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We propose a refined scheme of deriving an effective low-energy Hamiltonian for materials with strong
electronic Coulomb correlations beyond density functional theory (DFT). By tracing out the electronic states
away from the target degrees of freedom in a controlled way by a perturbative scheme, we construct an effective
Hamiltonian for a restricted low-energy target space incorporating the effects of high-energy degrees of freedom in
an effective manner. The resulting effective Hamiltonian can afterwards be solved by accurate many-body solvers.
We improve this “multiscale ab initio scheme for correlated electrons” (MACE) primarily in two directions by
elaborating and combining two frameworks developed by Hirayama et al. [M. Hirayama, T. Miyake, and M.
Imada, Phys. Rev. B 87, 195144 (2013)] and Casula et al. [M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T.
Miyake, A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408 (2012)]: (1) Double counting of electronic
correlations between the DFT and the low-energy solver is avoided by using the constrained GW scheme; and
(2) the frequency dependent interactions emerging from the partial trace summation are successfully separated
into a nonlocal part that is treated following ideas by Hirayama et al. and a local part treated nonperturbatively in
the spirit of Casula et al. and are incorporated into the renormalization of the low-energy dispersion. The scheme
is favorably tested on the example of SrVO3.
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I. INTRODUCTION

Strongly correlated electron systems are widely found in
condensed matter and have proven to generate many attractive
phenomena and fundamental concepts including quantum
phase transitions and fluctuations such as superconducting
and metal-insulator phenomena [1] with potential applications
to future technology. Their accurate and ab initio theoretical
treatment with predictive power is therefore one of the
grand challenges of contemporary condensed-matter physics.
However, conventional ab initio computational schemes based
on density functional theory (DFT) [2] or many-body pertur-
bation theory in the so-called GW approximation (GWA) [3]
are known to encounter serious difficulties when electronic
correlation effects are crucial.

Recently proposed versatile multiscale method, MACE
[4–6] that makes use of the hierarchical energy structure of
strongly correlated electrons have opened the way to the design
of increasingly accurate methods, which are now overtaking
the conventional ones.

The aim of the present paper is to present a systematic
scheme for the construction of improved effective Hamil-
tonians for low-energy degrees of freedom (L part) beyond
the DFT. These effective Hamiltonians are constructed such
as to contain renormalizations and screening by high-energy
degrees of freedom (H part) already at the one-particle level.
They present the decisive advantage that those high-energy
degrees of freedom can be eliminated when solving the
low-energy Hamiltonian (thus enabling the use of high-level
many-body theoretical techniques) without losing their effects.

The paper is organized as follows: In Sec. II, we review
some background and previous work on the construction of
refined effective low-energy Hamiltonians, while in Sec. III A

we describe the general strategy to be employed. In Sec. III, we
give a first outline of the equations, followed by the detailed
derivations in Sec. IV. Section V presents a concise summary
of the obtained scheme, while Sec. VI explains variants of
the scheme. In Sec. VII, we present calculations on the
perovskite oxide SrVO3, illustrating how the scheme works
and giving practical information on the relative importance
of the different terms. The obtained effective Hamiltonian
is validated by explicit dynamical mean field calculations in
Sec. VIII, where it is shown that many-body calculations based
on the effective Hamiltonian reproduce important features
contained in higher level (GW+DMFT) calculations but not
in standard DFT+DMFT, where DMFT stands for dynamical
mean field theory. Finally, we present our conclusions and
perspectives in Sec. IX.

II. SOME BACKGROUND ON MACE SCHEMES

In strongly correlated electron systems in condensed matter,
the L part represented by the bands near the Fermi level in the
DFT or GW scheme are typically sparse and isolated from the
H part obtained as dense bands away from the Fermi level.
This is not accidental because the isolation of the H and sparse
L part is a necessary condition for strong electron correlations.
(Otherwise, it would be a weakly correlated system because of
the screening by the H part or by self-screening by the L part.
For a more extended discussion, see [4].) MACE schemes take
advantage of this hierarchical separation in the energy space to
treat the L part within highly accurate but relatively expensive
numerical techniques that could not be used directly for the full
space in contrast to molecules and clusters treated in quantum
chemistry [7–9] and nuclear physics [10,11]. For the H part,
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on the other hand, cheaper techniques can be employed thanks
to less significant quantum fluctuations.

Motivated by the fact that the H part behaves effectively
as an insulator with a gap around the Fermi level once the
dynamics within the L part is excluded, one can treat it in a
controllable and accurate way by conventional methods such
as the DFT within the local density approximation (LDA)
or GWA. This is not in contradiction to the fact that our
target materials are strongly correlated electron systems and
perturbative approaches do not work as a whole, because strong
correlation effects appear predominantly in the excitations
within the L part that will be treated and solved afterwards
beyond the LDA or GWA. Thanks to their mutual isolation,
effects of the H part on the L part can be safely calculated
perturbatively in the spirit of the constrained random phase
approximation (cRPA) [12–14]: A partial trace summation
only over the H part is taken, effectively determining the
renormalization of the L part by the H part.

Physical properties of interest live in most cases on the en-
ergy scale of room temperature or below, and certainly within
the L part. Therefore, an accurate treatment of the degrees of
freedom in the L part is required. This low-energy system (L
part) can indeed be solved using nonperturbative many-body
tools, such as quantum Monte Carlo methods – in particular
variational Monte Carlo [4,9,19,20], renormalization group
(RG) schemes [7,8,15–18], or DMFT and related methods
[5,6,21–25].

Such ab initio hierarchical schemes have proven useful
and successful for a wide range of materials questions [4,26],
from transition metals [27–31], their oxides [32–38], sulphides
[39], pnictides [16,40–48], and rare earths [49–51] and
their compounds [52–55], including heavy fermions [56,57],
actinides [58–60] and their compounds [61] to organics
[62–65], correlated semiconductors [66,67], spin-orbit mate-
rials [68–71], and correlated surfaces and interfaces [72,73].
In a hierarchical scheme such as DFT+DMFT, an effective
Hamiltonian within a low-energy window around the Fermi
level is obtained using DFT, and this Hamiltonian is then
solved by a low-energy solver. This construction thus makes
explicit use of the “separability” of high- and low-energy
degrees of freedom. However, in most current schemes, little
effort is devoted to the electronic structure of the higher-energy
degrees of freedom—which are simply described at the DFT
level—and their influence on the low-energy part.

In practice, examples where electron correlation effects
were overestimated have also been found: A typical case are
organic conductors [62,64], where many-body calculations
using the cRPA values for the interaction—even after “dimen-
sional downfolding” [74]—overestimate correlation effects
as compared to experiments. Along the same lines, it has
been argued that, in iron pnictide compounds, the ratio of the
effective Coulomb interactions as estimated within the cRPA
to the effective bandwidth of the Kohn-Sham band structure of
the DFT is slightly overestimated as compared to experimental
results [44,46,47]. On the other hand, it is known that the
neglect of dynamical effects in the screening by the H part
leads to an underestimation of correlation effects [75] (since
the effective bandwidth is overestimated) [76]. It was proposed
that this subtlety has relevance to the low-temperature metallic
and nonmagnetic state of FeSe as well as the so-called

bicollinear antiferromagnetic order of FeTe [77]. A further
example is the transition-metal pnictide BaCo2As2 where
dynamical screening effects have been invoked to explain
the puzzling absence of ferromagnetism despite a large LDA
density of states at the Fermi level [78]. We will come back to
these observations in the discussion section at the end of this
paper.

In MACE schemes, the accurate derivation of the effective
low-energy Hamiltonians or Lagrangians is crucially impor-
tant for the quantitative level of the predictive power of the
calculations. Therefore, the DFT or GW calculations for the
global electronic structure including both the L and H part must
be consistently bridged to the effective Hamiltonians in the L
part. The main challenge consists in avoiding double counting
of the electronic correlations and screening already taken into
account at the DFT or GW level: In the DFT, Coulomb
interactions are treated through the construction of an effective
potential, the (Kohn-Sham) exchange-correlation potential,
while the GW scheme constructs a frequency dependent
many-body self-energy (albeit in a perturbative manner).
On the other hand, the low-energy effective Hamiltonians
or Lagrangians are solved by low-energy solvers, where
the electron correlation effects are more accurately treated
within this low-energy degree of freedom. Therefore, there
exists overlap in treating the low-energy part of the electron
correlation. This is known as the “double counting problem”,
and a careful and improved treatment to avoid double counting
is required.

At the DFT level, the nonlinear dependence of the
exchange-correlation potential on the electronic density makes
the formal separation of the correlation energy contributions
stemming from a subset of orbitals an ill-defined problem.
On a conceptual level, strictly double-counting-free schemes
are therefore only possible when avoiding the use of the DFT
altogether. Double-counting-free schemes can be defined, e.g.,
based on many-body perturbation theory: In this case, the
exchange-correlation potential is replaced by a perturbative
self-energy, calculated directly in a Green’s-function language.
The combined “GW+DMFT” scheme [79] illustrates the
advantages of such an approach. A simpler scheme, derived
from the GW+DMFT, is the recently proposed “screened
exchange dynamical mean field theory” [78,80,85], where the
DFT exchange-correlation potential is eliminated and replaced
by a screened exchange term. We also mention a recent attempt
to transfer this concept to the LDA+DMFT scheme [81].

These considerations motivate the construction of effective
low-energy Hamiltonians based on many-body perturbation
theory for the H part, rather than on the Kohn-Sham Hamil-
tonian of the DFT. As we already mentioned, the perturbative
treatment of the H part is indeed justified by the fact that the
exclusion of excitations within the L part makes the system
“insulating” with the suppressed vertex correction [4].

A disadvantage is, however, that the resulting effective
models are naturally first given as Lagrangians with fre-
quency dependent parameters in path-integral form. Indeed,
integrating out the high-energy degrees of freedom generically
generates frequency dependent effective interactions and
hopping. It is very useful to further reduce such Lagrangians
to effective Hamiltonian forms because low-energy solvers for
frequency independent Hamiltonians are computationally less
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demanding. In this paper, we develop a consistent and accurate
ab initio framework of deriving the low-energy effective
Hamiltonian of the L part in view of the construction of a
complete MACE scheme. Our aim in the present paper is to
derive low-energy effective Hamiltonians for the L space that
are as accurate as possible and can be treated by sophisticated
low-energy solvers in the subsequent step.

Our strategy hereby is to incorporate the effects of the
frequency dependence of the effective interaction into a
renormalization of the single-particle dispersion. To this
end, the frequency dependent part is separated into nonlocal
and local parts. The nonlocal part is treated following the
perturbative scheme of Hirayama et al. [82] while the local
part is considered nonperturbatively following Casula et al.
[76] as detailed in Sec. III A.

III. OUTLINE OF DERIVATION OF A LOW-ENERGY
EFFECTIVE HAMILTONIAN

A. General strategy

We decompose the full Hilbert space into low-energy (the
L space) and high-energy subspaces (the H part) thanks to the
hierarchical structure of strongly correlated electron systems
as described in Sec. I. Our construction for the decomposition
and bridging between the two parts will be based on the GW

scheme, since this allows for a well-defined way to avoid
double counting. Indeed, at the DFT level, after identifying
the H and L spaces, the partial trace summation and the
elimination of the H space can be performed by means of
the cRPA [4,12,14], as described below. However, when the
low-energy part is solved by a refined many-body solver, some
parts of the interactions are counted twice since the initial
DFT calculation already contains the correlation effects for the
L part. Indeed, the DFT considers the exchange-correlation
contribution without distinguishing the L and H spaces and
it is impossible to disentangle the two spaces at this level.
The GW scheme, instead, allows for the subtraction of the
double counting by calculating a constrained self-energy as
constructed in [82]. This constrained self-energy incorporates
the interactions in the form of a self-energy from which the
contribution of the L part has been excluded.

After eliminating the H space, the L space is expressed
by single-, two-, and three-particle terms and even higher
terms. However, the effective many-body interaction higher
than the two-particle channel is expected to be small if
the target L space is isolated from the H space. This is
true in typical strongly correlated systems, and motivates a
perturbative treatment of the H-L coupling. In this paper, we
ignore multiparticle effective interactions of higher order than
the two-body terms.

The single-particle (kinetic energy) terms are modified
(renormalized) by the constrained self-energy. The two-
particle (effective Coulomb interaction) terms are represented
as the partially screened interaction obtained from the cRPA
[12]. In general, the self-energy and the screened interaction
are frequency dependent, thus not allowing for a representation
in a Hamiltonian form.

As mentioned above, in this paper, we focus on methods
that derive the low-energy effective Hamiltonians

Heff =
∑

q

Teff(q)c†qcq +
∑
q,k,p

WH(q)c†kck+qc
†
pcp−q, (1)

where the renormalized single-particle dispersion Teff(q) after
incorporating the self-energy effect and the effective interac-
tion WH(q) screened by the H part constitute the Hamiltonian
for the electrons in the L part represented by the creation
(annihilation) operators for the electron, c

†
k(ck) at momentum

k. Here, for simplicity, spin and orbital indices are omitted.
Our task at this stage is thus to map the Lagrangians with

frequency dependent single- and two-particle terms onto a
frequency independent Hamiltonian in a controlled way. For
this mapping, we propose a scheme that combines the merits
of the works by Hirayama et al. [82] and Casula et al. [76]:
In a step-by-step procedure, we include the influence of the H
space into the L space and eliminate the frequency dependence
by taking into account its effect on the Hamiltonian in the form
of an effective renormalization of the parameters.

We remark that, in practice, the derived effective low-
energy Hamiltonian satisfies the following principle: If one
solved the effective low-energy Hamiltonian within the GW -
type perturbative treatment instead of the accurate low-energy
solver, that would yield the same result as the solution obtained
by the same perturbative scheme starting from the full space
including the H and L parts. This is called the “chain rule”,
which justifies the effective Hamiltonian as that for the L part
[4,12,14].

B. Renormalized single-particle Hamiltonian

Our starting point for the single-particle part is the DFT
band dispersion denoted by εDFT(q) and the correspond-
ing Kohn-Sham Hamiltonian H (0) = ∑

q εDFT(q)c†qcq . Here,

c
†
q(cq) is the creation (annihilation) operator of an electron with

wave vector q. We have suppressed the spin and band indices
for simplicity. Then, the single-particle Green’s function GDFT

reads

GDFT(q,ω) = 1/[ω − εDFT]. (2)

On the DFT level, electronic correlations are taken into
account in the form of an effective exchange-correlation
potential Vxc(q). As discussed above, treating the electron
correlation effects in the L space explicitly within the low-
energy solver would lead to a double counting of electronic
correlation in the L space. To avoid the double counting,
Vxc(q) is subtracted and replaced by a corrective self-energy
��(q,ω). By incorporating ��, the effective single-particle
part reads

Teff(q,ω) = εDFT − Vxc(q) + ��(q,ω). (3)

In the actual calculations, we propose to calculate the energies
of the core electrons from DFT instead of using the GW self-
energy if the computational cost is demanding. In fact, in the
application to SrVO3 below, we replace the DFT dispersions
with the GW result only for the valence- and conduction-band
parts.
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C. H space contribution to self-energy: Constrained self-energy

�� comes from two contributions: �� = ��H + ��L.
��H is the contribution to the self-energy from the H space,
while ��L is from the frequency dependent part of the
effective interaction incorporated into the self-energy, which is
the constrained self-energy effect within the L space obtained
by excluding the self-energy arising from the static effective
interaction WH(q). Here, we sketch the idea for ��H and
discuss ��L in the next subsection. A specific form for
the correction ��H, dubbed “constrained self-energy”, was
already derived in [82], based on a restricted GW calculation.
The basic prescription is to add only the self-energy arising
from the contribution of the H space, by excluding the part
stemming purely from the L space. The reason why one should
exclude the self-energy stemming from the L space is that this
part is more accurately calculated within the low-energy solver
afterwards.

D. Renormalization to self-energy from frequency dependent
partially screened interaction

The cRPA [12] was proposed as a means to calculate
the effective local Coulomb interactions to be used in the L
space from a systematic first-principles procedure. It can be
understood as a way of tracing out the H space for deriving
the effective interaction, while keeping track of the resulting
renormalization of the L space degrees of freedom. The tracing
out of the H space by the standard cRPA results in an effective
interaction for the two-particle part in the L space in the form

WH(q,ω) = v(q)

1 − PH(q,ω)v(q)
, (4)

where the wave-number (q) dependent bare Coulomb interac-
tion v is partially screened by the partial polarization PH. Here,
PH is defined in terms of the total polarization P by excluding
the intra-L space polarization PL: PH ≡ P − PL. PL involves
only screening processes within the L space.

Here, WH is frequency dependent as schematically il-
lustrated in Fig. 1. However, most many-body calculations
in the literature that use the effective interactions from the
cRPA method or similar schemes neglect this frequency
dependence (exceptions are [75,76,78,82–89]), and use only
the zero-frequency value of the interaction WH(q,ω = 0)
for the construction of the low-energy effective Hamiltonian
[12,82].

We note that this static limit WH(q,ω = 0) obtained by
using Eq. (4) in fact satisfies the above-mentioned chain rule:
The whole dynamical interaction emerging when one solves
the whole H and L space degrees of freedom by RPA is the
usual fully screened interaction W (q,ω) given by

W (q,ω) = v(q)

1 − P (q,ω)v(q)
, (5)

as is depicted in Fig. 1.
On the other hand, if we calculate the screening by the RPA

within the L space by regarding as if WH(q,ω = 0) would be
the bare interaction, this leads to a screened interaction

WL(q,ω) = WH(q,ω = 0)

1 − PL(q,ω)WH(q,ω = 0)
, (6)

ω

W
WH

W WL

W

0

W (ω=0)
=W (ω=∞)=U
H
L

v

FIG. 1. Schematic frequency dependence of effective interaction
screened from bare interaction v, and obtained from full RPA
(GW ) (W ), cRPA (WH), and screened interaction by RPA (WL)
within low-energy effective Hamiltonians at the effective interaction
U = WH(ω = 0). This is only a qualitative feature and more realistic
dependence is seen in Fig. 10.

which is depicted schematically in Fig. 1. Here, PL is the RPA
polarization in the low-energy subspace. Note that WL(q,ω →
∞) = WH(q,ω = 0). Then the chain rule WL(q,ω = 0) =
W (q,ω = 0) can be proven [12].

However, the static WH(q,ω = 0) amounts to neglecting the
frequency dependent part

W
dyn
H (q,ω) ≡ WH(q,ω) − WH(q,ω = 0) (7)

depicted by the vertical hatching in Fig. 1. In this paper, we
will take into account the contribution of this dynamical part
as the renormalization to the kinetic-energy part, either as a
perturbative self-energy or in a nonperturbative fashion. In the
effective low-energy Hamiltonian, we then keep WH(q,ω = 0)
for the effective interaction. In the case of the perturbative
treatment, for example, the contribution to the self-energy
��L is

��Pert
L = GLW

dyn
H (q,ω) (8)

as was formulated in [82] and which we review in detail in the
next section.

We also remark that the dynamical part to be considered can
be improved from Eq. (7) in a more consistent manner: Since
the screening on the RPA level within the L space is WL in
Eq. (6), one realizes that the dynamical part of the interaction
ignored when we use the low-energy solver is

W
dyn
GW (q,ω) ≡ W (q,ω) − WL(q,ω) (9)

depicted as the horizontal hatching in Fig. 1.
Then we need to take into account the renormalization

(namely, self-energy effect) originating from W
dyn
GW (q,ω) in-

stead of W
dyn
H (q,ω). The perturbative contribution to the

self-energy then replaces Eq. (8) with

��GW
L = GLW

dyn
GW (q,ω). (10)

Using W
dyn
GW (q,ω) in Eq. (10) replacing W

dyn
H (q,ω) is expected

to improve the self-energy, because it takes into account the
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missing part of the L space dynamics on the GW level and
satisfies the chain rule even for the self-energy as we show in
the following.

A conventional one-shot GW calculation in the full space
gives full self-energy from the fully screened Coulomb
interaction W [Eq. (5)] as

� = GLW. (11)

(Note: We write here and in the following symbolically GW .
Depending on if the calculation is done on the real/Matsubara
axis, a factor −1 or i has to be added.) On the other hand, the
self-energy within the L space at the one-shot GW level is

�L = GLWL. (12)

Then � = ��GW
L + �L is obviously satisfied, which is the

chain rule for the self-energy. In this paper, we compare the
results calculated from the two choices Eqs. (7) and (9) in
examples to gain physical insights.

Note that the interaction is not additive, but—at the GW

level—the self-energy is. Our formalism is entirely based
on the additivity of the self-energy. The additive expressions
of the interaction in Eqs. (7) and (9) are used only to obtain
the self-energy corrections. On the RPA (GW ) level, the
self-energy correction to be subtracted is Eq. (12), because this
is the self-energy when the low-energy effective Hamiltonian
is solved in the RPA level, while it will be solved within a
more refined many-body solver later. On the other hand the full
self-energy at the RPA level is given by Eq. (11). Equations (8)
and (10) are just the results of the subtraction of Eq. (12) from
Eq. (11).

We emphasize again that both Eqs. (7) and (9) are for the
frequency dependent part of the partially screened interaction,
which vanishes in the limit ω → 0 and is small in the energy
range of the L space (see Fig. 1). The subtracted true low-
energy part, either GLWH(ω = 0) or GLWL, will be replaced
by the solution of an accurate low-energy solver. In this sense,
this treatment can also be regarded as another (additional)
constrained Hartree-Fock/GW scheme, employed this time
for the frequency dependent part.

The effective Hamiltonian is then given by

Heff =
∑

q

Teff(q,ω)c†qcq

+
∑
q,k,p

WH(q,0)c†kck+qc
†
pcp−q, (13)

with Teff given by Eq. (3) by employing either ��Pert
L or

��GW
L for ��L contained in �� in Eq. (3). Equation (13)

still contains the frequency dependence in Teff , which should be
incorporated in the frequency independent form by including
the renormalization effect.

Then, on top of the zero-frequency limit Teff(q,ω = 0),
to incorporate the effects of the frequency dependence, we
implement the following procedure: First, the frequency
dependence in the nonlocal part of WH is taken into account
perturbatively. This is done by constructing a self-energy
��(q,ω) along the lines of [82]. This proposal employs
��L(q,ω) = GLW dyn, where W dyn is either W

dyn
H or W

dyn
GW .

Thus the incorporated renormalized single-particle part is
linearized in ω as Teff(q,ω = 0) − [d��(q,ω)/dω]ω, and
the ω dependence is absorbed into the renormalization fac-
tor Zcorr = 1/[1 − d��(q,ω)/dω|ω=0], where the dispersion
T

(0)
eff (q) is replaced with ZcorrT

(0)
eff (q).

The effects of the local part of the interaction are taken into
account following the proposal by Casula et al. [76]. There
it was shown that—in the antiadiabatic limit—a Lagrangian
with frequency dependent interactions can be mapped onto a
Hamiltonian with static interactions and a renormalized one-
body part. The renormalization factor ZB can be explicitly
obtained from the frequency dependence of the interaction.
We will give the explicit form in the next section.

As a result, the single-particle part of the effective Hamil-
tonian Eq. (1) as defined by its hopping T

(0)
eff (q) is replaced by

a single-particle Hamiltonian with effective hopping

T
(1)

eff (q) = [εDFT − Vxc + ��(q,ω = 0)]ZcorrZB, (14)

which replaces Teff(q,ω) in Eq. (13) and the Hamiltonian form
(1) is obtained.

IV. DETAILED DERIVATION OF EFFECTIVE
HAMILTONIANS

In this section, we give a detailed description of the
derivation of the effective Hamiltonians outlined above.

A. Starting point

We start from the “noninteracting” Hamiltonian H (0)(k),
and assume that we are working in a basis where its
single-particle part is block diagonal at each k point (e.g.,
in a Wannier gauge associated with atom-centered Wannier
functions constructed separately for the L and H spaces).
We will think of H (0) as the Kohn-Sham Hamiltonian of
the DFT, even though other choices are possible. We assume
that the block diagonality should be a good starting point,
because in many typical correlated materials such as typical
transition-metal oxides the bands that have dominated the
character of the localized orbitals are energetically separated
from itinerant bands such as ligand bands. This fact helps
the construction of effective Hamiltonians since it implicitly
guarantees the existence of such a basis set. Indeed, vertex
corrections that would mix the two spaces decrease with the
energetic separation.

A consequence of the block diagonality is that the nonin-
teracting Green’s function G(0) is also block diagonal and can
be decomposed into

G(0) = G
(0)
ll |L〉〈L| + G

(0)
hh |H 〉〈H | (15)

where the bra-kets are a shorthand for projectors onto the
respective subspaces.
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We stress that � in Eq. (11) is not in general block diagonal.
Rather, it has both off-diagonal and diagonal components, e.g.,

�lh = G
(0)
ll Wlllh + G

(0)
hhWlhhh − Vxclh, (16)

�ll = G
(0)
ll Wllll + G

(0)
hhWlhhl − Vxcll . (17)

Here, G(0)
ab = −〈T ca(τ )c†b(0)〉, where a and b denote elements

of the H or L spaces, and Wabcd is the coefficient of the
interaction term c

†
acbc

†
ccd . In the following, we will use the

convention that l and h represent degrees of freedom belonging
to L and H degrees of freedom, respectively.

This matrix is used to calculate the interacting Green’s
function

G(q,ω) = [G(0)−1 − �]−1. (18)

Straightforward matrix inversion gives for the ll block (low-
energy block) of this Green’s function

G(q,ω)ll = 1

G
(0)−1
ll − �ll − �lhGhh�hl

. (19)

In the following, we will use this form to extract a corrective
self-energy: The latter is given by those parts of �ll +
�lhGhh�hl that are generated by the presence of the H space.
This self-energy contribution should be taken into account
at the level of the construction of the low-energy effective
Hamiltonian, as an effective renormalization of the L space by
the H space.

B. Interspace exchange term

The last term in the denominator of Eq. (19) is an
“interspace exchange” self-energy contribution originating
from the block-off-diagonal self-energy �lh (�hl) between
L and H electrons. While it can in principle be treated by a
direct calculation, we prefer to disregard it at this stage. The
reason is that, within the low-energy subspace, it is in fact
a higher-order (second-order) contribution in the interspace
interaction. The interspace exchange interaction is expected to
be small if the H and L spaces are well separated. In addition,
the interspace exchange may at least partially cancel with the
first-order vertex term.

C. Direct H space contribution to constrained self-energy

The corrective self-energy that we are interested in here is
thus contained in the second to last term in the denominator of
Eq. (19), the block-diagonal self-energy �ll given by Eq. (17).
This quantity includes some influence of the high-energy H
space through (a) the screened Coulomb interaction Wllll in
the first term and (b) the entire second term. Here, Wllll is
either WH(q,ω) in Eq. (4) or W (q,ω) in Eq. (5) and the first
term contains ��L. This former part will be discussed in the
next subsection. The latter gives

��H(q,ω) = G
(0)
hhWlhhl. (20)

As we will see below its effect is a band narrowing with respect
to the Hartree band structure, comparable to the effect of the
exchange-correlation potential Vxc of the DFT.

This correction can either be applied directly as a frequency
dependent additional self-energy term ��H(q,ω), in which
case it leads to a dynamical low-energy model, or one can
use a Taylor expanded approximate form. If the low-energy
behavior is to a good approximation linear, that is, its frequency
dependence is well approximated as

��H(q,ω) = ��H(q,ω = 0) + ��
′
H|ω=0ω, (21)

where ��
′
H = d��H/dω, then the renormalization factor

resulting from this contribution is given by

ZH = 1

1 − ∂��H(q,ω)
∂ω

∣∣
ω=0

. (22)

At this level the effective kinetic energy is renormalized to

T
(1)

eff (q) = [εDFT − Vxc + ��H(q,ω = 0)]ZH. (23)

D. Frequency dependence of interactions within low-energy
space: Nonlocal part

We finally analyze the remaining term G
(0)
ll Wllll , the first

term in Eq. (17). The low-energy effective Hamiltonian or
Lagrangian has to be constructed in such a way that—at
the GW level within the L space—this self-energy would
be reproduced. The influence of the H space, contained in
this term through the matrix element of the fully screened
interaction W or WH, hereby has to enter in an effective way.

This can be naturally achieved when constructing a La-
grangian with the dynamical interaction WH(q,ω) as given in
Eq. (4). One thus obtains at first a Lagrangian with nonlocal and
frequency dependent interactions, and the task is to map this
Lagrangian onto a frequency independent Hamiltonian form
by effectively renormalizing the Hamiltonian parameters. For
that purpose, we treat the nonlocal and local parts of the inter-
action (two-body) terms separately. Here, we define the local
part of the interaction by the Wannier function, which is written
as �qW (q). We first eliminate the frequency dependence in
the nonlocal part by treating it within the perturbative scheme
proposed by Hirayama et al. [82]. The perturbative treatment is
justified, because the corresponding correction is small. On the
other hand, the local and frequency dependent part can be large
and we will treat it nonperturbatively in the formalism pro-
posed by Casula et al. [76]. This procedure allows for a nonper-
turbative treatment but is only suitable for local interactions.
An additional subtlety arises due to the fact that the nonpertur-
bative treatment does not take on the form of a self-energy but
rather a direct renormalization of the hopping. Therefore, no
zero-frequency part appears in the procedure by Casula et al.,
and we therefore retain the local static part explicitly as an
additional correction on equal footing as the nonlocal one.

In practice, we first reduce the problem to a low-energy
many-body problem where only the local interactions are
dynamical, but nonlocal ones are static. Following the strategy
of Hirayama et al. [82], we treat the nonlocal dynami-
cal part of the interactions in a perturbative fashion. This
amounts to (a) replacing the nonlocal dynamical interactions
[W dyn

R (q,ω)]nonlocal ≡ WR(q,ω) − ∑
q WR(q,ω) by static non-

local interactions [WR(q,ω = 0)]nonlocal and (b) treating the
frequency dependent correction W

dyn
R (q,ω) perturbatively as

an additional self-energy correction. W
dyn
R (q,ω) takes on the
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form defined in Eq. (7) or Eq. (9) depending on whether the
Hartree-like treatment (denoted as R = H) or the GW -like
treatment (denoted as R = GW ) is chosen, and—depending
on this choice—leads to the correction Eq. (8) or Eq. (10),
respectively.

Such a perturbative correction can be done in two dif-
ferent ways: The straightforward option is simple first-order
perturbation theory in the difference [W dyn

R (q,ω)]nonlocal. This
part contains the effects of the frequency dependence of the
interaction neglected in the effective Hamiltonian formalism
with WR(q,ω = 0). Again R denotes either the Hartree-like
or GW -like treatment (“H” or “GW”). We will discuss both
options in the following paragraphs.

1. Direct perturbation theory

To first order in W , the simple perturbative option results
in a correction term (for simplicity, we drop the frequency
summation here)

��nonlocal
L (q) =

∑
q ′

G(1)(q ′)
[
W

dyn
H (q + q ′)

]
nonlocal

≡
∑
q ′

G(1)(q ′)

[
W

dyn
H (q + q ′)

−
∑

q

W
dyn
H (q + q ′)

]

�
⎡
⎣∑

q ′
G(1)(q ′)W dyn

H (q + q ′)

⎤
⎦

nonlocal

. (24)

Here,

G(1)−1 ≡ G(0)−1 + Vxc − ��H, (25)

and W
dyn
H (q,ω) is defined in Eq. (7). We stress that the last line

of Eq. (24) is not strictly the same as the first line because of
the nonzero overlap of the single- and two-particle Wannier
bases, as discussed in the Appendix and in [87]. Nevertheless,
as discussed in the Appendix, for sufficiently localized basis
sets, the difference between the two previous lines of Eq. (24)
is tiny and will be neglected hereafter. In later discussions, we
describe this nonlocal part of the self-energy in a simplified
notation as

��nonlocal
L (q) = G(1)

[
W

dyn
H (q)

]
nonlocal or equivalently

= [
G(1)W

dyn
H (q)

]
nonlocal. (26)

2. GW-type perturbation theory

Alternatively, a more refined perturbation theory inspired
by the GW approximation can be constructed for the nonlocal
part of Eq. (10) as

��nonlocal
L = G

(0)
ll W

dyn
GW − G

(0)
ll

[
W

dyn
GW

]
local. (27)

Here, W
dyn
GW as defined in Eq. (9) corresponds to the frequency

dependent part of the interaction that would be missing if
the low-energy part were solved within the GW approxima-
tion. This justifies to employ the static effective interaction
WH(q,ω = 0) = WL(q,ω → ∞), because WL(q,ω) is the GW

counterpart of what will be treated within the low-energy
solver afterwards.

We note that without the subtraction of the local part, this
correction would correspond to what has been constructed as
��L by Hirayama et al. in [82]. The local part is not touched
here since it will be treated nonperturbatively below, following
the work by Casula et al. [76].

Here, G(0) is used in the spirit of a (non-self-consistent)
“one-shot GW” scheme. If one employs a (partially) self-
consistent version of the GW scheme, G(0) may be replaced
by G(2) defined by

G
(2)−1
ll ≡ G

(0)−1
ll + Vxc − ��H − G

(0)
ll W. (28)

At this level the effective dispersion is renormalized to

T
(1)

eff (q) = [εDFT − Vxc + ��H(q,ω = 0)

+��L(q,ω = 0)]ZHL, (29)

where ZHL = {1 − d[��H(q,ω) + ��nonlocal
L (q,ω)]/

dω|ω=0}−1. Note that here we have included ��local
L (q,ω = 0)

as a direct correction, as discussed above. Together with
the nonlocal part ��nonlocal

L (q,ω = 0) it is thus the full
��L(q,ω = 0) that enters.

E. Intra-d exchange

The resulting many-body problem with long-range in-
teractions will have an intra-L space exchange self-energy
contribution of Fock form. Also this term takes different forms
depending on whether one places oneself in the perspective of
the option in Sec. IV D 1 or in Sec. IV D 2 above.

1. Direct perturbation theory

In the first case, the exchange term is the simple Fock
exchange calculated with the static interaction WH(q,ω = 0):

��x
L = G

(1)
ll WH(q,ω = 0). (30)

Once this term has been taken into account, only the correlation
part of the self-energy will have to be calculated within the
low-energy effective Hamiltonian.

However, in most practical many-body calculations, local
exchange contributions will be kept within the low-energy
description in the form of Hund’s coupling terms. We therefore
prefer to incorporate only the nonlocal contribution in the
one-shot GW as

��x nonlocal
L = G

(1)
ll WH(q,ω = 0) −

∑
q

[
G

(1)
ll WH(q,ω = 0)

]
(31)

into the effective one-body Hamiltonian while keeping the
local one as a many-body term.

An interesting cancellation is observed when the intra-
L space exchange is combined with the above correction
��nonlocal

L ; the remaining correction

��nonlocal
L + ��x nonlocal

L

= {
G

(1)
ll [WH(q,ω) − WH(q,ω = 0)]

}
nonlocal

+ [
G

(1)
ll WH(q,ω = 0)

]
nonlocal

= [
G

(1)
ll WH(q,ω)

]
nonlocal (32)
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reduces to the nonlocal part of a dynamical Fock term,
calculated with the interaction WH(q,ω), that is, the bare
interaction within the low-energy space.

2. GW-type perturbation theory

If, however, the GW -like option is chosen for eliminating
the frequency dependence of the nonlocal interactions in the
low-energy subspace (Sec. IV D 2 above), the intra-L space
exchange should accordingly be interpreted as a screened
exchange term. In practice, this means that again a GW -type
expression has to be adopted:

��x nonlocal
L = [

G
(0)
ll WL(q,ω)

]
nonlocal. (33)

Combining this term with the above ��nonlocal
L , a similar

cancellation as above is observed:

��nonlocal
L + ��x nonlocal

L

= {
G

(0)
ll

[
W (q,ω) − WL(q,ω)

]}
nonlocal

+ [
G

(0)
ll WL(q,ω)

]
nonlocal

= [
G

(0)
ll W (q,ω)

]
nonlocal. (34)

The final correction is thus simply the nonlocal part of the
usual GW self-energy [90].

At this stage, the effective dispersion is renormalized to

T
(1)

eff (q) = [εDFT − Vxc + ��H(q,ω = 0)

+��nonlocal
L (q,ω = 0)

+��x nonlocal
L (q,ω = 0)]ZHW (35)

where

ZHW = {
1 − d

[
��H(q,ω) + ��nonlocal

L (q,ω)

+��x nonlocal
L (q,ω)

]/
dω|ω=0

}−1
. (36)

F. Frequency dependence of interactions within
low-energy space: Local part

The remaining problem is one with dynamical local
interactions, for which the correlation part of the self-energy
should be calculated. It can be reduced to a problem with
purely static interactions following Casula et al. [76]: The
recipe is to replace the local dynamical interactions by static
local interactions while at the same time renormalizing the
one-body part of the problem. A subtlety consists, however,
in defining which dynamical interactions to take. We again
differentiate the two options above. We also note that the
self-energy from local dynamical interaction at zero frequency
��loc

L (ω = 0) is already taken into account in Eq. (29).

1. Direct perturbation theory

In this case, the additional renormalization factor resulting
from the frequency dependence of the local interaction is the
one derived in the original work by Casula et al.: Indeed,
W loc

H (ν) ≡ ∑
q WH(q,ν), the effective dynamical interaction in

the low-energy subspace corresponds to what is usually con-
sidered as local “Hubbard U”, and its frequency dependence

determines the renormalization factor according to

ZB = exp

(
1/π

∫ ∞

0
dνImW loc

H (ν)/ν2

)
. (37)

2. GW-type perturbation theory

The GW -type strategy yields a more involved recipe:
Defining the local part of Eq. (9), namely,[

W
dyn
GW (ω)

]
local =

∑
q

(W − WL), (38)

one can consider that the Lagrangian to be treated as this
stage is one with an interaction the static part of which
is given by WH(q,ω = 0) while its dynamical part reads
[W dyn

GW ]loc. (By construction W
dyn
GW vanishes at zero frequency.)

The corresponding renormalization is given by

ZB = exp

(
1/π

∫ ∞

0
dνIm

[
W

dyn
GW (ν)

]
loc/ν

2

)
. (39)

V. SUMMARY OF THE SCHEME

Putting the above steps together, one obtains the total
constrained self-energy

�� = ��H + ��nonlocal
L + ��xnonlocal

L (40)

resulting in the following scheme:
(1) Calculate the LDA Hamiltonian in the localized basis.

Block diagonalize it.
(2) Calculate the sum of the correction self-energies above:

�corr(q,ω) = −Vxc + ��. (41)

If the simple perturbative strategy is adopted, we employ
�corr = �Pert

corr (see Secs. IV D 1 and IV E 1):

�Pert
corr (q,ω) ≡ −Vxc + G

(0)
hhWlhhl + [

G
(1)
ll WH

]
nonlocal. (42)

Following the GW -type perturbation theory, it becomes
�corr = �GW

corr (see Secs. IV D 2 and IV E 2):

�GW
corr (q,ω) ≡ −Vxc + G

(0)
hhWlhhl + [

G
(0)
ll W

]
nonlocal. (43)

This self-energy can be linearized, e.g., around the Fermi level,
giving rise to a static correction �corr(q,ω = 0) and a Z factor
corresponding to its (linearized) frequency dependence:

Zcorr = 1

1 − ∂�corr(q,ω)
∂ω

∣∣
ω=0

. (44)

(3) The effect of the local dynamical interaction is taken
into account as follows: Calculate the renormalization factor
ZB arising from the local part of the frequency dependence in
the screened interaction (see Secs. IV F 1 and IV F 2).

(4) The effective low-energy Hamiltonian is eventually
given by

H
(1)
eff =

∑
q

T
(1)

eff (q)c†qcq

+
∑
q,k,p

Wr (q,0)c†kck+qc
†
pcp−q (45)

with

T
(1)

eff (q) = [εDFT + �corr(q,ω = 0)]ZcorrZB. (46)
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(5) Solve the many-body problem with the one-body
Hamiltonian from the preceding step and the static nonlocal
interactions WH(q,ω = 0). Take care of removing the Hartree
contribution from the solution of the many-body problem, in
order to avoid double counting with the initial single-particle
Hamiltonian where the Hartree potential was included in LDA.
This can be done by following the procedure in [82], where
the Hartree solution of the low-energy effective Hamiltonian
is subtracted before solving by the low-energy solver. This
can also be done as in LDA+U or LDA+DMFT techniques,
by calculating the Hartree solution of the effective low-energy
Hamiltonian.

VI. VARIANTS OF THE LOW-ENERGY HAMILTONIAN

The above discussion has focused on the construction
of an effective low-energy many-body problem with static
and local interactions, for which only the correlation part of
the self-energy needs to be calculated from the many-body
solver. Alternatively, if one uses a many-body solver that can
fully handle long-range interactions, a variant of the above
scheme can be envisioned. Another variant can be used if one
wishes to construct a low-energy Hamiltonian with purely local
interactions only. A different variant is useful if one wishes to
update the single-particle part of the Hamiltonian, after an
improved estimate for the electronic density is available after
the many-body calculation. This is the subject of the following
paragraphs.

A. Low-energy Hamiltonian with long-range interactions

If the aim is the construction of a low-energy effective
Hamiltonian with fully long-range Coulomb interactions, the
treatment of the intra-L space exchange term can be omitted at
the level of the construction of the Hamiltonian. The remaining
corrective self-energy reads

�corr(q,ω) = ��H + ��nonlocal
L

= G
(0)
hhWlhhl + G

(0)
ll W

dyn
H − [

G
(0)
ll W

dyn
H

]
local (47)

where the option of direct perturbation theory W
dyn
H defined in

Eq. (7) should be replaced by W
dyn
GW defined in Eq. (9) for the

option of the GW-type perturbation theory.
We note, however, that the reduction to a static Hamiltonian

using the Casula procedure involves in this case an additional
approximation: Indeed, strictly speaking, the Casula procedure
modifies the non-density-density terms of the interactions,
by dressing the creation and annihilation operators with
exponential weight factors. This can be seen as follows: The
Casula procedure is based on a Lang-Firsov transformation
[91], replacing the original fermionic operators ciσ at the
ith site with spin σ (=↑ or ↓), by polaronic operators diσ ,
thus eliminating the explicit dependence on the bosonic
operators bi that describe the screening degrees of freedom:
diσ = exp[λ(bi − b

†
i )]ciσ . While the exponentials drop out for

density-density terms, since d
†
iσ diσ = c

†
iσ ciσ , this is not true

for more general interactions. In principle, the corresponding
correction factors can be worked out by straightforward
operator algebra. For simplicity, we will, however, disregard

here this complication, assuming, e.g., that any long-range
interactions are of pure density-density type.

B. Effective Hamiltonian with local Hubbard interactions only

The solution of the final many-body problem with nonlocal
interactions may in principle be done within many-body
solvers suitable for nonlocal interactions such as various
Monte Carlo methods including the variational Monte Carlo
[19,20]. Alternatively, extended DMFT [92,93] can be viewed
as a means to determine an effective local interaction that best
represents the effects of the initial long-range interactions, and
can be considered as a technique to “backfold” long-range
interactions into effective local ones.

Very generally, from the above discussion it becomes
obvious that the construction of the one-particle part of the
Hamiltonian will depend on which interaction terms will
be included in the many-body calculation, while physical
properties obtained after solving the low-energy problem are
expected to be insensitive to the choice. In the next section,
we will see how the derived effective Hamiltonians behave in
the case of the simple oxide SrVO3.

C. Update of the single-particle Hamiltonian

In some cases, many-body effects substantially change the
charge distribution in the low-energy subspace as compared to
the LDA one. Such redistributions of charge can, for example,
happen between different orbitals in multiorbital systems, and
have actually been observed, e.g., in titanium oxides [94],
BaVS3 [39], or iron-based superconductors [43,77]. If this
happens, one might want to update the starting Hamiltonian
and GW self-energies, based on the new charge density rather
than the converged LDA one, analogously to what is done in
the DFT+DMFT calculations [52,58]. This effect can induce
non-negligible corrections to the relative orbital levels.

Technically, the resulting self-consistency loop is analogous
to what has been discussed in detail in the DMFT literature
[95], in particular concerning the way the density is recal-
culated in the continuum after the solution of the effective
Hamiltonian.

VII. RESULTS

The ternary 3d1 transition-metal oxide SrVO3 has become
one of the “drosophila compounds” of correlated systems. It
is a correlated metal that has been characterized using various
experimental [96–102] and theoretical techniques (see, e.g.,
[41,87–89,94,95,103–110]). A review of most of the available
experimental and theoretical data has been given recently in
[89]. SrVO3 displays Fermi-liquid behavior up to remarkably
high temperatures of the order of 200 K [97,102], with a
moderate mass enhancement of the order of 2 [101,111].
Detailed spectroscopic investigations have made it an ideal test
compound for modern many-body calculations, and more and
more refined dynamical mean field based studies are available.
The majority of studies so far have focused on the t2g manifold
which forms the states close to the Fermi level, and those will
also be the focus in the present investigations. Note, however,
that this restriction quite severely limits the range of validity of
the low-energy description. Indeed, as shown recently [88,89]
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FIG. 2. Kohn-Sham band structure of SrVO3 in the LDA. The
energy is measured from the Fermi level.

at energies of about 2 to 3 eV above the Fermi level the spectral
properties are largely determined by the eg states. This has in
particular led to a reinterpretation of an inverse photoemission
feature at about 2.5 eV that was frequently interpreted as an
upper Hubbard band of t2g character in the earlier literature.
Here, we use the compound only as an illustration of the
principles of constructing effective low-energy Hamiltonians,
without being concerned with a description of spectra beyond
the pure t2g part.

The LDA band structure of SrVO3 is shown in Fig. 2. One
clearly distinguishes the threefold degenerate manifold of t2g

bands close to the Fermi level (chosen as the zero of energy),
followed in the unoccupied part of the spectrum by the two
eg bands. At about −2.5 eV the filled O-2p derived bands are
visible.

When a standard GW calculation is performed, see Fig. 3,
the bandwidth of the t2g states is reduced from 2.5 to 2.1 eV,
while the overall shape of the dispersion remains similar to the
LDA one. This is in agreement with previous GW calculations
in the literature [87–89,110].

The calculation is based on the full-potential linear
muffin-tin orbitals implementation. An 8×8×8 mesh is
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FIG. 3. Band structure of SrVO3 in the one-shot GW approxi-
mation. For comparison, the LDA band structure is also given (black
dotted line). The energy is measured from the Fermi level.
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FIG. 4. Band structure of SrVO3 corresponding to the LDA
Hamiltonian from which the LDA exchange-correlation potential has
been subtracted. For comparison, the LDA band structure is also given
(black dotted line). The energy is measured from the Fermi level.

employed in both the DFT/LDA and the GW calculations.
The calculational details are the same as in [82].

We now turn to a discussion of the band structure
corresponding to the Hamiltonians to be used as input for
subsequent many-body calculations for this material. We will
proceed step by step to analyze the influence of the various
correction terms, with respect to the DFT starting point (which
will be overlaid to the respective band structures).

Figure 4 displays the band structure corresponding to the
LDA Hamiltonian from which the LDA exchange-correlation
potential has been subtracted, that is, the eigenvalues of
HLDA − Vxc where these operators are evaluated for the self-
consistent LDA density. The subtraction of Vxc widens the band
structure from the LDA bandwidth of 2.5 eV to more than twice
this value: the new bandwidth is 5.4 eV. This indicates that the
exchange-correlation potential Vxc of the LDA is responsible
for a substantial amount of the band-narrowing effect arising
from electronic correlations, stressing the need to subtract the
double counting in a consistent manner. Figure 4 is regarded
as the starting point for the following considerations.

For simple materials (see, e.g., the calculations on Li in
[112]) it has been noted in the literature that the Hartree band
structure is close to the DFT one. This raises the question of
the origin of the substantial band widening in the present case.
Indeed, the present calculation shown in Fig. 4 differs from
a Hartree calculation only by the fact that Fig. 4 is evaluated
for the converged LDA density. We have performed a test
calculation where we plot the Hartree band structure calculated
for the converged Hartree density. The result is shown in Fig. 5.
As seen from this plot, while the band is not fully as wide as in
Fig. 4, a substantial widening is already present at this stage.

Starting from the Hamiltonian without Vxc (see the disper-
sion in Fig. 4), we first take into account the static part of the
corrective self-energy ��H: In Fig. 6, we plot the dispersion
corresponding to HLDA − Vxc + ��H(ω = 0). Compared to
the dispersion of Fig. 4, the overall band structure is narrowed
to 3.7 eV. This value is, however, still considerably larger
than the LDA bandwidth (Fig. 2). Although the electronic
correlations coupling the H and the L space are included
in Fig. 6, and narrow the band with respect to the case
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FIG. 5. Band structure of SrVO3 in the Hartree approximation.
For comparison, the LDA band structure is also given (black dotted
line). The energy is measured from the Fermi level.

where Vxc is taken out, correlations within the L space are
not included. The LDA, on the other hand, at least partially
includes correlations within the L space, and these are very
effective in narrowing the band. Interestingly, the bottom of
the occupied band is quite exactly at the LDA value, and the
remaining widening is purely in the unoccupied part.

To go further and in particular to analyze the dynamic
behavior of ��H we plot in Fig. 7 the self-energy corrections
��H [with �, see Eq. (11) for comparison] for the real and
imaginary parts at several representative choices of momenta.
The frequency dependence is smooth around the Fermi level.
In particular, in contrast to the full self-energy, there are
no poles in ��H in the low-energy region, thanks to the
exclusion of fluctuations within the L space. The frequency
dependence of the real part indicates that the linearization
��H(ω) ∼ ��H(ω = 0) + [d��H(ω)/dω]ω=0ω offers a rea-
sonably good approximation. In fact, the behavior of the
constrained self-energy is much closer to linearity than that
of the full GW self-energy �. This is easily understood
by the fact that the low-energy excitations are excluded in
the present constrained self-energy ��H analogously to an
insulator, thus eliminating the strong frequency dependence
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FIG. 6. Band structure of HLDA − Vxc + ��H(ω = 0) of SrVO3.
For comparison, the LDA band structure is also given (black dotted
line). The energy is measured from the Fermi level.

of the constrained self-energy near the Fermi level. This
is one of the consequences of the controllability and an
advantage of the present MACE scheme, as mentioned in
the introduction. In the following discussion, we employ this
linearized approximation. Then the renormalization factor
ZH defined by Eq. (22) is interpreted as that from the
contribution of the H space. After this renormalization factor
is taken into account, the effective Hamiltonian is given by
ZH[HLDA − Vxc + ��H(ω = 0)] (see Fig. 8). Interestingly
the renormalization factor ZH=0.92 stays close to 1, so that
the bandwidth is only slightly reduced (to 3.4 eV instead
of the 3.7 eV above). We also note that ZH has weak
momentum dependence as we reveal in the following.

Figure 9 shows the local and nonlocal parts of ��H. The
frequency dependence of the local part [Figs. 9(a) and 9(b)]
is quite similar to the frequency dependent self-energies at
various momenta in Fig. 7. One immediately reads off an
interesting property, which is akin to what has been found
for the full GW self-energy in [113], namely, that the nonlocal
part of ��H shows only weak frequency dependence as shown
in Figs. 9(c) and 9(d). This explains why ZH is only weakly
momentum dependent. On the other hand, ��nonlocal

H (0) at R

is ∼1 eV larger than at �, which causes the band widening
effect. ��H can thus to a good approximation be decomposed
into a frequency dependent local part and a static nonlocal one:
��H(k,ω) = ��local

H (ω) + ��nonlocal
H (k), with ��local

H (ω) =∑
q ��H(q,ω)
In the simple case of SrVO3, where the t2g states are de-

generate, static local operators are scalar and are compensated
by a chemical potential shift such that the correct particle
number is obtained. The above band structure corresponding
to HLDA − Vxc + ��H(k,ω = 0) is thus identical to that of
HLDA − Vxc + ��nonlocal

H (k). The local dynamical part of ��H

then results in a narrowing of this band structure by a factor
ZH = 0.92.

Before turning to a discussion of the low-energy correction
for the GW treatment ��L = G(0)(W − WL), we analyze
the effective interaction WL shown in Fig. 10 in comparison
to W and WH. The fully screened Coulomb interaction W

displays the familiar shape of an interaction that is strongly
screened at low energies (with a value of 0.88 eV at ω = 0),
while retrieving the value of the bare Coulomb interaction v

(∼16.0 eV) at high energy. The crossover from the bare to the
screened values takes place at the plasma energy of about
15 eV. This behavior has been discussed before [26,114];
we note in particular that the plasma frequency is known
from electron energy-loss spectroscopy measurements of the
related SrTiO3 compound [111,115]. The partially screened
interaction WH constructed within the cRPA converges to W

at high energies, but displays weaker screening effects at low
energies (with a value of 3.5 eV at ω = 0), since intra-t2g

screening channels are excluded. As was already anticipated
in Sec. III, WL can be interpreted as the screened interaction of
a low-energy Hamiltonian, where a static interaction of value
WH(ω = 0) has been imposed as the bare interaction. Since
now only intra-t2g screening channels are active, screening
takes place only at low energies, where the scale is given by the
t2g bandwidth. Also plotted is the difference W

dyn
GW = W − Wd :

Except at low energies where the t2g screening channels come
into play, its frequency dependence is essentially given by
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FIG. 7. Frequency dependence of −Vxc + ��H for SrVO3. (a) and (b) are the real and imaginary parts at the � point, respectively, and (c)
and (d) [(e) and (f)] are those at X (R). For comparison, the full GW self-energies are also given (black dotted line).

that of W , while the high-energy limit is the bare Coulomb
interaction v reduced by WH(0).
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FIG. 8. Band structure of ZH[HLDA − Vxc + ��H(ω = 0)] of
SrVO3. For comparison, the LDA band structure is also given (black
dotted line). The energy is measured from the Fermi level.

The frequency dependence of the real and imaginary
parts of the low-energy self-energy ��L = G(1)W

dyn
H for

the direct perturbative treatment is illustrated in Fig. 11.
��L = G(0)W

dyn
GW used for the GW treatment is shown in

Fig. 12 for several choices of momenta.
The results for the perturbative and the GW treatment are

nearly identical. The renormalization factor of ��nonlocal
L (and

��L) is ∼ 0.77. The zero-frequency shift Re��nonlocal
L (0)

at R is ∼ 3 eV larger than at �. Again, one sees how
�L separates into local dynamical and nonlocal static parts:
��L = ��nonlocal

L (k) + ��local
L (ω). This is expected since

such a separation has been found within the full GW cal-
culation [89], and is even more plausible for a GW treatment
within the t2g subspace.

The corresponding band structures are given by [εDFT +
��H + ��nonlocal

L ]ZHL in Fig. 13 for the perturbative treat-
ment [see Eq. (24)], and in Fig. 14 for the GW treatment,
where ��nonlocal

L is defined in Eq. (27) and ZHL is around 0.92.
ZHL is practically the same as ZH, meaning that the nonlocal
dynamical correction in the H space is small, which justifies
the GW perturbative treatment for the nonlocal part. One
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The black dotted line is � defined in Eq. (11) in the full GW approximation for comparison. (c) and (d) are the real and imaginary parts at
several k points.

finds that the nonlocal part ��L = G
(0)
ll (W − WL) narrows

the empty states but widens the occupied ones, resulting in an
overall bandwidth of 3.2 eV. The difference between the direct
perturbation and the GW treatment is small.

After including the effect of the local self-energy by the
nonperturbative Casula trick, we show the dispersion given
by [εDFT − Vxc + ��H + ��nonlocal

L ]ZHLZB for the GW -type
treatment in Fig. 15: The GW -like treatment gives a band
dispersion close to the LDA one. The ZB factor corresponding
to the local dynamical part of ��L amounts to ZB = 0.7. The
nonperturbative treatment results in an LDA-like band disper-
sion for the empty states, but a slightly narrower bandwidth
in the occupied part. The low-energy effective Hamiltonian at
this level of treatment has a frequency independent effective
interaction both with local and nonlocal interaction given by
the Fourier transform of WH(q,ω = 0), which contains both
direct and exchange interactions.

We finally show the dispersion given by Eq. (46), namely,
[εDFT + �GW

corr ]ZcorrZB in Fig. 16. The result shows an LDA-
like band dispersion for the occupied states, but a slightly
wider bandwidth in the empty part, resulting in a bandwidth
14% wider in total than the LDA bandwidth. The effective
interaction of the low-energy effective Hamiltonian at this
final level has frequency independent local and nonlocal
interactions given by the Fourier transform of Wr (q,ω = 0).

The resulting effective Hamiltonian in the L space consists
of single-particle and two-particle (interaction) parts. The
effective interaction is the same as in previous estimates by
the cRPA in the literature, while the single-particle dispersion
is revised after removing the double counting and taking into
account the frequency dependence of the effective interaction.
The final effective bandwidth for SrVO3 is, after partial

cancellation, slightly (14%) larger than the LDA bandwidth.
This is a reasonable result because the LDA takes into account
all correlations though insufficiently, while the present scheme
by the constrained self-energy excludes the correlation effects
arising from the L space. Although the bandwidth derived for
the effective Hamiltonian is slightly larger than that of the
LDA, it is clear that the correlation effects are stronger than in
the LDA or standard GW when the ab initio Hamiltonian is
solved by an accurate solver. In fact, if the effective interaction
contained in the final effective Hamiltonian is treated by
the GW scheme, one obtains the dispersion illustrated in
Fig. 17, which is given from the self-energy of the whole
GW calculation � by correcting the local dynamical part
W − WL by ZB . This indicates that even an insufficient
treatment of the local static interaction by the GW scheme
gives a dispersion with the bandwidth (∼1.9 eV) narrower
than the LDA (∼2.5 eV, Fig. 2) and GW (∼2.1 eV, Fig. 3)
dispersions. A slightly (∼14%) wider dispersion than that
of the LDA bands obtained for the effective Hamiltonian
accompanied with frequency independent effective Coulomb
interactions without the exchange part may account for the
slight overestimate of correlation effects in the literature
mentioned in the introduction. Our scheme offers an optimized
way for the derivation of ab initio Hamiltonians for the L space
after eliminating the H space in a systematic fashion.

Our findings of the band widening are consistent with
studies based on the combined GW+DMFT method in the
literature [89]: There, it was argued that within GW+DMFT
the best effective Hamiltonian that DMFT should be performed
on is a one-body Hamiltonian corrected by the nonlocal part
of the GW self-energy. The corresponding spectral function
(see, e.g., Fig. 5 of [89]) displays a broadening similar to
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Fig. 14. Most interestingly, our present calculations confirm a
pronounced asymmetry observed in [89], namely, a stronger
widening effect in the unoccupied part of the spectrum than in
the occupied one. We will come back to this point below.

VIII. TEST OF THE EFFECTIVE HAMILTONIAN:
DYNAMICAL MEAN FIELD THEORY FOR SrVO3

To validate our effective Hamiltonian construction, we
close the paper by presenting a dynamical mean field solution
of the final Hamiltonian (45). In Fig. 18, we plot the
spectral function in comparison to the density of states for
a noninteracting effective Hamiltonian. Also superposed are
the photoemission data of [96].

Several remarks are in order. First, we note that while the
effective Hamiltonian has a larger overall bandwidth than the
DFT-LDA band structure, as discussed above (and already
visible from Fig. 16), the widening is taking place on the
unoccupied part of the spectrum, while the bottom of the t2g

band is even slightly higher in energy (that is, closer to the
Fermi level) than in the LDA. At given interaction strength,
we therefore expect the effective Hamiltonian to have a smaller
kinetic energy and thus a higher correlation strength than the
LDA. This expectation is verified: DFT+DMFT calculations
with a Hubbard U as small as the zero-frequency value of
the cRPA U (ω) are known to display only a minor band

renormalization accompanied by a slight “washing out” of
spectral weight to higher energies, but no true Hubbard band.
The DMFT solution of the effective Hamiltonian is slightly
more correlated in that a Hubbard-type shoulder appears
around −1 to −1.5 eV binding energy.

At first sight, the comparison to the experimental data
seems to be unfavorable, since in photoemission experiments
a much stronger peak is generally observed at the energy
corresponding to the expected lower Hubbard band. This
conclusion would, however, be too quick. Indeed, as shown
recently [116], a substantial part of the spectral weight found at
these energies in photoemission spectra is due to the presence
of oxygen vacancies in the sample. In the light of these
findings, our data are fully compatible with the experimental
measurement.

On the unoccupied side of the spectrum, the situation
is even more interesting. Here, the early DMFT literature
was interpreting a pronounced peak at about 2.7 eV seen in
Bremsstrahlisochromat spectroscopy (BIS) as the upper Hub-
bard band of t2g character. This interpretation was, however,
questioned in [88], on the basis of GW+DMFT calculations,
proposing a reinterpretation as eg-dominated spectral weight.
The more recent literature [89,110] is consistent with this
reinterpretation.

The DMFT calculation based on the present effective
Hamiltonian renormalizes the overall bandwidth (compare
the solid line to the points in Fig. 18); the corresponding
spectral weight is shifted to higher energies but merely as
an extended high-frequency tail. No upper Hubbard band is
observed. Even more interestingly, the quasiparticle part of
the spectral functions mimics in a very clear fashion the shape
of the underlying noninteracting density of states, displaying
a pronounced peak around 0.8 eV. In comparison with the
spectral functions found in [88], these findings might even
imply interesting suggestions for the interpretation of the
GW+DMFT spectral function: Indeed, in the GW+DMFT
calculations a broad extended quasiparticle peak was observed,
and it was speculated that an upper Hubbard band, if present,
would be merged into the large central peak. The present
findings rather suggest that peak to result from weakly
renormalized quasiparticle states, retaining roughly the shape
of the noninteracting band.

The present DMFT calculation thus validates our effective
Hamiltonian construction. Most importantly, we stress that it
incorporates nontrivial effects beyond standard DFT+DMFT,
which are also present in more refined GW+DMFT calcula-
tions [88,89].

IX. SUMMARY AND CONCLUSION

In this paper, we have developed and elaborated a method
for a truly first-principles electronic description of correlated
electron materials. Conceptually speaking, the scheme is
based on RG arguments, which guarantee the existence of
an effective Hamiltonian valid at a given energy scale. The
difficulty consists, however, in determining this Hamiltonian
explicitly, since a direct quantitative RG treatment of the full
Coulomb Hamiltonian is a very difficult task and has not
been achieved so far. Indeed, performing RG calculations
with long-range interactions in the continuum is an even more
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FIG. 11. Frequency dependence of −Vxc + G(1)W
dyn
H of SrVO3. (a) and (b) are the real and imaginary local parts, respectively. (c) and (d)

are the real and imaginary parts at several k points.

difficult task than for simplified models [117], and even for
interacting lattice models explicit RG calculations remain a
challenge.

Our scheme proposes an indirect way of constructing the
low-energy Hamiltonian which can be considered a shortcut to

a true RG treatment. The RG has to satisfy the chain rule, where
the full trace summation denoted byR can be decomposed into
the two subsequent partial trace operations RHRL as required
for a semigroup. The first operation RH can be replaced by a
perturbative treatment in a controlled approximation, thanks
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FIG. 13. Band structure of [εDFT − Vxc + ��H + ��nonlocal
L ]ZHL

of SrVO3 in the direct perturbative treatment. For comparison, the
LDA band structure is also given (black dotted line). The energy is
measured from the Fermi level.

to the separation of the L and H spaces. Then the idea can
be understood as working one’s way backwards, starting from
the full solution obtained within some approximation (here,
perturbation theory). The desired low-energy Hamiltonian
is constructed such as to fulfill the following requirement:
its solution within the same approximation applied to the
low-energy subspace only should yield the same result as
the projection of the full solution to that subspace. The
motivation of this constructions resides in the fact that instead
of solving the resulting low-energy Hamiltonian within the
approximation used for its construction more accurate many-
body solvers can be used for the final solution.

Strongly correlated electron systems provide a natural
ground for such a treatment, due to their hierarchical structure
in energy space, which facilitates the identification of appropri-
ate low-energy windows. Nevertheless, in practice, the explicit
construction of accurate low-energy effective Hamiltonians
has remained a challenge due to the difficulties associated to
bridging the description of the high-energy degrees of freedom
usually treated in the DFT and the low-energy degrees of
freedom described by the effective Hamiltonian in a consistent
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FIG. 14. Band structure of [εDFT − Vxc + ��H + ��nonlocal
L ]ZHL

of SrVO3 in the GW treatment. For comparison, the LDA band
structure is also given (black dotted line). The energy is measured
from the Fermi level.
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FIG. 15. Band structure of [εDFT − Vxc + ��H +
��nonlocal

L ]ZHLZB of SrVO3 in the GW treatment. For comparison,
the LDA band structure is also given (black dotted line). The energy
is measured from the Fermi level.
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FIG. 16. Band structure of [εDFT + �GW
corr ]ZcorrZB of SrVO3. For

comparison, the LDA band structure is also given (black dotted line).
The energy is measured from the Fermi level.
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FIG. 17. Band structure of [εDFT − Vxc + � −
(G(0)W

dyn
GW )nonlocal]Z′ZB of SrVO3 [Z′ is the renormalization

factor of � − (G(0)W
dyn
GW )nonlocal]. For comparison, the LDA band

structure is also given (black dotted line). The energy is measured
from the Fermi level.
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FIG. 18. Dynamical mean field solution of the final effective
Hamiltonian Eq. (45) [Fig. (16)]. The resulting spectral function [for
static interactions U (0) = 3 eV, J = 0.6, and inverse temperature
β = 10 eV−1] (thick solid line) as compared to the noninteracting
density of states of the effective Hamiltonian (points) and the
photoemission spectrum of Ref. [96] (thin solid line).

manner. The main obstacles are related to (1) the need of
avoiding double counting of correlations and screening in
the high- and low-energy treatments and (2) the frequency
dependence of parameters in the low-energy effective models.

In this paper, we have presented a way to overcome these
bottlenecks: we propose a systematic recipe for how a low-
energy Hamiltonian can be constructed by starting from a per-
turbative treatment. We provide the best description under the
constraint that the effective low-energy Hamiltonian contains
only single-particle (kinetic-energy term) and two-particle
(interaction energy) terms with frequency independent pa-
rameters. Our construction relies on a controlled perturbative
treatment, which is possible thanks to the hierarchical nature of
correlated electron systems: Even in cases where perturbation
theory would not provide a meaningful approximation to
the full problem, a perturbative treatment of the high-energy
degrees of freedom only can be justified thanks to the fact
that quantum many-body fluctuations primarily live in the
low-energy space only.

On the example of the ternary transition-metal compound
SrVO3, we have explicitly demonstrated how this construction
works: A low-energy Hamiltonian is built in such a way
that a perturbative treatment would reproduce the result
of a perturbative treatment in the full space as closely as
possible. Solving the resulting many-body Hamiltonian within
accurate nonperturbative many-body solvers then provides
a description beyond the perturbative treatment, while still
keeping the ab initio nature of the calculation. We have tested
our scheme in a step-by-step manner, identifying the effects of
the different corrective terms. Most interestingly, our results
confirm recent findings within GW+DMFT calculations on
SrVO3 which identified an intriguing asymmetry in the
corrections to an LDA Hamiltonian [89]. Our substantially
improved MACE scheme should thus open new ways to
accurate many-body calculations beyond current ab initio
methods.

If the bands are entangled rather than isolated near the Fermi
energy, in principle one needs to include all the entangled
bands near the Fermi level. For moderately entangled cases, the
reader is referred to the disentanglement procedure described
in [118]. If the separation of the bands near the Fermi level
is not complete, feedback effects from the nearby degrees of
freedom have to be taken into account self-consistently, which
requires an extension of the present framework left for future
study.

Note added. While this paper was under review, another
refined GW+DMFT study [119] appeared, which is also
consistent with the interpretation of the BIS peak as eg density
of states. In the occupied part, there is at most a weak Hubbard
shoulder, in agreement with the present paper.
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APPENDIX

In this Appendix, we analyze the difference between the
local GW self-energy

�loc = GlocWloc (A1)

and the GW self-energy obtained from a local W .
We use the expansions

G(r,r ′) =
∑

RR′LL′
GRR′LL′χRL(r)χR′L′(r ′) (A2)

and

W (r,r ′) =
∑

RR′αβ

WRR′αβBRα(r)BR′β(r ′) (A3)

on the one- and two-particle bases χ and B, respectively
(following standard notations in the field). Then, the GW

equation

�(r,r ′) = G(r,r ′)W (r,r ′) (A4)

leads to

�R1R2L1L2 =
∑

RR′LL′

∑
R̃R̃′αβ

GRR′LL′WR̃R̃′αβ

×〈χR1L1χRL|BR̃′α〉〈BR̃β |χR2L2χR′L′ 〉. (A5)
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For a local W , that is, an interaction of the form WR̃R̃′αβ ∼ δRR′ ,
one has

�R1R2L1L2 =
∑

RR′LL′

∑
R̃αβ

GRR′LL′WR̃R̃αβ

×〈χR1L1χRL|BR̃α〉〈BR̃β |χR2L2χR′L′ 〉. (A6)

The structure of this equation is determined by the overlap
matrices of two-particle and one-particle basis states. If the
basis set is sufficiently localized that no overlaps between basis

functions on different spheres need to be considered, these
become local quantities themselves: OL1Lα = 〈χRL1χRL|BRα〉
and the above expression equals the local self-energy

�RRL1L2 =
∑
LL′

∑
αβ

GRRLL′WRRαβ

×〈χRL1χRL|BRα〉〈BRβ |χRL2χRL′ 〉. (A7)

This is used in order to write Eq. (26).
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