmonic springs as
described by the potential

Vb =
20∑
i=1

[
h̄ωb

4
(qi − qi+1

)2 + V0χ
4(qi − qi+1)4

]
, (9)

where qi is the dimensionless coordinate of the i-th classical
particle and we used fixed boundary conditions introducing an
extracoordinate q21(t) = 0. While the last oscillator (number
20) is connected to a fixed site, we connect the first oscillator
of the linear chain to the quantum system, as follows:

Ĥs−b = −αQ̂+q1. (10)

To introduce dissipation, we account for a friction coefficient
γ in the equation of motion relevant to the five particles
at the end of the chain (i = 16–20) and account for finite
temperature introducing the Langevin random force, R(t) =
2ξ

√
ωbγ kBT /h̄
t , where ξ is a Gaussian random variable

of unit width and zero mean. The equation of motion for the
classical particles then reads

h̄

2ωb

d2qi

dt2
= −∂Vb

∂qi

+ δi,1αQ̂+

+ h̄

2ωb

(
−γ

dqi

dt
+ R(t)

)
δi,j , (11)

where δi,1 ensures that only the first oscillator is coupled to
the quantum coordinate Q̂+, while the dissipative terms in the
round brackets only enter for oscillators number j = 16–20.
The α term in the above equation mixes the quantum and
classical systems. The coupled quantum-classical dynamics is
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calculated evolving the quantum system as described above for
the non-dissipative case, adding the contribution from Eq. (10)
for the q1 value as relevant to each time step. Concomitantly,
the classical equations of motion in Eq. (11) are numerically
integrated (Verlet algorithm [44,45]) substituting the operator
Q̂+ in Eq. (11) with its expectation value. The time step 
t =
0.1 fs is used for both quantum and classical calculations. In the
following we will show results obtained averaging over several
(typically 741) trajectories. An animation is provided in the
Supplemental Material [34] showing the temporal evolution
of 〈Q̂+〉 and of the displacement of each classical oscillator.

The dissipation model is phenomenological and relevant
parameters are set as to reproduce the experimental decay.
The chain of classical oscillators has to be long enough (20
being the typical number [42]) as to avoid the direct cross-
talk between the quantum system and the heat reservoir. The
coupling between the quantum coordinate and the classical
system, measured by α, has to be carefully balanced with the
anharmonicity χ to enable a fast flow of energy away from
the quantum sub-system, and with the friction coefficient γ in
order to reach the correct canonical equilibrium state [42]. In
particular, the red curve in Fig. 3 c is obtained for α = 0.16 eV,
χ = 4.4, γ = 1015 s−1, ωb = 60 cm−1, and V0 = 1 eV at a
working temperature T = 298 K. We stress that other choices
are for sure possible to account for dissipation, but the specific
choice of the parameters defining the dissipative systems are
irrelevant, as long as a similar decay of the quantum coordinate
is described.

The 〈Q̂2
+〉 evolution in Fig. 3 c compares well with the

oscillating behavior of the measured reflectivity shown in
Ref. [26]. The agreement is further improved accounting for
the finite temporal resolution of the experiment. Panel (e)
of Fig. 3 shows the same curve, convoluted with a gaussian
signal with full width at half-maximum of 10 fs (as to mimic
the temporal profile of the probe pulse). The resulting curve
compares very well with the experimental oscillations of the
reflectivity that were previously simulated [26] imposing an
ad hoc shape for the U (t) curve obtained through a fitting
procedure of the optical conductivity.

We are now in the position to calculate the temporal
evolution of CT spectra, by diagonalizing the electronic
Hamiltonian for each 〈Q̂+(t)〉 and evaluating relevant spectra.
Results are shown in Fig. 4. Coherent oscillations of the CT
band are clearly visible both in the color map (top panel) and
in the time-section (bottom panel). The Fourier transform of
the oscillating signal obtained from the time-section peaks at
∼2000 cm−1 as shown in the inset. These results compares
favorably with experimental data reported in Fig. 4(b) of
Ref. [26].

IV. THE SEMI-CLASSICAL APPROACH

The non-adiabatic calculation described above is compu-
tationally intensive and it is important to validate the quality
of results obtained in the adiabatic approximation. We take
advantage of the previous observation of the minor role played
by the Q− coordinate neglecting its coupling to the electronic

FIG. 4. Time evolution of the optical spectrum in the CT region
obtained for a dissipative dimer with ωv = 1031 cm−1 and β =
−3 meV, using a probe pulse with full width at half-maximum of
10 fs. Bottom panel shows section at ω = 5500 cm−1 and relevant
Fourier transform is reported in the inset. Average done over 741
trajectories.

system and write the adiabatic dimer Hamiltonian as follows:

Ĥad = Ĥel + h̄ω

4
Q2

+ + β
Q2

+
2

(n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓). (12)

The above adiabatic Hamiltonian is obtained neglecting the
vibrational kinetic energy and, apart from the harmonic
vibrational potential, it describes a Hubbard Hamiltonian with
a Ueff(Q+) = U − V + βQ2

+/2. The analytical solution for
the Hubbard dimer leads to the Q+ dependent ground state
energy

Eg.s.(Q+) = 1

2

(
Ueff(Q+) −

√
U 2

eff(Q+) + 16t2

)
+ h̄ω

4
Q̂2

+

(13)

and the Q+ dependent excitation energy and the squared
transition dipole moment

ωCT (Q+) = 1

2

(
Ueff(Q+) +

√
U 2

eff(Q+) + 16t2

)
,

μ2
CT (Q+) = 1

2

⎛
⎝1 − Ueff(Q+)√

U 2
eff(Q+) + 16t2

⎞
⎠, (14)

where the (dimensionless) dipole moment is measured in units
with ea = 1, where a is the intermolecular distance. The three
quantities are reported in Fig. 5.

The ground state energy as a function of Q+, in the bottom
panel of Fig. 5, represents the potential energy for the Q+
motion. Accordingly, the classical dynamics of Q+ driven by
the pump pulse can be calculated by integrating the equation
of motion:

d2Q+
dt2

= ω

h̄

(
−∂Eg.s.

∂Q+
+ F (t)

)
− γ

dQ+
dt

, (15)
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FIG. 5. The Hubbard dimer: the ground state energy (bottom
panel), the transition frequency and the squared transition dipole
moment (top panel) vs Q+.

where the dynamics starts with the system Q+(t = 0) = 0 and
γ , the friction coefficient is set equal to 1015 s−1, accounting
for the finite vibrational excitation lifetime.

Results from the classical dynamics are reported in Figs. 6
and 7, for the same model parameters adopted previously. The
Q2

+(t) evolution in Fig. 6 compares well with the non-adiabatic
result. The spectral evolution in Fig. 7 is very similar to the
non-adiabatic result, confirming the validity of the adiabatic
approximation.

V. DISCUSSION

A model is presented to analyze a recent pump-probe
experiment on ET-F2TCNQ crystal [25,26]. The model is
solved for the shortest lattice fragment, a (ET+)2 dimer. This
choice allowed us to explore adiabatic and non-adiabatic
solution of the problem, reaching similar results. Indeed within
the adiabatic approach larger systems with up to 14 sites
can be dealt with, but the dimer model represents a reliable
approximation to describe the experiment, in view of the
extremely localized nature of the ET-F2TCNQ system, with
a Ueff > 16t .

FIG. 6. Classical nuclear dynamics as induced by the pump pulse
(upper left panel) on the ground state potential energy curve of
the ET dimer. Q2

+(t), convoluted with the probe pulse profile (full
width at half-maximum 10 fs), is shown in the bottom left panel.
Corresponding Fourier transforms are reported in the right panels.

FIG. 7. Time evolution of the optical spectrum at 0 K, in the CT
frequency region, calculated in the adiabatic approximation for the
same model parameters as in Fig. 4, and γ = 1015 s−1. A section
of the map at ω = 5500 cm−1 is reported in the bottom panel, with
relevant Fourier transform shown in the inset.

To validate this view, we carried out real-space diagonaliza-
tion of the Hamiltonian in Eq. (1) for rings with up to 14 sites,
setting U = 0.666 eV and V = 0. Relevant results are shown
in Fig. 8. Following Resta, [46,47] we define the complex
quantity

Z = 〈ψ | exp

(
i
2πμ̂a

N

)
|ψ〉 (16)

with |ψ〉 representing the ground state wave function, i the
imaginary unit, and μ̂a the dipole moment operator of the
regular open-boundary chain defined in Eq. (5). The inverse
modulus of Z measures the wave function delocalization and

FIG. 8. The delocalization of the ground state wave function for
the model in Eq. 1, with V = 0. Top panels, λ, the wave function
delocalization length. Bottom panels, the inverse modulus of Z, as
defined in the text. All quantities are reported vs the inverse number
of sites. Left panels show results for t = 0.04 eV and U = 0.666 eV,
as relevant to our system, right panels show results for a system
with the same U , but a much larger t = 1.1 eV. In the right panels
important finite size effects and delocalization are seen in terms of a
large difference between N = 4n and N = 4n + 2 systems.
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is expected to converge to 1 in the thermodynamic limit for
localized systems. This is clearly the case for our model with
t = 0.04 eV (left panels of Fig. 8), while finite size effects are
too large for t = 1.1 eV (right panels) to show convergence.
Similarly, the dimensionless delocalization length, defined
according to Resta [46,47] as λ =

√
−N log |Z|2/(2πn0) with

n0 being the electron average site density, amounts to a small
fraction of the unit cell in our model, fully supporting our
analysis based on a dimer model.

In conclusion, the THz pump and probe experiment
described in Refs. [25,26] can be described accounting for the
quadratic modulation of the Hubbard U by ET+ vibrations,
as proposed in the original papers. However, in the original
works, spectra were reproduced imposing an ad hoc temporal
dependence of the Hubbard U . Here we adopt a model Hamil-
tonian parametrized against quantum chemical calculations
and propose a rigorous calculation of the dynamics of the

quantum system driven by the THz pulse. To quantitatively
reproduce the temporal evolution of experimental spectra, the
model has to be extended to explicitly account for energy
dissipation, a non-trivial task bringing us in the realm of
open quantum systems. In this respect, a phenomenological
approach was adopted connecting the quantum system to
an array of classical anharmonic oscillators connected in
turn to a heat reservoir. Overall our effort demonstrates that
pump-probe experiments can be rigorously addressed studying
the dynamical behavior of driven open quantum systems.
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