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We develop a theory of collective modes in a model of strongly disordered s-wave superconductor with a
localization-induced pseudogap �P , that is much larger than superconducting gap �. Then we applied the
obtained results to the calculation of the ultrasound decay rate α(ω) at low-frequencies ω � kBT /h̄. We show
that at low temperatures T � Tc the magnitude of the decay rate α(ω) is controlled by the ratio of T/�, while
single-particle gap �P does enter the result for α(ω). Thus, we propose a new method to measure the collective
gap � in a situation when strong pseudogap is present.
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I. INTRODUCTION

Strongly disordered superconductors near quantum phase
transition into an insulator state became again an object of
great interest during the past decade, both on the experimental
side [1–9] and among theorists [10–13] (references given
above are certainly incomplete, due to a large number of
papers in the field). On the experimental side, revival of
interest in this subject comes about due to new methods
that became available. In particular, low-temperature scanning
tunneling spectroscopy makes it possible to study prop-
erties of superconducting state locally with a nanometer-
scale resolution, which allowed demonstration of [1,2] an
existence of a strong density-of-states (DoS) suppression at
temperatures much above the superconducting transition Tc.
In particular, amorphous InOx films demonstrate virtually
zero DoS at and around Fermi level at T � 1.5Tc. Such
a phenomenon was called pseudogap, in analogy to the
somewhat similar phenomenon known for under-doped high-
Tc oxide superconductors. Experimentally, clear distinction
between single-particle gap (pseudogap) �P and collective
superconducting gap � was made by means of Andreev
contact spectroscopy [14] of the same InOx films.

Theoretically, it became possible to understand [10]
the origin of a pseudogap as a result of an effective
(phonon-mediated) electron-electron attraction acting between
Anderson-localized electrons. A detailed semiquantitative the-
ory of superconductivity, starting from a BCS-like model with
localized single-electron states (near 3D Anderson localization
transition) was developed in Ref. [11], elaborating an approach
proposed originally in Ref. [15] and developed numerically in
Ref. [16]. Qualitatively similar results were later obtained [17–
19] by means of renormalization group methods developed
for 2D systems. Application of ideas developed in Ref. [11]
was found to be useful [20] to the understanding of unusual
scaling of superconducting density versus superconducting
gap, ρs ∝ �2, as reported in Ref. [21]. A microwave absorption
technique used in Ref. [21] may present an alternative to
Andreev spectroscopy [14,22] for measurement of the genuine
superconducting gap.

The present paper is devoted to development of a theory
of still another phenomenon that is directly related to the
collective superconducting gap in disordered materials at very

low temperatures near superconductor-insulator transition.
Namely, we consider attenuation rate α(ω,T ) of ultrasound
wave propagating in a superconducting material with a well-
developed pseudogap �P � �, at the temperature range T �
�/kB and at relatively low frequencies h̄ω � kBT (below the
Boltzmann’s constant kB is set to unity).

Studies of ultrasound attenuation in disordered metals have
long history. Classical mechanism of attenuation was analyzed
by Pippard [23] who demonstrated that scattering of electrons
by disorder potential leads to weakening of the direct electron-
phonon coupling, which suppresses α(ω). However, Pippard’s
mechanism is not the only mechanism of inelastic coupling
of phonons to the electronic subsystem. As an alternative, one
may look for an appropriate version of the Debye-Mandelstam-
Leontovich relaxational mechanism of dissipation [24], like
Landau-Khlatnikov damping in superconductors discussed, in
particular, in Ref. [25]. In Ref. [26] we have shown that ultra-
sound attenuation rate is intrinsically related to the electron-
phonon inelastic energy exchange, which becomes very ineffi-
cient at sub-Kelvin temperatures, leading to thermal instabili-
ties and electron overheating [27] in a “neighboring” insulat-
ing state of the same (or similar) materials [5,28,29]. We identi-
fied in Ref. [26] a few mechanisms leading to (possibly strong)
enhancement of the electron-phonon inelastic coupling due to
the presence of slowly diffusing modes that may exist in an
electronic liquid (particle density, magnetization density, etc.).

In Ref. [30] we have studied one more example of such
a diffusion-controlled enhancement, now due to diffusion of
thermal energy. This mechanism is quite universally present
in any disordered conductor, while its relative strength (with
respect to the standard local Pippard mechanism [23]) may
vary a lot. In particular, we have calculated [30] ultrasound
attenuation α(ω,T ) for both s-wave and d-wave BCS-type
superconducting states (as well as in normal doped Silicon); in
the s-wave case both Pippard’s and diffusion-controlled mech-
anisms provide an exponentially suppressed low-temperature
attenuation α(ω,T ) ∝ exp(−�/T ), differing in preexponen-
tial factors.

For a pseudogapped superconductor with large single-
particle gap �P , all local inelastic electron-phonon processes
are obviously suppressed ∝ exp(−�P /T ), while ultrasound
attenuation due to energy diffusion mode are expected to
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contain exponential factors ∝ exp(−�/T ), with smaller col-
lective gap �. Thus, it is natural to expect that low-temperature
behavior of α(ω,T ) will be controlled by this latter mechanism.
The purpose of the present paper is to calculate α(ω,T )
within the simplest model of a pseudogapped superconductor.
Specifically, we will study the attenuation rate of longitudinal
ultrasound, since we are interested in the effects related to a
collective superconducting mode, while transverse ultrasound
is coupled to single-electron modes, which are heavily gapped
by large �P . We emphasize, to avoid misintepretation, that
pseudogap discussed in the present paper (see Refs. [1–3]
for experimental papers and Refs. [10,11,13] for theory)
has almost nothing to do with its distant relative known in
underdoped copper-oxide superconductors.

The rest of the paper is organized as follows: in Sec. II
we formulate our basic model for a superconductor with a
large pseudogap and discuss its basic properties; Sec. III is
devoted to the derivation of the form of collective modes
present in the superconducting state; Sec. IV contains a
discussion of the role of long-range Coulomb interaction
between electron pairs. In Sec. V we introduce simplest model
of electron-phonon coupling relevant for the pseudogapped
superconductor. Section VI contains derivation of our main
results: ultrasonic attenuation rate α(ω,T ) due to coupling
between phonons and collective superconducting amplitude
(“Higgs”) mode is derived (contribution of the phase mode in
the Appendix). Finally, Sec. VII contains our conclusions.

II. MODEL HAMILTONIAN AND EFFECTIVE ACTION

According to the analysis developed in Ref. [11], pseudo-
gapped superconducting state can be realized in poor conduc-
tors where single-particle electron states are weakly localized
(localization length Lloc is larger than mean distance between
electrons which eventually participate in superconductivity),
and effective Cooper attraction is present between electrons.
For the last condition to be realized together with sufficient
disorder needed for localization, Coulomb repulsion between
conduction electrons should be strongly suppressed. This is the
reason to start from the simplest model formulated in terms
of “pseudospins” 1/2 introduced originally by Anderson in
Ref. [31]:

H [Si] = −2
N∑

i=1

ξiS
z
i − 1

2

N∑
i,j=1

Jij [S+
i S−

j + S−
i S+

j ]. (1)

Here, S+
i = Sx

i + iS
y

i and S−
i = Sx

i − iS
y

i are operators that
create (annihilate) a pair of electrons populating ith localized
eigenstate of the free-electron problem, while Sz

i + 1/2 counts
the number of these pairs. Each localized eigenstate can be
characterized by location of its maxima and by its eigenvalue
ξi . Correspondingly, 2ξi is a local energy of a Cooper pair
siting on a “site” i. For simplicity, we assume sites i to be
arranged into cubic lattice with an elementary cell of size a.
Hamiltonian Eq. (1) acts in the reduced Hilbert space, spanned
by localized electron pairs with zero total spin; single-electron
population of any localized state is excluded, due to high extra
energy �P � � associated with it (parity gap, see Ref. [32]).

Magnitudes of ξi are random with a distribution function
p(ξ ). We assume a box-shaped p(ξ ) = (2W )−1�(W − |ξ |)

with energies in the interval ξ ∈ (−W,W ), although any
distribution which is flat around Fermi energy position will
lead to the same physical results. Then effective density of
states (DoS) at the Fermi level is given by ν = 1/2Wa3.
The second term of Eq. (1) describes hopping of Cooper
pairs between the orbitals, which is equivalent to interac-
tion between pseudospins. In the long-wavelength limit this
(Fourier-transformed) interaction can be expanded in powers
of small momenta k,

J (k) = J [1 − R2k2 + O(k4)], (2)

where J ≡ J (0) ∼ Jij · R3 is the overall coupling strength and
R can be interpreted as a typical interaction range (i.e., Cooper
pair-hopping range). According to Ref. [11], we expect R to
be somewhat larger than Lloc. The Hamiltonian Eq. (1) does
not contain any remnants of long-range Coulomb repulsion
between electrons; this is an idealized model which we are
going to start from. We will discuss the role of (weak) Coulomb
repulsion in the end of the paper. The same Hamiltonian Eq. (1)
was employed in Ref. [33] to study quantum phase transition
(QPT) between superconducting state (in spin terms, it is the
state with nonzero average 〈Sx,y

i 〉) and insulating state. In the
present paper we will not consider specific features related
to this QPT; instead, we are interested in the properties of
collective excitations within well-developed superconducting
state. This is why we choose to work here with the model
of very large interaction (hopping) range R � a, and we
will employ further a mean-field approximation based on this
inequility. In this sense, our approach is similar to the usual
semiclassical theory of superconductivity.

On a technical side, we choose Fedotov-Popov represen-
tation [34] for spin- 1

2 operators, which is useful to construct
a diagrammatic approach and to study collective modes in
the ordered state. It is shown in Ref. [34] (see also some
extension of this approach in [35]) that exact representation
of the partition function for interacting spin systems can be
obtained by the representation of spin operators via a special
kind of fermionic operators:

Sα
i = (1/2)ψ†

i σ
αψi, (3)

where σα are three Pauli matrices and (anticommuting)
two-component spinor operators ψ(τ ), ψ†(τ ) obey the fol-
lowing boundary condition in the Matsubara imaginary time:
ψ(τ + β) = iψ(τ ), ψ†(τ + β) = −iψ†(τ ), where β = h̄/T .
Following Ref. [35], we will refer to such a modified fermions
as to “semions.”

Using representation Eq. (3), we rewrite the original
Hamiltonian in the form

H = −∑i ψ
+
i ξiσ

zψi − 1
4

∑
i,j Jij (ψ†

i σ
+ψi)(ψ

+
j σ−ψj ). (4)

To treat the interaction term, we introduce a complex order
parameter field � via Hubbard-Stratonovich transformation
and integrate out semions. That results in the effective
imaginary time action:

A[�] = −Tr
[
�∗

i J
−1
ij �j

]
+Tr ln

[
iεl + ξσ z + 1

2 (�∗σ+ + �σ−)
]
. (5)

Matsubara energies here are of semionic nature and read as
εl = 2πT (l + 1/4), while traces go over all spaces.
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The equilibrium order parameter is determined by the self-
consistency equation that follows from the variation of the
action, Eq. (5), over �:

1 = J

2a3

∫
p(ξ )dξ√
ξ 2 + �2

tanh

√
ξ 2 + �2

T
. (6)

This yields �0 = 2We−1/g for zero-temperature order param-
eter and Tc = 2.27We−1/g for transition temperature. Here,
g ≡ J

2Wa3 is a dimensionless coupling constant.

III. COLLECTIVE MODES: FLUCTUATIONS IN THE
ORDERED STATE.

In a superconducting phase, for temperatures T < Tc, order
parameter can be parametrized as

� = (1 + η)�0e
iϕ, (7)

revealing two collective modes: a massive (amplitude or
Anderson-Higgs) mode η and a massless Goldstone boson,
phase φ. Below we derive expressions for propagators of both
these modes.

The action Eq. (5) can be expanded in fluctuations around
the ground state �0. The quadratic Gaussian part describes
dynamics of collective modes. Once expanded, the action gives
the amplitude propagator,

L−1
η (�,k) = �2

a3
[−J−1(k) + �xx(�,k)], (8)

where �xx is a σx-σx semionic correlator (see Fig. 1),

�xx =
∑

l,ξ

∫
tr σxG(iεl)σxG(iεl+n). (9)

Here the sign
∑

l,ξ

∫ = T
∑

l

∫
(dξ/2W ) and G is a basic building

block of the diagrammatic technique, a semionic Green
function that can be represented as

G(iεl) = 1

iεl + E · σ
=
∑
±

(
1

2
± E · σ

2E

)
1

iεl ± E
, (10)

with a vector E = (�,0,ξ ), E =
√

�2 + ξ 2.
Calculation of the correlator gives

�xx =
∑

l,ξ

∫ [
�2

E2

(
1

iεl+n − E

1

iεl − E
+ (E → −E)

)

+ ξ 2

E2

(
1

iεl+n + E

1

iεl − E
+ (E → −E)

)]
, (11)

where in the low-temperature T � � limit the first term gives
a negligible exponentially small contribution, while the second

σx σx σy σy

FIG. 1. Self-energy of the collective superconducting mode
(amplitude is shown on the left, with blue external lines, and phase is
on the right, yellow lines). Black lines stand for semionic propagators.

term leads to

�xx =
∫

p(ξ )ξ 2dξ

E2
· E

E2 + (�n/2)2

=J−1 − W−1

√
4�2 + �2

n

|�n| arcsh

∣∣∣∣�n

2�

∣∣∣∣, (12)

where we made use of the self-consistency Eq. (6). Recalling
the gradient expansion Eq. (2) we have an imaginary time
amplitude propagator

L−1
η (i�n,k) = − ν

[
�2b

(
i�n

2�

)
+ v2k2

4

]
, (13)

where we had introduced a velocity,

v = g−1/2�R, (14)

and a function,

b(ix) =
√

1 + x2
arcsh|x|

|x| . (15)

The obtained propagator has a branch cut along (−∞, −
2�] ∪ [2�, + ∞) rather than a simple pole. The analytical
continuation to real frequencies i�n → � + i0 gives for a
retarded propagator

(
LR

η (�, Q)
)−1 = − ν

[
�2bR

(
� + i0

2�

)
+ v2k2

4

]
, (16)

with a function

bR(x) =
{√

1 − x2(arcsin x/x) |x| < 1√
1 − x−2

[
iπ
2 + arch x

] |x| > 1
. (17)

Note that the gap edge for amplitude excitations is located
at the energy 2�, unlike usual BCS superconductors where
energies of elementary fermionic excitations start from � (on
the other hand, minimal energy needed to split a Cooper pair
is always equal to 2� since two quasiparticles should be
produced).

For energies just above the gap bR � iπ
√

(x − 1)/2, so that

(
LR

η (�, Q)
)−1 = −ν�2

[
iπ

√
� − 2�

4�
+ v2k2

4�2

]

× (� > 2�, |� − 2�| � �), (18)

while for large energies bR � iπ/2 + ln 2x,

(
LR

η (�, Q)
)−1 = −ν�2

[
iπ

2
+ ln

�

�
+ v2k2

4�2

]
× (� � 2�). (19)

Finally, for small energies we have

(
LR

η (�, Q)
)−1 = −ν�2

[
1 − �2

12�2
+ v2k2

4�2

]
× (|�| � 2�), (20)

implying a zero-temperature coherence length ξ = v/2�.
Meanwhile, phase mode is gapless and relevant energies

are well below the gap �. In other words we can safely
expand the propagator in the frequency �n. Performing
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a straightforward calculation and a subsequent analytical
continuation we eventually have(

LR
φ (�,k)

)−1 = −ν

4

[−�2 + v2k2]. (21)

Expressions derived in this section for the propagator Lη

will be used below in Sec. V for the calculations of the
phonon decay rate. In the next section we show that Coulomb
interaction gaps out the phase mode by introducing mass term
in the propagator Lφ . In most real-life scenarios the induced
mass is large enough to render the phase mode irrelevant.

IV. ROLE OF COULOMB INTERACTION

In this section we consider modifications caused by the
long-range Coulomb interaction that was neglected in the
previous sections. The major effect of Coulomb interaction
upon the low-temperature symmetry-broken state is formation
of the spectral gap �φ for the phase mode by the Anderson-
Higgs mechanism. We will see that �φ is usually large in
comparison with the amplitude gap �, thus the actual threshold
for all inelastic processes at T = 0 is determined by �.

We consider effectively three-dimensional problem and
employ the simplest way to introduce Coulomb interaction
between electron pairs:

H [Si] = −2
N∑

i=1

(ξi + �i)S
z
i − 1

2

N∑
i,j=1

Jij

[
S−

i S+
j + S+

i S−
j

]

+
∑
i<j

�i

(
4πe2

ε|r i − rj |
)−1

�j, (22)

where in the last term a matrix inversion is implied. Repeating
the same steps used above to derive Eq. (5) from Eq. (1), we

come now to the action of the following form:

A[�] = −Tr
[
�∗

i J
−1
ij �j

]
+Tr ln

[
iεl + (ξ + �)σ z + 1

2
(�σ− + �∗σ+)

]

−Tr

[
�i

(
4πe2

ε|r i − rj |
)−1

�j

]
. (23)

In the approximation of constant DoS, phase and amplitude
modes are decoupled, and the whole effect of Coulomb
interaction is to provide a mass to a previously gapless phase
mode due to mixing between � and dφ/dt . The corresponding
part of the action reads

A[φ,�] = −ν�2Tr

[(
−v2k2

4�2
+ �yy

)
φ2 + 2�yzφ ·

(
�

�

)

+(�zz + ν−1V −1(k)
) ·
(

�

�

)2]
, (24)

where V (q) = 4πe2/εq2 is Coulomb propagator and semionic
polarization functions �αβ , with α,β ∈ (y,z) are defined
similar to Eq. (9); calculation of the trace over semionic modes
leads to

�yy(x) = − x√
1 + x2

arcsh x, (25)

�yz(x) = i
1√

1 + x2
arcsh x, (26)

�zz(x) = 1

x
√

1 + x2
arcsh x, (27)

where x = �n/2�. Next, we integrate out electric potential � and obtain the phase-only action in the form

Aeff[φ] = −ν�2
∫

ξ

Tr

[
φ

(
−v2k2

4�2
+ �yy − �2

yz

�zz + ν−1V −1

)
φ

]
. (28)

Now we substitute expressions for �αβ into Eq. (28) and obtain inverse phase propagator in the form

L−1
φ (i�n) = νv2k2

4

⎡
⎢⎣1 + εW�2

n

4πe2v2

⎛
⎝1 +

(
εWk2

4πe2

) �n

2�

√
1 + (

�n

2�

)2

arcsh �n

2�

⎞
⎠

−1⎤⎥⎦. (29)

This expression should be analytically continued to the real energy axis, i�n → � + i0, which leads to

(
LR

φ (�,k)
)−1 = νv2k2

4
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − εW�2

4πe2v2

(
1 +

(
εWk2

4πe2

) �
2�

√
1−( �

2� )2

arcsin �
2�

)−1

� < 2�

1 − εW�2

4πe2v2

⎛
⎝1 +

(
εWk2

4πe2

) �
2�

√
( �

2� )2−1

ln

[
�

2�
+
√

( �
2� )2−1

]
−i π

2

⎞
⎠−1

� � 2�

. (30)

Propagator of the phase mode Eq. (30) possesses (at k = 0)
two types of singularities in the complex plane of �: a branch
cut along (−∞, − 2�] ∪ [2�, + ∞) and a simple pole at the
plasmon frequency,

�φ =
√

4πe2νv2/ε. (31)

At small momenta k the pole Eq. (31) shifts according to

�(k) =
√

�2
φ + v2

φ∗k2 and vφ∗ = v × �φ

2�
(ln �φ

�
)
−1/2

.

The key point for further analysis is the relation between
amplitude gap � and plasmon gap �φ . For the phase mode
to be well-defined at k > 0, its energy gap �φ should be
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below 2�; otherwise, an imaginary part appears in the inverse
propagator Eq. (30) at the mass shell of the massive phase
mode. In such a case, actual threshold for all inelastic processes
is given by 2� and phase mode itself is irrelevant.

Estimates below show that usually �φ � 2� indeed.
Instead of using model-dependent relation Eq. (31), we rewrite
�φ in terms of observables:

�2
φ = 4πe2

ε

h̄2ρs

e2
, (32)

where ρs is the superfluid density defined via London relation
for supercurrent, j = −ρs A/c. Next, we use the estimate [20]
for superfluid density of pseudogapped superconductor, ρs ∼
ν0e

2R2�2/h̄2, to obtain

�2
φ

4�2
≈ πe2

ε
ν0R

2. (33)

Although the model used in Ref. [20] is different from our
present one (here we employ a very large interaction range R

to use mean-field approximation, while in Ref. [20] hopping of
pairs via Mott-type pair resonances was assumed), the results
for the ratio �φ/� are similar in both models.

To get some feeling of relevant numbers, we use parameters
known for amorphous superconducting InOx : for the density
of states we take [36] an estimate ν0 ∼ 2 · 1033erg−1cm−3; for
the estimate of effective hopping range R we can use the value
of superconducting coherence length ξ0 ≈ 4–5 nm extracted
from Hc2 measurements in less disordered superconducting
InOx in Ref. [37]. Combining all together, we find ≈ 500/ε

for the right-hand side of Eq.(33). Unfortunately, effective
dielectric constant of InOx in the insulating phase was not yet
measured.

Another approach to the problem one can try is a purely
theoretical one: consider non-interacting Anderson insulator
with a localization length Lloc and find its dielectric response at
T = 0. Such a program was realized recently [38] numerically;
for the 3D case it results in ε ≈ 3e2ν0L

2
loc. Substituting this

estimate into Eq. (33), one finds surprisingly simple and
universal result: �φ/2� ≈ R/Lloc > 1. Thus, we conclude
that most probably plasmon gap is too large for the phase
mode to be relevant for ultrasound decay.

However, the above conclusion can be incorrect for some
special highly polarizable materials with a very high intrinsic
dielectric constant, like SrTiO3 with its ε > 104. Very light
doping of SrTiO3 makes it superconducting [39,40]. Such
a superconductor may have unusually small phason gap
�φ � �; in this case the contribution of the phase mode may
dominate and we consider this possibility in the Appendix.

V. ELECTRON-PHONON INTERACTION

Interaction between the amplitude mode and longitudinal
phonons can be introduced via modulations of the Cooper pair-
hopping amplitude (i.e., pseudospin interaction constant) as

He-ph[Si] = κ

N∑
i,j=1

(Jij divu)[S+
i S−

j + S−
i S+

j ], (34)

with a coupling constant κ that is normally of order of unity,
κ ∼ 1. The choice of such a model for e-ph interaction in

the effective Hamiltonian makes sense since the pair-hopping
term in the Hamiltonian originates from the original
phonon-mediated Cooper attraction between electrons.

In general, acoustic wave distorts disorder potential
∑

i ξiS
z
i

generating electron-phonon interaction terms with a vertex of a
large magnitude ∼W [41–43]. However, such terms do not lead
to any actual electron-phonon coupling since strong Coulomb
interaction maintains electroneutrality and forces electrons to
follow the motion of the lattice. That results in suppression of
the electron-phonon interaction terms.

To avoid complications related to an explicit account
for electroneutrality, we adopt, following Refs. [41,43], the
comoving reference frame approach when one considers
the reference frame rigidly bound to the lattice. In the
reference frame both ions and impurities are stationary and
electron-phonon interaction is encoded into modifications of
dispersion of electron modes. In weakly disordered conductors
this reduces to modification of single-electron dispersion
Eedge + p2/2m, where Eedge is the edge of the conduction and
valence band. In weakly doped semiconductors, the largest
coupling constant comes from shifts of this band edge under
the lattice strain ∝ Eedgediv u. This vertex is of scalar nature
and is screened by Coulomb interaction so that in metals
(or strongly doped semiconductors with short Debye screen-
ing length) it becomes negligible. This is why subleading
momentum-dependent terms have to be included in disordered
conductors with large electron densities, eventually yielding
the effective vertex of the type i(pαvβ − [pF vF /d]δαβ)uαqβ .
Notice that after averaging over directions of momentum
such a vertex disappears, obeying electroneutrality condition
imposed by Coulomb interaction. Following the same idea,
we describe electron-phonon interaction by modification of
coupling between pseudospins; see Eq. (34).

In a pseudogapped system electric potential is coupled
linearly to electron density, which is ∝ Sz; see Eq. (22). On the
contrary, the interaction Eq. (34) corresponds to a nonscalar
vertex, coupling phonon to S+,S− terms that are orthogonal to
Sz, so that there is no scalar part to be eliminated by Coulomb
interaction. This is why e-ph interaction Eq. (34) is unaffected
by Coulomb interaction.

In a close parallel with electron-phonon interaction in a
weakly disordered superconductor, the effect of an acoustic
wave within adiabatic approximation in the limit ω,q → 0
is reduced to modulations of the dimensionless interaction
constant,

g → g(1 − κ divu). (35)

Consecutively, changes of the coupling constant g are most
clearly revealed by the change in the ground state �0 due to
the exponential sensitivity of the former,

� = 2We−1/g → �

(
1 + κ

g
divu

)
. (36)

Eventually, this gives electron-phonon interaction,

Ae-ph[�,u] = −Tr
[
�ηη

2δ�
]
, (37)

where δ� = (κ/g)�divu is the change of the order parameter
under the lattice strain. In view of the conclusion of the
previous section, we focus only on the amplitude mode, the
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FIG. 2. Interaction vertex of the type phonon-collective-
superconducting-mode. This vertex describes the process of conver-
sion of a phonon into two amplitude modes. Black lines in the triangle
stand for semionic propagators, red line stands for the phonon and
blue line for the amplitude mode.

lowest energy collective mode. The vertex �η is defined by
inverse propagator via Ward-like identity (see Fig. 2):

�η = δL−1
η

δ�
. (38)

Using explicit forms of the amplitude Eq. (13) and phase
Eq. (21) propagators, one finds the part of action describing
electron-phonon interaction:

Ae-ph[η,u] = κ∗
W

Tr

[
∂(�2b)

∂ ln �
η2 + v2

4
(∇η)2

]
divu, (39)

where we had introduced an “enhanced” coupling constant
κ∗ = κ/g and b ≡ b(i�n/2�) is a function given by Eq. (15).

VI. ULTRASONIC ATTENUATION

Ultrasonic attenuation in disordered conductors is usually
dominated by electron quasiparticles and proportional to
single-particle DoS. The contribution of collective excitations
in a typical setup is small either due to strong Coulomb
interaction or by symmetry arguments. For example, mag-
netic field-breaking time-reversal symmetry may activate
contribution of spin density fluctuations [26]. Pseudogapped
superconductor is yet another example where collective mode
contribution to ultrasonic attenuation α dominates over the
single-particle contribution due to the presence of a strong gap
�P (pseudogap) in the single-particle spectrum that exceeds
superconducting gap �:

αcollective ∝ e−2�/T � αsingle-particle ∝ e−�P /T . (40)

This guarantees that collective mode dominates at sufficiently
low temperatures.

The ultrasonic attenuation α can be conveniently expressed
via an acoustic Q factor,

Q−1 = α

ω
= 1

ρmω2
Im �A

ph, (41)

where �A
ph is an advanced phonon self-energy defined on

real frequencies. Phonon spectrum is assumed to be acoustic,
ω(q) = sq, with sound velocity s � v, i.e., the phonon
propagator reads as

DA(ω,q) = 1

ρm[(ω − i0)2 − s2q2] − �A
ph

. (42)

FIG. 3. Ultrasonic attenuation due to collective superconducting
mode. This diagram shows contribution of the amplitude mode, when
a phonon (red line) falls apart into two amplitude modes (blue lines).

Since ultrasonic frequency ω � � is much smaller than
the superconducting gap, acoustic phonon is unable to create
a pair of collective excitations. It can, however, interact
with already existing thermal excitations. Thus, ultrasonic
attenuation is given by processes in which a thermal amplitude
mode excitation with energy h̄� (phase modes are gapped by
Coulomb interaction) absorbs an acoustic phonon with energy
h̄ω and scatters into state with energy h̄(� + ω). This process
is described by the self energy (see Fig. 3),

�ph-φ(iωn,q) =
∑∫

m,k
|�φ(k,q)|2

×Lφ(i�m,k)Lφ(i�m+n,k + q), (43)

where the electron phonon interaction vertex �η follows from
Eq. (39).

The contribution of amplitude mode η to the phonon decay
rate is due to rare (at T � �) collective excitation with
energies close to the threshold � = 2�. In this energy region
the electron-phonon interaction vertex is singular:

�η(i�k) � iκ∗νq
�2b

(
i�k

2�

)
1 + (�k/2�)2

, (44)

where � stands for the energy of collective mode and phonon
energy ω → 0. This singularity comes from the shift of the
energy gap position 2� induced by phonons via the lattice
strain. For real frequencies close to the gap, we obtain for the
absolute square of this vertex:

|�η(�)|2 � π2

4
κ2

∗ν2q2 �5

|� − 2�| . (45)

If phonon energy ω becomes nonnegligible, the singularity in
the vertex � is washed out as

1

� − 2�
→ 1√

(� − 2�)(� + ω − 2�)
. (46)

Analytical continuation is performed in a standard fashion
and gives for the imaginary part of phonon self-energy

Im �ph-η(ω,q) =
∫

�, Q
|�η(�,ω)|2[B(� + ω) − B(�)]

× Im LR
η (�,k) Im LR

η (� + ω,k + q),

(47)

where B(x) = coth x/2T and the propagator of the amplitude
mode is given by Eq. (18); in particular, its imaginary part is
equal to

Im LR
η (�,k) = 4

ν

γ�2

�4γ 2 + v4k4
,

(γ = 2π
√

(� − 2�)/�), (48)

where it is assumed that 0 < � − 2� � �.

064523-6



COLLECTIVE MODES AND ULTRASONIC ATTENUATION . . . PHYSICAL REVIEW B 96, 064523 (2017)

The integral in Eq. (47) has an infrared divergence that is
regularized by phonon frequency ω, the leading contribution
comes mainly from energies (� − 2�) ∼ ω. Finally, for the
amplitude contribution to the inverse quality factor, we find

Q−1
ph−η =64

√
π

3
κ2

∗
�4

ρms2v3

(
�

T

)(ω

�

)3/4
e−2�/T . (49)

The result Eq. (49) can be compared to the similar formula
from Ref. [30], with ultrasound attenuation in a usual s-wave
superconductor leading to Q−1 ∝ exp(−�/T ). The difference
by factor 2 in the exponent is important, and it is due to different
statistical weights of excitations in two models: while in BCS
theory independent electron and hole quasiparticles appear due
to breaking of any Cooper pair, a pseudospin superconductor
supports single-particle excitations with the lowest energy 2�.

For practical purpose, it is useful to rewrite Eq. (49) in
terms of quantities that are more directly measurable. Namely,
we employ Eq. (14), which expresses velocity v in terms of
�, and also note the relation between ξ 2

0 = R2/g between
interaction range R and low-temperature coherence length ξ0;
the result reads

Q−1
ph−η ≈ 40κ2

∗
�

ρmξ 3
0 s2

(
�

T

)(ω

�

)3/4
e−2�/T , (50)

where κ∗ ≡ κ/g = g−1d ln �/d ln n is moderately large, due
to smallness of g ≈ 1/ ln(EF /Tc). For the estimate of the
material-dependent factor �/ρmξ 3

0 s2, we use the parameters
of the Indium Oxide [44]: ρm ≈ 6 g/cm3, s ≈ 3 × 105 cm/s.
With superconducting gap � ≈ 3 × 10−16 erg and coherence
length [37] ξ0 ≈ 4 × 10−7 cm, we come to the estimate (using
also κ∗ = 10):

Q−1
ph−η ≈ 4 × 10−5

(
�

T

)(ω

�

)3/4
e−2�/T . (51)

With ultrasound frequency f = ω/2π ∼ 10 GHz and
temperatures a few times below �, the overall contribution
of superconducting electrons to the inverse quality factor of
ultrasound is expected to be somewhat below 10−6.

VII. CONCLUSIONS

We have shown in this paper that phonon decay rate in
pseudogapped superconductor at low temperatures T � Tc is
determined by its collective modes. The amplitude mode has a
threshold energy 2� < �P , so its contribution to the decay of
low-frequency phonons is given by Eq. (49). It is proportional
to exp(−2�/T ) and dominates over “usual” single-particle
contribution which is ∝ exp(−�P /T ). Thus measurements of
ultrasound attenuation rate may provide an additional way to
determine the value of the collective gap.

If Coulomb interaction between conduction electrons is
very strongly suppressed due to high intrinsic dielectric con-
stant ε � 103, an additional contribution from the phase mode
may be present, see discussion in the Sec. IV and the Appendix.
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APPENDIX: ULTRASONIC ATTENUATION DUE TO THE
PHASE MODE

As we discussed in the Sec. IV of the main text, Coulomb
interaction freezes out phase mode for most realistic scenarios.
However, there are some rare exceptions (such as SrTiO3)
where the phase mode may remain relevant and dominate
ultrasonic attenuation. In this appendix, we consider the case
of very weak Coulomb interaction when phason gap can be
neglected �φ ≈ 0.

Similar to the amplitude mode, the ultrasonic attenuation
due to interaction with the phase mode is given by processes
in which acoustic phonon falls apart into two phasons,

�ph-φ(iωn,q) =
∑∫

m,k
|�φ(k,q)|2

×Lφ(i�m,k)Lφ(i�m+n,k + q), (A1)

where the electron phonon interaction vertex �φ follows from
Ward-like identity similar to Eq. (38),

�φ = δL−1
φ

δ�
. (A2)

Using explicit expression for the inverse propagator L−1
φ ,

�φ(k,q) = iq
κ∗νv2

4
[k · (k + q)]. (A3)

The main difference with the case of the amplitude mode is
the absence of the “mass” term b(i�k); the contribution of the
phase mode will be heavily dominated by infrared region with
momenta and frequencies of the phason mode of the order of q,
ω, so we had recovered phonon momentum q in the expression
for the vertex.

Analytical continuation is performed in a standard fashion
and gives for the imaginary part of phonon self-energy

Im �ph-φ(ω,q) = κ2
∗ν2v4

8
q2
∫

�, Q
[k · (k + q)]2

×[B(� + ω) − B(�)]

× Im LR
φ (�,k) Im LR

φ (� + ω,k + q),

(A4)

with B(x) = coth x/2T . Since

Im LR
φ (�,k) = 2π

νvk
[δ(� − vk) − δ(� + vk)], (A5)

as it follows from Eq. (21), we eventually get

Q−1
ph−φ = 2π4κ2

∗
15

T 4

ρmsv4
, (A6)

where we had assumed that ω(v/s) � T . The result can also
be rewritten as

Q−1
ph−φ = 2π4

15
κ2
(a0

R

)4
(

T

�

)4

, (A7)

where a0 = (ρms)−1/4 by order of magnitude is equal to
a material lattice constant and R is a typical interaction
radius.

Comparing the “phason” contribution Eqs. (A6) and (A7)
with the contribution of the amplitude mode Eq. (49) from the
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main text we note that phase and amplitude mechanisms lead
to completely different behaviors in function of ultrasound
frequency ω and temperature T . In particular, amplitude con-
tribution scales as ω3/4 while the phase one is ω-independent.
The ratio of both contributions is given by

Q−1
ph−η

Q−1
ph−φ

= 480

π7/2︸︷︷︸
=8.73

(v

s

)(�

T

)5(ω

�

)3/4
e−2�/T . (A8)

Asymptotically, at T/� → 0, phase contribution domi-
nates, although there is a range of relatively small T/�,
where the main contribution comes from the amplitude
mode. Different dependencies of the amplitude and phase
contributions to the decay rate on frequency and temperature
make it possible to identify both contributions separately. In
any case, the result Eq. (A8) is relevant only for rare systems
with a weak phason gap �φ � �, such as a lightly doped
SrTiO3.
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