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Optimal inhomogeneity for pairing in Hubbard systems with next-nearest-neighbor hopping
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Previous studies have shown that bipartite Hubbard systems with inhomogeneous hopping amplitudes can
exhibit higher pair-binding energies than the uniform model. Here we examine whether this result holds
for systems with a more generic band structure. To this end, we use exact diagonalization and the density
matrix renormalization-group method to study the 4 × 4 Hubbard cluster and the two-leg Hubbard ladder with
checkerboard-modulated nearest-neighbor hopping, t , and next-nearest-neighbor (diagonal) hopping, td . We find
that the strongest pairing continues to occur at an intermediate level of inhomogeneity. While the maximal
pair-binding energy is enhanced by a positive td/t , it is suppressed and appears at weaker repulsion strengths
and lower hole concentrations when td/t is negative. We point out a possible connection between the pairing
maximum and the magnetic properties of the system.
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I. INTRODUCTION

Consider two identical N -site clusters, each doped away
from half filling by M holes and residing in its ground state
of energy E0(M). If holes tend to pair and if M is odd it is
energetically preferable to move one hole between the clusters
in order to achieve a paired state on both. In this sense a positive
pair-binding energy,

�pb(M/N) = 2E0(M) − E0(M + 1) − E0(M − 1), (1)

serves as an indicator for pairing. Such evidence may be further
strengthen by looking at clusters whose ground state is a spin
singlet. If the spin gap

�s(M/N) = E1(M) − E0(M), (2)

to the lowest S = 1 excitation follows �pb, it is an indication
that the excitation is the result of a dissociation of a singlet
hole pair into two separate holes. In one dimension the
relation is even more explicit, as the opening of a spin gap
entails a nonzero amplitude for the superconducting order
parameter [1].

Exact diagonalization studies have shown that a number of
small Hubbard clusters exhibit pair binding, which reaches a
maximum at an intermediate strength of the on-site repulsion
[2,3]. Similar behavior was observed using the density-
matrix renormalization-group (DMRG) method in the two-leg
Hubbard ladder, where the binding energy is of the order
of the spin gap and where both diminish with doping [4,5].
These findings have inspired searches for superconductivity
in two-dimensional systems composed of coupled lower-
dimensional building blocks, in hopes of harnessing the pairing
tendencies of the latter. Such a strategy naturally gives rise to
the question, What is the optimal level of inhomogeneity for
superconductivity [6,7]?

Much of the research into the relationship between inho-
mogeneity and superconductivity from repulsive interactions
has been carried out using the plaquette Hubbard model
[8,9]. The model is constructed from 2 × 2 plaquettes with
on-site repulsion U and nearest-neighbor hopping t , where
neighboring sites on different plaquettes are coupled by

hopping t ′. Exact diagonalization of the 4 × 4 site system
[10] and of disordered 2 × 6 ladders [11] has found a
substantial maximum of the pair-binding energy at t ′/t ≈
0.5, U/t ≈ 5–8, and low hole doping. A similar pairing
maximum occurring at intermediate inhomogeneity levels
and interaction strengths was subsequently found in larger
plaquette systems using contractor renormalization (CORE)
[12] and DMRG [13]. Furthermore, by calculating the other
necessary ingredient for superconductivity, namely, phase
stiffness, these studies have provided evidence that optimal
inhomogeneity likely exists also for the superconducting
transition temperature, Tc, and not just for the pairing scale.
These findings were contested, however, by calculations using
the dynamical cluster approximation (DCA) [14] and cellular
dynamical mean-field theory (CDMFT) [15], which have
obtained a monotonic increase with t ′/t in both the d-wave
pairing interaction and Tc toward a maximum that is exhibited
by the homogeneous model. Nevertheless, a recent quantum
Monte Carlo (QMC) study [16] provides support in favor of the
CORE and DMRG findings. While the sign problem prevents
reliable calculation of Tc, it is manageable to temperatures
low enough to show that for U/t = 4 the pairing vertex is
most attractive at t ′/t ≈ 0.4. Finally, despite differences in
details the DCA [17], CDMFT [18], and QMC [19] have all
detected enhanced superconductivity in Hubbard models with
an inhomogeneous charge density due to external potentials.

To date, optimal inhomogeneity for pairing, or more
generally for superconductivity, has been demonstrated only
on the bipartite square lattice. It is therefore interesting to
explore the robustness of the phenomenon to changes in the
band structure, not the least because they are present in cuprate
high-temperature superconductors. Specifically, the cuprates
are often modeled using the tight-binding band structure of
a square lattice with hopping amplitudes that extend beyond
the nearest-neighbor amplitude t . In particular, it is necessary
to include next-nearest-neighbor (diagonal) hopping td , with
td/t < 0, to account for the observed Fermi surfaces [20],
and there are indications that it plays a role in the physics
governing Tc of the hole-doped systems [21]. Single-layer
cuprates exhibit td/t values which range from −0.15 in

2469-9950/2017/96(6)/064527(6) 064527-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.064527


GIDEON WACHTEL, SHIRIT BARUCH, AND DROR ORGAD PHYSICAL REVIEW B 96, 064527 (2017)

La-based materials to −0.35 in Tl and Hg systems [21], while
td/t = −0.275 in the bilayer compound Bi2Sr2CaCu2O8+δ

[20]. The effects of such a term have been investigated
in the context of both the Hubbard model [22–28] and
its strong-coupling descendent, the t-J model [29–33]. It
appears that different studies agree that various measures of
pairing and superconductivity are suppressed in the presence
of td/t < 0, at least for hole doping in the range x < 0.12.
The results vary, however, for higher doping levels where
calculations using the DCA [25] and DMRG [29] continue
to find suppression of superconductivity, while density matrix
embedding theory [28] and variational QMC [30] indicate
enhancement of pairing correlations. A similar dichotomy
also exists for positive td/t , where the first group of methods
finds enhanced superconductivity while the second yields the
opposite trend.

Here we study the existence of optimal inhomogeneity
for pairing in the plaquette Hubbard model with diagonal
hopping. To this end, we calculate the pair-binding energy
and the spin gap using exact diagonalization and DMRG. We
show that pairing continues to peak at intermediate levels
of inhomogeneity but its strength depends on the sign of
td/t . Our results indicate that pairing is enhanced by the
presence of td/t > 0. On the other hand, when td/t < 0 pairing
is suppressed for the higher hole concentrations examined
near x = 0.12. It regains strength, however, at lower doping
levels or when U/t is reduced. We note that these effects
cannot be understood on the level of a single plaquette
and speculate on their possible connection to the magnetic
properties of the system.

II. MODEL AND RESULTS

We consider the plaquette Hubbard model

H = −
∑

〈i,j〉,σ
tij c

†
iσ cjσ −

∑

〈〈i,j〉〉,σ
td,ij c

†
iσ cjσ + U

∑

i

ni↑ni↓,

(3)

where c
†
iσ creates an electron of spin polarization σ = ↑,↓

at site i, and niσ = c
†
iσ ciσ . Here 〈i,j 〉 and 〈〈i,j 〉〉 denote

nearest-neighbor and next-nearest-neighbor sites, respectively.
The hopping amplitudes are modulated as shown in Fig. 1.
Neighboring sites within a plaquette are connected by hopping
t , while next-nearest neighbors are connected by td . The
corresponding amplitudes across plaquette boundaries are t ′
and t ′d . For simplicity, we restrict ourselves to the case in which
the diagonal amplitudes are modulated with the same ratio
as the nearest-neighbor amplitudes, i.e., t ′d/td = t ′/t . In the
following we concentrate on the range |td |/t < 0.5, for which
the bandwidth, W , defined as the energy difference between the
highest and the lowest levels of the noninteracting spectrum,
is independent of td and varies as W = 4(t + t ′). Hence, we
note that any td dependence of the results cannot simply be
attributed to a change in U/W .

We have studied the model on the 4 × 4 cluster and on
the two-leg ladder, depicted in Fig. 1. To obtain an estimate
for the finite-size effects in the smaller system we compare
results for the cluster with periodic boundary conditions in both
directions: (m + 4,n) = (m,n + 4) = (m,n), with results for a

FIG. 1. The 4 × 4 cluster and a section of the two-leg ladder
studied in this work.

cluster subjected to twisted boundary conditions: (m + 4,n) =
(m,n) and (m,n + 4) = (m + 2,n). We use open boundary
conditions for the two-leg ladder.

The pair-binding energy and the spin gap for the smallest
available hole concentrations on the 4 × 4 cluster were
calculated using exact diagonalization. They are depicted in
Fig. 2 for the case U/t = 8. We find that the pair-binding
energy of the x = 1/16 system is largely insensitive to changes
in the boundary conditions over a range of t ′/t that shrinks

(a) (d)

(b) (e)

(c) (f)

FIG. 2. The 4 × 4 cluster with U/t = 8 and td/t = −0.5 (red
line), −0.3 (blue line), 0 (black line), 0.3 (dashed blue line), and 0.5
(dashed red line). Left column: Results for the cluster with periodic
boundary conditions. (a) Pair-binding energy at 1/16 hole doping.
(b) Spin gap at 2/16 hole doping. (c) Pair-binding energy at 3/16
hole doping. Right column: (d–f) The corresponding quantities for a
cluster with twisted boundary conditions.
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FIG. 3. Pair-binding energy of the 4 × 4 cluster with periodic
boundary conditions at hole doping 1/16 and various td/t values.
The results are for U/t = 1 (red),2, . . . ,10 (green).

with increasing |td/t |. For |td/t | � 0.1 (not shown) the two
sets of results follow each other and differ by at most 20%
as long as 0 � t ′/t � 0.8. In particular, a clear maximum
in �pb is observed at t ′/t = 0.5. This maximum is also
present in the td = −0.3t data, but due to the increased
sensitivity to the boundary conditions above t ′/t ≈ 0.65 we
are unable to determine whether it constitutes a global pairing
maximum. The even larger sensitivity of the td = −0.5t results
precludes reaching a conclusion about the existence of optimal
inhomogeneity for pairing in this case. At the same time, the
results for positive td are more robust and �pb(1/16) exhibits
a consistent maximum around t ′/t = 0.3–0.5, with a clear
enhancement compared to the td = 0 case for inhomogeneity
levels below the maximum. The evolution of �pb with U/t

for td < 0 is presented in Fig. 3. Evidently, within the range
of t ′/t discussed above the position and the magnitude of the
maximal binding energy increase with U/t until they reach a
global maximum around U/t ≈ 8–10.

A positive pair-binding energy may also be associated
with a tendency of the system to phase separate. In order
to distinguish between pairing and phase separation one needs
to calculate the surface tension between the hole-rich and the
hole-poor phases [34]. A cruder way is to look for negative
inverse compressibility, as a sign of instability towards phase
separation. We, however, always find its discrete version,

κ−1 ∝ E0(M + 2) + E0(M − 2) − 2E0(M), (4)

to be positive. Further support for pairing comes from
the fact that the spin gap of the system with two doped
holes roughly follows �pb(1/16), as presented in Fig. 2. In
contrast, �pb(3/16) exhibits a high sensitivity to the boundary
conditions and we cannot determine whether holes pair on the
cluster at this higher doping level.

In an effort to substantiate the exact diagonalization study
we have used DMRG to calculate �s and �pb of the two-leg
plaquette ladder with td/t = ±0.3. During the calculation we
have truncated the density matrix, keeping up to about 3200
states in order to reach low enough truncation errors. The

Δ
s

td = −0.3 td = +0.3

Δ
p
b

t′ t′

2 × 16
2 × 32

FIG. 4. Spin-gap and pair-binding energy of the two-leg plaquette
ladder with U = 8t and hole doping x = 1/16.

relatively large number of kept states (larger than needed when
td = 0 [13]) meant we could deal with ladders of up to 2 × 32
sites. Our results for the ladder with hole doping x = 1/16 are
summarized in Figs. 4 and 5, and those for x = 1/8 in Figs. 6
and 7. All quantities are given in units of t .

Concentrating first on the td/t = −0.3 case, we find general
agreement between the DMRG results and those obtained us-
ing exact diagonalization. Specifically, a positive pair-binding
energy, accompanied by κ−1 > 0, is observed for x = 1/16
and exhibits a peak at an intermediate inhomogeneity level.
The peak is robust in the U/t = 4 ladder, where the results
change little upon increasing the length of the system. On
the other hand, the results for U/t = 8 still show substantial
size dependence upon going from the 2 × 16 to the 2 × 32
ladder. Nevertheless, the tendency of �pb to increase with

Δ
s

td = −0.3 td = +0.3

Δ
p
b

t′ t′

2 × 16
2 × 32

FIG. 5. Spin-gap and pair-binding energy of the two-leg plaquette
ladder with U = 4t and hole doping x = 1/16.
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2 × 16
2 × 32

FIG. 6. Spin-gap and pair-binding energy of the two-leg plaquette
ladder with U = 8t and hole doping x = 1/8.

the system size and the fact that it shows similar features to
�s make it plausible that optimal inhomogeneity for pairing
also exists in the thermodynamic limit. Increasing the hole
concentration to x = 1/8 leads to a �pb that is indiscernible
when U/t = 8. This stands in contrast to the td = 0 ladder
under similar conditions where �pb attains a maximal value of
about 0.15t [13]. Optimal pairing reappears upon lowering the
interaction strength to U/t = 4 but it is still somewhat weaker
than its value when td = 0 [13]. We therefore conclude that
while optimal inhomogeneity continues to exist in the presence
of td/t < 0, such a hopping term tends to reduce the optimal
pairing scale, particularly for stronger interactions and higher
hole concentrations. On the contrary, our results clearly show
that a next-nearest hopping term with td/t > 0 enhances the
pairing maximum for all values of U/t and x studied by us.

Δ
s

td = −0.3 td = +0.3

Δ
p
b

t′ t′

2 × 16
2 × 32

FIG. 7. Spin-gap and pair-binding energy of the two-leg plaquette
ladder with U = 4t and hole doping x = 1/8.

FIG. 8. Pair-binding energy of the 2 × 2 plaquette as a function
of U/t for td/t = −0.3 (red), 0 (green), and 0.3 (blue). Inset: U/t

dependence of the overlap between the two-hole ground state and the
normalized state obtained by applying the pair annihilation operator
P12 − P23 + P34 − P41 to the undoped ground state.

III. DISCUSSION

What might be the origin of the pairing maximum and its
dependence on td? One may try to look for the reasons in the
Hubbard plaquette itself. Figure 8 shows, however, that the
pair-binding energy of the square is already negative at U/t

values which correspond to the pairing maximum observed in
extended systems. Therefore, the latter is not a single-plaquette
effect. Nevertheless, the �pb values of the large and small
systems share some characteristics, such as their tendency to
decrease as one moves from positive to negative td/t . It has
been suggested, in the context of the t-J model [32], that this
may be due to the fact that a negative td/t is less favorable for
creation of paired states with d-wave symmetry.

It can be shown that for |td/t | < 1 the ground state
of the undoped plaquette, |Nh = 0〉, is an S = 0 singlet
which is odd under π/2 rotations and approaches the “RVB”
state (1/

√
12)(P †

12P
†
34 − P

†
14P

†
23)|0〉 at large U/t . Here, P

†
ij =

c
†
i↑c

†
j↓ + c

†
j↑c

†
i↓ creates a singlet electron pair at sites i and

j (numbered sequentially around the square). When the
interactions are weak the two-hole ground state, |Nh = 2〉, is
generated from |Nh = 0〉 by P12 − P23 + P34 − P41. However,
as U/t is made stronger the pairing operator includes terms
that create holes at next-nearest-neighbor sites as well [35,36].
We find that the effect of these terms increases when td/t

goes from positive to negative (see the inset in Fig. 8), but
for all values |td/t | < 1 the state |Nh = 2〉 remains a spin
singlet that lies in the identity representation of the rotation
group. Therefore, the pair annihilation operator connecting
|Nh = 0〉 and |Nh = 2〉 must transform as dx2−y2 . In this
sense the inclusion of diagonal hopping does not affect the
pairing symmetry on the square. Nevertheless, it does affect the
energetics of the pairing process. Interestingly, both |Nh = 0〉
and its energy are independent of td (in the range considered
here). At the same time, the energies of |Nh = 2〉 and of
the single-hole ground state |Nh = 1〉 increase with U/t at
a rate which depends on td . We find that the suppression
of the plaquette �pb at large U/t and td/t < 0 is largely
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driven by the slower increase in the single-hole energy.
In particular, for −1 < td/t < 0.25 there exists a critical
U/t (that increases with td ) where |Nh = 1〉 turns from a
degenerate quartet with Sz = ±1/2 and plaquette momentum
(0,π ) or (π,0) to a degenerate quartet with constant energy
−2t + td , made up of Sz = ±1/2 and Sz = ±3/2 doublets
with momentum (π,π ), thereby leading to the break shown in
Fig. 8.

As noted above, while some features of the td dependence of
�pb follow the behavior found on the single-plaquette level, the
existence of a pairing maximum as a function of t ′/t cannot
be understood from such considerations. Instead, we would
like to point out a correlation between the pairing maximum
and the magnetic properties of the system. It is well known
that in the large-U/t limit the half-filled Hubbard model maps
onto the S = 1/2 Heisenberg model with J = 4t2/U [37].
Correspondingly, the plaquette Hubbard model maps onto the
plaquette Heisenberg model with J ′/J = (t ′/t)2. Since the
ground state of the uniform model (J ′ = J ) exhibits Néel
antiferromagnetic (AFM) long-range order, and that of the
disconnected system (J ′ = 0) is a product of RVB states
on individual plaquettes, one expects that a quantum critical
point (QCP) separates the two at an intermediate J ′/J . This
expectation has been borne out by numerical calculations
[38,39] which find a QCP at J ′/J 
 0.55. A recent QMC
study of the plaquette Hubbard model [16] provides evidence
that this QCP survives at half-filling for lower values of
the interaction strength. Interestingly, the observed QCP at
t ′/t ≈ 0.5,0.6 for U/t = 4 and 8 resides in the vicinity of the
t ′/t value for which the product of the pairing vertex and the
uncorrelated pairing susceptibility is closest to −1, where a
superconducting instability would develop. This coincidence
joins a related behavior which we have noticed in our CORE
study [12] of the model away from half-filling. While no
transition to long-range AFM order is observed (or expected
beyond low hole doping levels), the maximal �pb does occur
at t ′/t , around which AFM correlations build up from the RVB
background. It is therefore possible that the enhanced magnetic
fluctuations generated by the inhomogeneity-induced QCP,

or its related crossover at finite doping, are the mediator
responsible for the enhanced pairing.

The presence of diagonal hopping turns the large-U limit
of the half-filled Hubbard model into the J1-J2 Heisenberg
model with AFM couplings satisfying J2/J1 = (td/t)2. The
frustration introduced by the next-nearest-neighbor AFM
coupling, J2, causes a sequence of quantum phase transitions
where Néel order is first lost at J2/J1 ≈ 0.4, in favor of a
nonmagnetic state that is either columnar or plaquette valence-
bond-solid, which then gives way to a collinear (striped)
magnetic order at J2/J1 ≈ 0.6 [40–42]. Variational cluster
approximations of the half-filled Hubbard model with positive
td/t point to a similar picture where a nonmagnetic phase in
the range 0.7 � td/t � 0.8 separates the magnetically ordered
states down to U/t ≈ 5, where it spreads out [43,44]. The
fact that these transitions occur at relatively large values of
td/t suggests that they do not play a role in establishing
the results presented by us or in cuprate superconductors.
Nevertheless, the extent of the nonmagnetic phase grows in
the plaquette J1-J2 Heisenberg model [45,46]. Reference [46]
predicts that for J2/J1 = 0.1 a transition to a Néel state takes
place once the intraplaquette couplings are about twice the
interplaquette ones. This would correspond to a transition in
the large-U limit of the half-filled plaquette Hubbard model
with |td/t | = 0.3 at t ′/t ≈ 0.7, not too far from where we
observe the pairing maximum in the system with td/t = 0.3
and U/t = 8. However, this observation does not explain why
the pairing maximum seems to appear at lower values of t ′/t

when td/t = −0.3. To answer this question and strengthen the
conjectured tie between pairing and a magnetic QCP further
study of the doped plaquette Hubbard model is called for.
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