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Spectral linewidth of parallel Josephson junction array with intermediate-to-large damping
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Spectral characteristics of THz generation in a parallel array of inductively coupled Josephson junctions with
intermediate-to-large damping in the presence of thermal noise have been studied numerically. The influence of
the number of junctions and coupling between them on the spectral linewidth has been investigated. We show
that known theoretical formulas for radiation linewidth of a single Josephson junction, divided by the number
of junctions in the chain, gives good agreement with numerical results for overdamped chains, while for chains
with intermediate damping a factor of 1/2 has to be introduced into the formula in order to describe the linewidth
on the I-V curve steps corresponding to lag-synchronization (soliton) regimes.
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I. INTRODUCTION

One of the long-standing problems is the creation of THz-
radiation generators that satisfy to a certain set of parameters,
e.g., a long lifetime, compact size, low input voltage, and
magnetic field demands, which are required for usage in gas
component analysis on both industrial and academic scale.
These requirements are crucial for various space missions
(e.g., “Millimetron” [1]) due to payload weight and energy
consumption restrictions. Josephson junctions could serve as
a prospective basis of narrow linewidth as well as broadband
generators (for example, flux-flow oscillators for use in
noisy nonstationary spectrometers [2,3]) that correspond to
such specifications. The Josephson junctions (JJs) are also
used in digital electronics and quantum computing [4–9].
In the last years in long JJs various nontrivial fluctuational
characteristics and effects, which can radically change the
soliton propagations regimes, are studied, such as escape
times [10–17], spectral linewidths [18–22], probabilities of
spontaneous soliton formation due to Kibble-Zurek scenario
[23], and noise suppression due to relativistic propagation
of solitons [24,25]. However, the spectral characteristics of
discrete Josephson arrays are weakly studied; mostly the
processes of phase and lag synchronization (various soliton
regimes) of JJ arrays [26–33] were investigated without
account of noise.

Throughout this paper we will focus on one-dimensional
parallel arrays (chains) of Josephson junctions and their spec-
tral characteristics in the presence of thermal noise to find the
parameter ranges suitable for construction of narrow-linewidth
generators. Similar research has been performed, e.g., in
Refs. [34,35] for overdamped chains and Refs. [18,21] for long
underdamped Josephson junctions. We will be particularly
interested in the chains with intermediate damping, which
have been actually unexplored before numerically, although
naturally appear for junctions based on shunted Nb junctions,
as well as on high temperature superconductors, such as YBCO
thin films [36–39]; see experimental results with such chains
in Refs. [40,41]. Another important application of junctions
with intermediate damping are JJ arrays that are used as basic
elements and clock generators in rapid single flux quantum
logic devices [4], however, in this case mostly thermal jitter

rather than spectral characteristics has been studied [42–51].
Overdamped chains will also be taken into account in order to
compare with the results of Refs. [34,35].

II. ANALYTICAL AND NUMERICAL MODELS

During our investigations we shall use the McCumber and
Stewart’s resistively and capacitively shunted junction (RCSJ)
model for single JJ. According to this model, the time evolution
of the wave function’s phase difference ϕ across the junction
(also known as the “Josephson phase”) is governed by the
following equation [52]:

ω−2
p ϕ̈ + ω−1

c ϕ̇ + sin ϕ = i + if (t), (1)

where dots denote derivation with respect to t, ωc is the char-
acteristic frequency of the junction, ωp is the junction plasma
frequency, and i and if are the net current I flowing through
the junction and the fluctuation current If , respectively, both
normalized by the junction critical current Ic. Equation (1)
can be written down in other forms through introduction of
dimensionless time t̃ :

ϕ′′ + αϕ′ + sin ϕ = i + if (t̃) for t̃ = ωpt (2a)

βϕ′′ + ϕ′ + sin ϕ = i + if (t̃) for t̃ = ωct, (2b)

where primes denote derivation with respect to t̃ , α = ωp/ωc

is the damping, and β = α−2. We will use the form (2a)
throughout the rest of this paper.

The RCSJ model of a parallel chain of N inductively
coupled Josephson junctions (see Fig. 1) represents the well-
known Frenkel-Kontorova model [53,54] that has a broad
variety of mechanical, chemical, biological, and physical ap-
plications including JJs-based digital circuits [4] and ballistic
detectors [25,55]. To derive the corresponding equations one
needs to consider the kth elementary cell composed by the kth
and k + 1th junctions. Applying Kirchhoff’s laws to the cell
yields the following equations:

Vk − Vk+1 − LkİLk = 0, IL,k−1 + Iek = Ik + ILk, (3)

where Vk is the voltage drop across the kth junction, Ik is
the net current flowing through the kth junction, Iek is the
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FIG. 1. A parallel chain of N inductively coupled Josephson
junctions, with junctions shown as crosses.

respective external injection current, and ILk is the mesh (or
loop) current through coupling inductor that gives rise to the
self-induced magnetic field. The Josephson phase ϕk of the kth
junction and the voltage Vk across it are related through the
fundamental phase-voltage ratio:

ϕ̇k = 2π

�0
Vk, (4)

where �0 = πh̄/e is the magnetic flux quantum. Substituting
(4) into (3), we derive:

Ik = Iek + �0

2π

[
ϕk+1 − ϕk

Lk

− ϕk − ϕk−1

Lk−1

]
. (5)

In case of a uniform chain Lk = L0, Iek = I for all k =
1 . . . N ; inserting Ik from (5) into (2a) gives:

ϕ′′
k + αϕ′

k + sin ϕk = i + ϕk+1 − 2ϕk + ϕk−1

l
+ if k(t̃), (6)

where i = I/Ic—dimensionless injection current, l =
2πIcL0/�0—dimensionless inductance. This system of N

differential equations (6) describes the chain of N parallel
Josephson junctions with inductive coupling. We will only
consider the situation with the reflective boundary conditions
(i.e., when the side junctions are poorly matched and external
magnetic field is absent), so the first and the last junctions
in the chain are connected to only one neighbor [second and
(N − 1)th], respectively, so in the first and in the last equations
only (ϕ2 − ϕ1)/l and (−ϕN + ϕN−1)/l are present in the right
hand side of Eq. (6), respectively.

We will study the radiation linewidth of this chain in the
presence of thermal fluctuations (Gaussian white noise) if k:
〈if k(t̃)if n(t̃ + τ )〉 = 2αγ δ(τ )δkn, uniform across all junctions.
In the correlation function, α has arisen due to the introduction
of dimensionless time t̃ = ωpt , see (2a). Parameter γ defines
the intensity of the noise and can be expressed as [52]
γ = (2e/h̄)kBT /Ic, where h̄ is the Planck’s constant, e is
the electron charge, kB is Boltzmann’s constant, and T

is the temperature of the array. In the following, we will
mostly consider the value of noise intensity γ = 0.01, roughly
corresponding to 6–4 K temperature at typical technological
parameters, except for the last figure where γ = 0.002 is
taken to enlarge single soliton step. As we have checked, the
linewidth decreases linearly with further decrease of noise.
We have considered only thermal (natural) broadband noise,
while technical (external interference) narrowband noises are
neglected since in practice they can always be suppressed
by proper grounding and filtering. It should be noted that in
practice the dominating effect of technical noises can easily

FIG. 2. Typical I-V curves of parallel JJ chains obtained in
the RCSJ model (6) for varying damping parameters (a) α = 9.0
(overdamped chain), (b) α = 0.5 (intermediate damping), (c) α =
0.05 (underdamped chain), N = 15, l = 0.5, γ = 0. Red dashed
curves denote forward path of the I-V curve (increasing i from i = 0);
blue solid curves denote return path of the I-V curve (decreasing i

from i > 1).

be distinguished by measuring the spectra of the signal, since
in this case the shape of spectral line will be Gaussian rather
than Lorentzian for natural noises (see below).

The equation set (6) has been numerically integrated
using both the Heun’s method of integrating stochastic ODEs
[56] and the implicit scheme (which is a straightforward
generalization of a scheme listed in Ref. [57] with account of
noise and was tested, e.g., in Refs. [10,11]), both demonstrating
equivalent (in a statistical sense) results. Next, the power
spectral density S(ω) = 〈 1

τ
| ∫ τ

0 vk(t̃)eiωt̃ dt̃ |2〉 was computed
[where vk(t̃) = ϕ′(t̃) is a momentarily voltage at the kth
junction and τ is the time span of the calculated numerical
solution] and averaged over a certain ensemble of runs. Here,
for a single junction only v1(t̃) is considered, while for a
junction chain the voltage for the first or the N th junction
is taken. After that, the frequency ω0 and the linewidth �ω

of the main S(ω) peak were determined. To compute the
spectral density, the standard fast Fourier transform method
has been used with a number of time steps more than 223

and rather long time span τ = 4 × 105 to resolve fine spectral
structure. Here, the typical time step for implicit scheme was
of order 0.05, while for Heun scheme of order 0.01. The
mean dimensionless voltage V across the chain has been
calculated as V = ∑N

k=1 [ϕk(t̃ + T0) − ϕk(t̃)]/NT0, where the
time averaging period T0 has been chosen to be much greater
than the characteristic Josephson voltage oscillation period
2π/V . Current-voltage (I-V) curves are defined as i(V ) (see
Fig. 2 for an overview of I-V curves for various damping
α). Lowering the parameter i from a value on the resistive
branch of the I-V curve of the chain (i.e., i > 1) up to the
superconductive branch (i < 1, depends on damping), we
have computed the spectral linewidth �ω (full width at half
maximum) as a function of i.

An example of spectral density S(ω) for a single over-
damped Josephson junction is presented in Fig. 3. One can see
the main peak at the frequency ω0 = ωJ and higher harmonics
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FIG. 3. Ensemble-averaged power spectral density S(ω) for a
single overdamped Josephson junction (α = 10, i = 2.0, γ = 0.01)
with the main peak at fundamental Josephson frequency ωJ (equal
to dimensionless junction voltage V ) and harmonics at multiples of
ωJ . Red curve—numerical results corresponding to model (2a), blue
dashed curve—Lorentzian fit.

at 2ωJ and 3ωJ , respectively. We note that finite (nonzero)
linewidth of harmonics appears due to diffusion of phase [58]
and is proportional to the noise intensity. If the noise, leading to
the phase diffusion, is narrowband (e.g., technical fluctuations
and electromagnetic interference), then the shape of spectral
line is Gaussian [58]. If, as in our case, the noise is broadband
(thermal or shot fluctuations) then the form of the spectral
line is Lorentzian [58] (see the dashed curve in Fig. 3). The
analysis of the numerical results will be based upon existing
theoretical formulas for a single junction. For a single JJ with
arbitrary damping subjected to a broadband noise there exists
an analytical expression [52,59] for the spectral linewidth �ω:

�ω = 2αγ r2
d , (7)

where rd = dV/di is the differential resistance. In our nu-
merical model, rd was determined explicitly from I-V curves.
A similar expression for �ω may be found for overdamped
junctions [52]:

�ω = 2αγ r2
d

[
1 + 1

2i2

]
, (for α � 1) (8)

which, through analytical derivation of rd = i/α
√

i2 − 1 for
overdamped junctions [52], may be transformed into the form:

�ω = 2γ

α

i2 + 0.5

i2 − 1
, (for α � 1). (9)

The additional term in formula (8), as opposed to (7),
explicitly describes the effect of parametric broadening of the
linewidth [58]. This additional broadening occurs due to the
interaction of second and higher-order JJ harmonics with the
wideband thermal noise and subsequent down-conversion of
these contributions to lower frequencies, where they add up
with the main harmonic contribution. In Josephson junctions
this effect naturally appears at bias current I just above
the critical current Ic (i.e., where the magnitude of higher
harmonics is high). Surprisingly, despite the approximate
nature of Likharev’s formula (8), it shows perfect agreement

FIG. 4. Dependency of the spectral linewidth �ω on bias current
i for a single overdamped Josephson junction; γ = 0.01, α = 5.0.
Red curve with circles—numerical simulation of (2a), blue curve—
formula (8).

with the results of direct numerical simulations even for bias
currents as small as i = 1.1 (Fig. 4) in the limit of small noise
intensity γ .

It has been shown in Refs. [26,34] that parallel chains of
N Josephson junctions exhibit a spectral linewidth �ω (to not
be confused with a resonance curve) around N times narrower
than that of a single junction, which is due to stronger coupling
between junctions, since a few adjacent elements behave as a
single element due to mutual synchronization, that decreases
the effect of noise. Thus, we have investigated the following
fits for �ω(i):

�ω = 2αγ r2
d

N
, (for α � 1) (10)

�ω = 2αγ r2
d

N

[
1 + 1

2i2

]
, (for α � 1). (11)

We have also studied the dependency of �ω on l and N

for values of i � 1.5, i.e., at the parts of the I-V curves where
V (i) is linear (Fig. 2) and �ω is almost constant, according
to the following procedure. For each set with various l (or N ,
respectively) we have calculated �ω(i,l,N ) as usual for i =
2.4 to 2.5 and then averaged for this i range, which allowed us
to find the desired �ω(l,N ). The differential resistance rd has
been averaged as well for comparison of �ω(l,N ) with (10).

III. RESULTS

A. Large damping (α � 1)

Results of calculation for damping α = 3.0 are presented
in Figs. 5–7 as �ω(i), V (i), and ωpeak(i) graphs. One can
see that the dependence of linewidth on bias current is in
good agreement with both theoretical formulas (10), (11) in
the most bias current range except vicinity of unity. Here the
effect of parametric linewidth broadening (11) leads to better
agreement with simulations for a larger number of junctions in
the chain. The generation frequency in dimensionless units of
ωp at any point of the I-V curve is equal to the dimensionless
voltage, as expected for the full-synchronization generation
regime observed in overdamped chains.
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FIG. 5. (a) The linewidth vs bias current i and (b) the generation
frequency and voltage for N = 5, γ = 0.01, α = 3.0, l = 0.5.

To further check the validity of formula (10), we calculated
the dependency �ω(l) on the resistive branch of the I-V curve
according to the procedure described in the previous section.
The results are presented in Fig. 8. We have considered the
most interesting practical range of dimensionless inductance,
corresponding to the distance between JJs �x = √

l from 0.3
to 100, where the length l is normalized to the Josephson length
λJ . For small values of the dimensionless inductance l = 0.1 to
1 the linewidth of the main peak is almost independent of l and
corresponds to formula (10). With the increase of l the coupling
between junctions in Eq. (6) decreases, and synchronization
of oscillations along the chain degrades, which leads to the
increase in �ω. Ultimately, for large chain inductances l =
1000 to 10 000 the chain generation linewidth �ω approaches
the value for the single overdamped junction linewidth (9).
However, significant reduction in linewidth of the chain in
comparison to a single junction can still be observed at values
of l as large as 50. Further, for larger values of l the linewidth
of the chain is actually independent of N .

FIG. 6. (a) The linewidth vs bias current i and (b) the generation
frequency and voltage for N = 21, γ = 0.01, α = 3.0, l = 0.5.

FIG. 7. (a) The linewidth vs bias current i and (b) the generation
frequency and voltage for N = 41, γ = 0.01, α = 3.0, l = 0.5.

In a slightly different perspective, Fig. 9 shows �ω as a
function of N for various values of dimensionless inductance
l. For small l this dependency shows good agreement with (9),
however, for large l the linewidth eventually stops decreasing
with the increase of N . If one treats l as l = �x2—squared
dimensionless distance between adjacent Josephson junctions
in the chain with the total length L = N

√
l—then a conclusion

may be made that there exists a certain critical length Lcr

of synchronization among junctions. If L exceeds Lcr , then
decrease of linewidth in the chain does not occur. This result
has also been obtained in Ref. [60], however, the damping
parameter value α for that result was not specified and the
function �ω(N ) approaches constant at much lower values
of l than in our calculations. Comparing results for α = 3.0
and α = 9.0 in Fig. 9, one can see that Lcr does not depend
strongly on α in the overdamped limit α � 1.

B. Intermediate damping (α � 1)

For damping α < 1 current-voltage characteristic of a
parallel chain exhibits sharp steps at return-path I-V curve

FIG. 8. Spectral linewidth as a function of inductance l at i ≈
2.45 for γ = 0.01, α = 3.0, and various N . Symbols denote results of
direct linewidth calculation, solid lines denote theoretical dependency
(10), and the dashed line denotes dependency (9) for i = 2.45.
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FIG. 9. Spectral linewidth as a function of number of junctions
in chain N at i ≈ 2.45 for γ = 0.01 and varying inductance l.
Symbols denote results of direct linewidth calculation, dotted line
denotes theoretical dependency (9) for i = 2.45; two sets of results
are presented, for α = 3.0 and α = 9.0.

for bias currents i < 1 [see Fig. 2(b)]. These steps correspond
to a lag-synchronization regime with an integer number of
voltage solitons traveling along the chain, as opposed to the
phase synchronization regime on the resistive branch of the
I-V curve for i > 1 [Fig. 10(b)], where all junctions of the
chain oscillate in-phase with each other. The generalization
of linewidth analysis for such chains is complicated by the
strong dependency of the total number of current-wise location
of steps on N even in the absence of noise. For example,
in Fig. 10(a) I-V curves for N = 21 and N = 22 change

FIG. 10. (a) I-V curves for γ = 0, α = 0.5, l = 0.7. (b) Voltage
dynamics along the chain with γ = 0.01, α = 0.5, l = 0.5, N = 15.
Top to bottom: i = 1.19 (resistive I-V curve branch), i = 0.7 (second
return-path step), i = 0.65 (first return-path step); junction numbers
are shown at the y axis, simulation time is shown at the x axis, voltage
magnitude is shown by its hue; warmer colors—higher voltage, colder
colors—lower voltage.

FIG. 11. (a) The linewidth vs bias current i and (b) the generation
frequency and voltage for N = 5, γ = 0.01, α = 0.5, l = 0.5 for IV
curve with one sharp step.

significantly, although the chains differ by one junction only.
We will therefore consider the model cases of chains with one
and two steps: The results are presented in Figs. 11–14.

For the resistive branch of the I-V curve of Josephson
junction chains with intermediate damping the linewidth of
the main spectral peak is in good agreement with formula
(10); the fundamental frequency ω0 is equal to voltage V

in dimensionless units. At the steps of I-V curves, however,
the modified Josephson voltage-to-frequency relation holds,
and ω0 is equal to V/2. The nontrivial observation is that the
spectral linewidth in this case, in fact, is better described by
the formula

�ω = αγ r2
d

N
(12)

than by formula (10), so the linewidth is halved in proportion
to the halved frequency. This is observed for chains with any
number of steps, e.g., with 1 step (Fig. 11) and 2 steps (Fig. 12)

FIG. 12. (a) The linewidth vs bias current i and (b) the generation
frequency and voltage N = 11, γ = 0.01, α = 0.7, l = 0.5 for IV
curve with one sharp and one smooth step.
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FIG. 13. Voltage dynamics for chain with N = 11, γ = 0.002,
α = 0.7, l = 0.5, see I-V curve in Fig. 12 at bias currents: (a) i =
1.105 (resistive I-V curve branch), (b) i = 1.0 (“smooth” step), (c)
i = 0.925 (conventional “sharp” step); junction numbers are shown at
the y axis, simulation time is shown at the x axis, voltage magnitude
at the point is shown by its hue; warmer (lighter) colors—higher
voltage, colder (darker) colors—lower voltage.

at their respective I-V curves and is different by an additional
factor of 1/2 with the result for strongly underdamped case of
a shuttle fluxon oscillator [18]. Similar linewidth halving has
been recently shown for underdamped systems [61], but the
regime of one traveling soliton [18] has not been studied due
to a huge amount of required simulation time. Here we partly
resolve this problem by transition to damping of order unity,
which makes the problem numerically tractable and confirms
the linewidth halving (12) for a single soliton regime, but we
are still in the discrete case of a limited number of junctions in
the chain, which is far from the continuous limit of Ref. [18].

Another peculiar feature is the appearance of the “smooth”
steps at I-V curves of chains with intermediate damping. In
Fig. 12, the step adjacent to the resistive I-V branch does not
exhibit a sudden voltage jump and corresponding change in
linewidth at values of bias current i close to unity (critical
current value); instead, both voltage and linewidth change
gradually, with the linewidth reaching a maximum value in
the “transition” current region from smooth step to ohmic line
and minimum in the middle of the smooth step. The generation

FIG. 14. (a) I-V curves showing hysteretic behavior at the steps;
(b) linewidths �ω at the resistive branch of I-V curve (bottom) and
at the sharp step (top) for N = 11, γ = 0.002, α = 0.7, l = 0.5.

frequency ω0 switches its value from V to V/2 at i slightly
larger than unity and persists at V/2 throughout all of the
“smooth” step length. At the low-current end of this “smooth”
step, the linewidth approaches the value predicted by (12). At
even lower currents a conventional I-V step corresponding to
one traveling soliton is observed, where �ω is again better
described by (12) than (10).

One possible explanation of this “smooth” step phe-
nomenon may be derived from comparing the chain voltage
dynamics at the smooth transition I-V curve region [Fig. 13(b)]
and at the resistive I-V curve branch [Fig. 13(a)]. The
step adjacent to the resistive I-V curve branch contains the
maximum possible number of solitons (which is two in this
case). In a chain with large L the two solitons would have
followed each other in a compact train [see, for example,
Fig. 10(b), middle graph]; however, in the case of Fig. 13 due to
the restricted dimensionless length of the chain and reflection
from chain ends these two solitons move in opposite directions,
thus forming a “standing wave” [Fig. 13(b)], representing
itself as a cluster synchronization. This regime of cluster
synchronization is qualitatively close to the phase synchroniza-
tion regime observed at the resistive I-V branch [Fig. 13(a)]
and so a smooth transition from phase synchronization to
two-soliton synchronization comes as natural. On the other
hand, the next step at the I-V curve contains only one soliton
[Fig. 13(c)], which is unable to form a standing wave by itself;
the single-soliton regime is qualitatively different from the
standing wave regime and so a sharp step at the I-V curve is
observed.

Conventional I-V curve steps in Josephson chains with α <

1 are highly hysteretic, which is not the case with the “smooth”
step at Fig. 12. The single soliton step at I-V curve of Fig. 12
is still hysteretic; increasing i after initially biasing it at the
sharp step allows it to stay at the same step for much larger
values of i than was possible on the return path [Fig. 14(a)].
For this elongated step the spectral linewidth [at ω0 = V/2,
Fig. 14(b)] is also in good agreement with formula (12), which
further proves the validity of this new relation on I-V curve
steps of Josephson chains.

IV. CONCLUSIONS

Spectral characteristics of generation in a parallel array
of Josephson junctions have been numerically studied within
the frame of Frenkel-Kontorova model with noise. The com-
parison of Likharev’s formula for a single junction linewidth
(8) with computer simulation results demonstrates perfect
agreement in the low noise limit. We have also shown good
agreement of numerical and theoretical results for generation
linewidth of parallel overdamped (α � 1) JJ chains, as long
as the coupling between junctions is sufficiently strong (i.e.,
the dimensionless inductance l is small). Here the theoretical
formula (11) represents a single junction linewidth (8), divided
by a number of junctions N . For weak coupling the linewidth
effectively stops decreasing with the increase of number of
junctions in the chain, which indicates the limiting number
of junctions in parallel arrays of Josephson oscillators and
logic devices. In particular, for typical inductances of order
0.5–1 the chains of 20–30 junctions can be recommended to
keep the minimal linewidth. For parallel chains of Josephson
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junctions with intermediate damping (α � 1) the linewidth
at the steps of current-voltage characteristics (corresponding
to lag-synchronization/soliton regimes) is better described
by formula (12), so an additional factor of 1/2 appears
in comparison with overdamped junctions due to modified
Josephson relation. Also, under special conditions (sufficiently
small dimensionless chain length L = N

√
l, where N is

the number of junctions in the chain), a “smooth” step at
the I-V curve of arrays with intermediate damping may
be observed, if the voltage solitons emerging at the step
form a standing wave/cluster synchronization, where the
same linewidth formula (12) is valid. Due to a drastic
decrease in differential resistance at I-V curve steps (with

lag-synchronization oscillation regime) when compared to the
resistive I-V curve branch (phase synchronization regime)
the linewidth of generation is, respectively, decreased, which
makes the I-V curve steps a prospective operating point for
THz generators based on Josephson junction arrays even for
junctions with intermediate damping α � 1.
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