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Spin-switch Josephson junctions with magnetically tunable sin(δϕ/n) current-phase relation
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With a combination of simple analytical arguments and extensive numerical simulations, we theoretically
propose a Josephson junction with n + 1 superconductors where the current-phase relation can be toggled in situ
between a sin(δϕ) and sin(δϕ/n) shape using an applied magnetic field. Focusing in particular on the case n = 2,
we show that by using realistic system parameters such as unequal interface transparencies, the sin(δϕ/2)-shaped
solution retains its 2π periodicity due to discontinuities at δϕ = ±π . Moreover, we demonstrate that as one
toggles between the sin(δϕ)- and sin(δϕ/2)-shaped solutions, the system acts as an on-off switch, and can
achieve more than two orders of magnitude difference between the supercurrent in the on and off states. Finally,
we argue that the same approach can be generalized to switchable sin(δϕ/n) junctions for arbitrary integers n,
which we motivate by analytically solving the Josephson equations for double- and triple-barrier junctions.
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I. INTRODUCTION

In a Josephson junction, two superconductors are prox-
imity coupled through a nonsuperconducting region, such
as a normal metal or insulator. In conventional Josephson
junctions, it can be shown that the current flowing between
the superconductors in the tunneling limit is proportional
to sin(δϕ), where δϕ is the phase difference between the
superconductors [1]. These are also known as 0 junctions,
as the ground state is δϕ = 0. In recent years, there has
been a lot of interest in developing Josephson junctions with
unconventional current-phase relations. One of the first was
the experimental realization of π junctions using magnetic
elements between the superconductors [2,3], where the current
is proportional to sin(δϕ + π ), i.e., it flows in the opposite
direction to a 0 junction for the same phase difference δϕ.
This work was then extended to ϕ junctions with two ground
states δϕ = ±ϕ by combining 0 and π junctions [4,5]. Another
important development was the very recent construction [6] of
a ϕ0 junction using spin-orbit interactions [7–11], where the
current was found to be proportional to sin(δϕ + ϕ0), with an
electrically controllable phase bias ϕ0.

In this paper, we focus on a different scenario, namely,
a sin(δϕ/n) junction. The special case of sin(δϕ/2) has
previously been discussed in Refs. [12–15], and has recently
been subject of rekindled interest as a possible signature
for a Majorana-mediated supercurrent [16–19]. Here, we
demonstrate theoretically a Josephson junction where the
current-phase relation can be toggled in situ between a sin(δϕ)
and sin(δϕ/2) shape by changing the configuration of a
spin valve via a magnetic field. The current-phase relation
nevertheless retains its 2π periodicity due to discontinuities
at δϕ = ±π . Moreover, we show that when toggling between
the two current-phase relations, the system acts as an on-off
switch: the supercurrent magnitude can differ by more than
two orders of magnitude in the two states. We further argue
that the same approach can be used to construct more general
junctions with sin(δϕ/n) shapes, where n is an arbitrary and
magnetically tunable integer. In addition to being interesting
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from a fundamental physics point of view, discovering novel
kinds of Josephson junctions may also find applications in both
digital and quantum computing [20].

II. ANALYTICAL ARGUMENT

A. Double-barrier junction

From here on, we use the notation S for superconductors and
X for nonsuperconductors, where X can be any combination
of ferromagnets (F), insulators (I), and normal metals (N). It
is well known that in the tunneling limit, the current-phase
relation for a single-barrier S/X/S Josephson junction is [1]

J = Jc sin(δϕ), (1)

FIG. 1. Schematic of the proposed device. (a) If the ferromagnets
are aligned in parallel, the effective exchange fields experienced by
the conduction electrons add up inside the superconductor, resulting
in a strong net field there. This net exchange field suppresses
superconductivity, making the central layer act as a normal metal. We
therefore get an effective S/X/S junction with a conventional sin(δϕ)
current-phase relation. (b) If the ferromagnets have an antiparallel
alignment, their fields cancel near the center of the superconductor.
The central layer thus acts as a superconductor, and we get an
S/X/S/X/S junction with a more exotic sin(δϕ/2) shape for the
current-phase relation instead. (c) In principle, the same idea can be
extended to a junction that consists of m superconductors sandwiched
in-between ferromagnets. This should result in a junction with a
general sin(δϕ/n) shape for the current-phase relation, where n ∈
[1, m + 1] is magnetically tunable. For instance, an S/X/S/X/S/X/S
system could support n = 1 for an ↑↑↑ configuration of the magnetic
layers, n = 2 for ↑↑↓, and n = 3 for ↑↓↑.

2469-9950/2017/96(6)/064516(7) 064516-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.064516


JABIR ALI OUASSOU AND JACOB LINDER PHYSICAL REVIEW B 96, 064516 (2017)

FIG. 2. Analytical plot of (a) the supercurrent and (b) the free
energy as functions of the phase difference in a sin(δϕ/2) junction.
For every value of the phase difference δϕ, there are two solutions: the
low-energy state (dark blue line) and high-energy state (transparent).

where Jc is the critical charge current, and δϕ is the net phase
difference across the junction. Under certain conditions, this
result can be generalized to junctions with multiple supercon-
ducting elements. Let us first assume that the superconducting
phase changes slowly as function of position inside each
superconducting layer, i.e., that the supercurrent is relatively
small. In this limit, we can treat an S/X/S/X/S junction (see
Fig. 1) as a concatenation of two S/X/S subjunctions, where
the subjunctions are described by the current-phase relations

J12 = Jc sin(ϕ2 − ϕ1), J23 = Jc sin(ϕ3 − ϕ2), (2)

where Jij is the current from superconductor number i to j , ϕi

is the phase of superconductor number i, and we have assumed
that the critical current of each subjunction is equal. In any real
physical system, these critical currents will not be identical,
and we later discuss in detail how this influences the result.
We have some freedom when choosing these phases ϕi since
only phase differences affect the physics of the system. We
may therefore define ϕ1 ≡ −δϕ/2 and ϕ3 ≡ +δϕ/2, such that
the net phase difference across the junction is ϕ3 − ϕ1 = δϕ:

J12 = Jc sin(δϕ/2 + ϕ2), J23 = Jc sin(δϕ/2 − ϕ2). (3)

Since the current has to be conserved through the junction,
we have the constraint J12 = J23 ≡ J . The resulting equations
have two distinct solutions ϕ2 = 0 and π , yielding the currents

J = ±Jc sin(δϕ/2). (4)

Adding up the energies Eij = Ec[1 − cos(ϕj − ϕi)] of each
subjunction, where Ec = h̄Jc/2e is the Josephson energy, we
also find the corresponding junction energies

E = Ec[2 ∓ 2 cos(δϕ/2)]. (5)

Similarly, one can show that an S/X/S/X/S/X/S junction results
in a sin(δϕ/3) current-phase relation shape (see Sec. II B), and
that adding more superconductors and barriers in this way may
lead to more general sin(δϕ/n) shapes (see Sec. II C).

For each external phase difference δϕ, there is a low-energy
and a high-energy solution, as illustrated in Fig. 2. Each of
these branches are 2π periodic. From here on, we will focus
on the low-energy branch, which can be written succinctly [15]

J = Jc sin(δϕ/2) sgn[cos(δϕ/2)] . (6)

Throughout this paper, we will for brevity refer to this current-
phase relation as having a sin(δϕ/2) shape, even though it is
2π periodic due to discontinuities at δϕ = ±π .

With this in mind, let us consider S/F/S/F/S double-barrier
junctions, where the central F/S/F acts as a superconducting
spin valve (see Fig. 1). Switching the orientation of only one
F in such a structure can, e.g., be achieved using materials
with intrinsically different coercivities [21], or using different
thicknesses for the ferromagnets, where the latter affects both
coercivities and anisotropies. Depending on whether the two F
layers have a parallel (P) or antiparallel (AP) orientation, their
effective magnetic exchange fields induced in the central S will
either add or cancel. The stability of the superconducting con-
densate depends on the net exchange field felt by the Cooper
pairs there, which means that one can toggle superconductivity
on and off in the central region [22,23], effectively switching
between an S/X/S and S/X/S/X/S junction. Since the S/X/S
junction always has a sin(δϕ)-shaped current-phase relation,
while an S/X/S/X/S junction also supports sin(δϕ/2)-shaped
solutions, the result is that one should be able to magnetically
switch between these current-phase relations. In Sec. III,
we show the results of extensive self-consistent numerical
simulations which confirm this prediction.

B. Triple-barrier junction

Let us now move on to a slightly more complicated case,
namely, S/X/S/X/S/X/S junctions. In other words, we now have
three concatenated S/X/S junctions, which we can describe
using three currents J12, . . . ,J34 and four phases ϕ1, . . . ,ϕ4:

J12 = Jc sin(ϕ2 − ϕ1), (7)

J23 = Jc sin(ϕ3 − ϕ2), (8)

J34 = Jc sin(ϕ4 − ϕ3). (9)

To simplify the derivations, we parametrize the superconductor
phases ϕ1, . . . ,ϕ4 in terms of their averages and differences:

ϕ1 ≡ a − d/2, ϕ2 ≡ b − c/2, (10)

ϕ4 ≡ a + d/2, ϕ3 ≡ b + c/2. (11)

In other words, the outer superconductors are described by
their average a and difference d, while the inner ones are
described by the corresponding parameters b and c. Since the
overall phase of the system has no physical significance, we
can set a = 0 without loss of generality. Thus, we obtain

J12 = Jc sin(+b − c/2 + d/2), (12)

J23 = Jc sin(c), (13)

J34 = Jc sin(−b − c/2 + d/2). (14)

To determine the current-phase relation of the junction,
we need to solve the current conservation equation J12 =
J23 = J34 for a fixed external phase difference δϕ ≡ d ≡
ϕ4 − ϕ1. Let us first consider the part J12 = J34. Invok-
ing the trigonometric identity sin(u ± v) = sin(u) cos(v) ±
cos(u) sin(v) on both sides of the equation, this can be rewritten
as sin(b) cos(d/2 − c/2) = 0. This has three distinct solutions:
b = 0, b = π , and c = d + π . We will first address the
solution branches b = 0 and π . If we substitute these solutions
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FIG. 3. Analytical plot of (a) the supercurrent and (b) the free
energy as functions of the phase difference in a sin(δϕ/3) junction.
There are multiple solutions: the sin(δϕ/3)-shaped low-energy state
(dark blue), sin(δϕ/3)-shaped excited states (transparent blue), and
sin(δϕ)-shaped excited state (transparent red). Note that the low-
energy state is 2π periodic due to discontinuities at δϕ = ±π, ± 3π .

into J12 = J23, we obtain

sin(c) = ± sin(d/2 − c/2). (15)

This equation admits four distinct solutions: b = 0, c = d/3;
b = π , c = (d − 2π )/3; b = π , c = (d + 2π )/3; b = π ,
c = −d . Let us first consider the first three solutions. Substi-
tuting these into the currents and energies of each subjunction,
restoring the notation δϕ ≡ d, and defining k ∈ {−1,0,+1},
we find the current-phase and energy-phase relations

J = Jc sin[(δϕ + 2πk)/3],

E = Ec{3 − 3 cos[(δϕ + 2πk)/3]}. (16)

In other words, we do indeed find three solutions where the
current-phase relation has the shape sin(δϕ/3), as expected.

During the derivation above, we pointed out two alternative
ways to satisfy the equations. Substituting these into the current
conservation equation, we identify three additional solutions:
b = π , c = −d; b = d + π/2, c = d + π ; b = d − π/2,
c = d + π . The currents and energies of these solutions are:

J = −Jc sin(δϕ), E = Ec[3 + cos(δϕ)]. (17)

In other words, the alternative solutions correspond to sin(δϕ)-
shaped current-phase relations in the π phase. However, as
shown in Fig. 3, these are all excited states. The reason is that
these alternative solution branches have two subjunctions with
the energy-phase relation E = Ec[1 + cos(δϕ)] and one with
E = Ec[1 − cos(δϕ)], meaning that minimizing the energy of
one subjunction will simultaneously maximize the energy of
another. This is different from the sin(δϕ/3)-shaped solutions
above, where the energy minima of each subjunction coincide.

C. Generalization

Let us now consider a general n-barrier junction, i.e.,
a system of n + 1 identical superconductors separated by
n identical low-transparency barriers. As in the previous
subsections, we can associate one phase ϕ0, . . . ,ϕn with each
superconductor, and write the currents and energies of the n

subjunctions as

Jm,m+1 = Jc sin(ϕm+1 − ϕm), (18)

Em,m+1 = Ec[1 − cos(ϕm+1 − ϕm)]. (19)

We fix the phase of the first superconductor ϕ0 = 0, and the
last one ϕn = δϕ, so that δϕ is the phase difference between the
outer superconductors. It is then straightforward to verify that
the following phase distribution satisfies these requirements
(modulo 2π ), while also ensuring current conservation:

ϕm = (m/n)(δϕ + 2πk), (20)

where m ∈ {0,1, . . . ,n} identifies each superconductor, and
k ∈ {0,1, . . . ,n − 1} identifies each solution branch. Substi-
tuted into the current-phase and energy-phase relations, we
get the following equations for the entire junction:

J = Jc sin[(δϕ + 2πk)/n], (21)

E = Ec{n − n cos[(δϕ + 2πk)/n]}. (22)

Each of these solutions has to contribute to the lowest-energy
branch of the current-phase relation, as each of them provides
a global energy minimum E = 0 for some phase difference δϕ.
The lowest-energy branch is again manifestly 2π periodic.

III. NUMERICAL RESULTS

To investigate the ideas outlined in the previous sections, we
numerically investigated the simplest possible structure of this
kind, namely, an S/F/S/F/S structure where the ferromagnetic
layers are atomically thin insulators. The superconductors
at the ends of the junction are assumed to be much larger
than the superconducting coherence length ξ , so that we can
treat them as bulk superconductors with order parameters
�0e

±iδϕ/2, where �0 and δϕ are real numbers. The central
superconductor is assumed to have the length L = ξ/2. To
describe the superconducting correlations there properly, we
had to simultaneously solve the Usadel diffusion equation [24]

ih̄D∂z(ĝ∂zĝ) = [(ε + iδ)τ̂3 + �̂,ĝ], (23)

and the gap equation

�(z) = 1

2
N0λ

∫ +�

−�

dε fs(z,ε) tanh(ε/2T ), (24)

yielding self-consistent results. Above, � = �0 cosh(1/N0λ)
is the Debye cutoff, ε the quasiparticle energy, δ the inelastic
scattering rate, N0 the normal-state density of states at the
Fermi level, λ the BCS coupling constant, D = �0ξ

2/h̄ the
diffusion coefficient, T the temperature of the system, and h̄

Planck’s reduced constant. The 4 × 4 matrix ĝ(z,ε) contains
the spin-resolved normal and anomalous retarded Green
functions in the system, �̂ = antidiag(+�,−�,+�∗,−�∗)
contains the superconducting order parameter �(z), and
τ̂3 = diag(+1,+1,−1,−1). Only the spin-singlet part fs of the
anomalous Green function enters the gap equation above. For
more details about the numerical solution of these equations,
see Refs. [25,26].

The ferromagnetic insulators are approximated as spin-
active interfaces between the superconducting layers, which
we describe using the recently derived spin-dependent bound-
ary conditions for strongly polarized interfaces [27]. The
boundary conditions can be written in terms of the tun-
neling conductance GT , which depends on the number of
transmission channels and their transparencies: a spin-mixing
conductance Gϕ , which describes the difference in phase
shift between spin-up and spin-down electrons reflected off
the interface; and a spin-polarization P , which describes the
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different interface transparencies perceived by spin-up and
spin-down electrons. See Refs. [26,27] for more details about
these parameters. We assumed a strong interface polarization
P = 0.90, a small tunneling conductance GT = 0.02G0, and
a spin-mixing conductance Gϕ = 0.3G0, where G0 is the
normal-state conductance of the central superconductor. Such
a parameter choice is likely suitable for strongly polarized
ferromagnetic insulators such as GdN or EuS, where polariza-
tions of 90% and upward have been experimentally reported
[28,29]. Finally, we calculated the supercurrent throughout the
junction via the equation

J (z) = 2J0

∫ +�

−�

dε Re Tr[τ̂3 ĝ(z,ε) ∂z ĝ(z,ε)] tanh(ε/2T ),

(25)

where J0 = eN0�
2
0ξ

2A/4h̄L, e is the electron charge, and A

is the cross-sectional area of the central superconductor.

A. Ideal case: Symmetric junction

We will start by considering the lowest-energy current-
phase relation of a perfectly symmetric S/F/S/F/S structure,
where the symmetry implies that the critical currents of
the constituent S/F/S subjunctions are equal. In this section,
we restrict our attention to the regime −π < δϕ < +π since
the lowest-energy state is known to be 2π periodic. The numer-
ical results are shown in Figs. 4 and 5. In Fig. 4, we see that it
is indeed possible to magnetically switch between a very clean
sin(δϕ)- and sin(δϕ/2)-shaped current-phase relation. The
transition between a conventional and unconventional Joseph-
son effect obtained in this manner is sensitive to the parameters
of the junction. In a regular spin valve, achieving an absolute
spin-valve effect in the junction requires that the supercon-
ductor length is short enough and the ferromagnetic properties
strong enough to vanquish the superconducting condensate in
the P configuration. In the system under consideration here, an
additional complication is that one simultaneously requires a

FIG. 4. Numerical results for the current-phase relation of an
S/F/S/F/S junction. When we flip the magnetization direction of
one magnet, we clearly switch between a J = Jc sin(δϕ/2) and
J = Jc sin(δϕ) current-phase relation. Note that the the magnitude of
the critical current Jc is roughly 50 times larger in the AP orientation
compared to the P orientation, as indicated in the figure legend.
Since the current-phase relation is 2π periodic, while J → ±Jc

as δϕ → ±π , the sin(δϕ/2)-shaped solution is discontinuous at
δϕ → ±π .

FIG. 5. Numerical results for the superconducting order parame-
ter �(z) eiϕ(z), where � and ϕ are real-valued functions of the position
z in the central superconductor. The dashed lines correspond to a
phase difference δϕ = π/2, and the solid lines to δϕ → π . In the
AP case, the gap �(z) is close to the bulk gap �0. We have a finite
phase winding for both δϕ = π/2 and δϕ → π , but it is larger in the
latter case. In the P case, however, the gap is one to two orders of
magnitude smaller, and even drops to zero at the center for δϕ → π .
Note the discontinuity in the phase for δϕ → π and z = 0, which
is where the order parameter �eiϕ changes sign. The gap plots are
consistent with a spin-valve effect since � is suppressed in the P
but not AP configuration. The phase plots are consistent with Fig. 4
since the current J is proportional to the phase winding ∂zϕ at every
point.

sufficiently low conductance through the ferromagnetic insula-
tors to turn superconductivity off in the central superconductor.
Otherwise, the bulk superconductors are able to supply enough
Cooper pairs via the proximity effect to keep the central layer
superconducting regardless of the magnetic configuration.
However, making the conductance too low would limit the
supercurrents that we are interested in. Therefore, in an
experiment, some trial and error might be required to obtain
ideal thicknesses for the material layers.

We proceed to discuss the physics underlying the transition
between the conventional and unconventional Josephson ef-
fects. From Fig. 5, we see that the gap is close to the bulk value
�0 in the AP configuration, while it drops below 0.04�0 in
the P configuration. In other words, we have the desired spin-
valve effect, where the magnetic configuration of the junction
alone is enough to change the self-consistently calculated gap
in the central superconductor by orders of magnitude. Note
that in all cases where a current is flowing, the phase winding
in the central superconductor is relatively small, which means
that a large part of the phase winding must be happening in
the ferromagnetic insulators in-between the superconductors.
In the P configuration with δϕ = π , the order parameter
�(z)eiϕ(z) changes linearly through the junction, and drops
to zero at the center. This is the same result as one would
obtain for the proximity-induced minigap in a short π -biased
S/N/S junction, meaning that this system indeed does act as
such a junction.
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B. Realistic case: Asymmetric junction

It is impossible to construct a perfectly symmetric
S/X/S/X/S junction in reality, and it is therefore prudent to
check how sensitive the proposed setup is to asymmetries. We
have done so by setting the tunneling conductance to GT =
0.02G0(1 ± a) at the left and right interface, respectively.
Here, a parametrizes the asymmetry in the junction. It is
easy to see that in the limit a → 0 we regain the symmetric
case, while a → 1 would decouple the central superconductor
entirely from one of the electrodes. As we see from the results
in Fig. 6, the main effect of the asymmetry is to soften the
discontinuities at δϕ = ±π .

For perfectly symmetric junctions a = 0 with a high
phase difference |δϕ| > π , the numerics converged to the
high-energy branch J = −Jc sin(δϕ/2) sgn[cos(δϕ/2)] in-
stead of the low-energy J = +Jc sin(δϕ/2) sgn[cos(δϕ/2)],
apparently producing a 4π -periodic current-phase relation.
However, introducing even a tiny asymmetry a = 0.0005
results in the numerics correctly converging towards the
2π -periodic low-energy state regardless of the external phase
difference. This state is characterized by abrupt discontinuities
for δϕ = ±π [Fig. 6(a)], accompanied by equally abrupt
changes in the phase of the central superconductor from
ϕ2 = 0 to ±π [Fig. 6(b)]. As the asymmetry a increases, the
discontinuities become smoother.

If we take the superconductors in the junction to be Nb, then
the density of states at the Fermi level N0 ≈ 80 eV−1 nm−3

[30], the zero-temperature gap �0 ≈ 1.4 meV, and a typical
value for the coherence length ξ ≈ 15 nm. We assumed that
the junction is at a temperature much lower than the critical
temperature T/Tc = 0.01, and has an inelastic scattering
rate δ/�0 = 0.01. The Debye cutoff was set to � = 30�0,
which is high enough for the results to be independent of
the cutoff. Furthermore, we assumed that the length of the
central superconductor was L = ξ/2 ≈ 7.5 nm. Putting these
values together, and dividing by the cross-sectional area A

of the junction, we find that the current density unit J0/A ≈
3 × 107 A/cm2. Since we in Fig. 4 found critical currents
between J0/4 (AP) and J0/200 (P), this translates to current
densities of ∼107 A/cm2 and ∼105 A/cm2, respectively. Note
that this likely overestimates the current densities one would
observe experimentally since we treat the superconductors at

FIG. 6. Numerical results for (a) the current-phase relation and
(b) the central phase ϕ2 as functions of the external phase difference
δϕ. Both plots are for asymmetric junctions with interface conduc-
tances GT = 0.02G0(1 ± a), with a set to 0 (dashed), 0.0005 (blue),
0.1 (red). The physical current-phase relation in the lowest-energy
state is always 2π periodic due to discontinuities at δϕ = ±π , but
asymmetries in realistic junctions smooth these discontinuities.

the end of the junction as bulk superconductors. In reality,
one might expect the order parameter to be suppressed near
the interface to a strongly polarized magnetic insulator [26],
which would throttle the current.

Using the the Fermi wavelength λ ≈ 0.533 nm of Nb [31]
and the parameters above, one may also estimate the interface
transparency (average quasiparticle transmission probability):

〈T 〉 ≈ N0 �0 ξ 2λ2

1 + √
1 − P 2

GT

LG0
. (26)

This gives the result 〈T 〉 ≈ 2GT /3G0, which means that our
parameter choice GT /G0 = 0.02 corresponds to an interface
transparency of about 1.3%. This should be a reasonable value
for the case of quasiparticles tunneling through an insulator.

C. Application: Spin-switch junction

A possible application of the proposed device, which works
well in both the ideal and realistic regimes discussed in
the previous sections, is as a junction with a magnetically
controlled on-off switch for the supercurrent. Figure 4 shows
that using the interface conductance GT = 0.02G0, spin-
mixing conductance Gϕ = 0.3G0, and superconductor length
L = ξ/2, one can already obtain a factor ∼50 difference
between the critical current in the P and AP configurations.
To further investigate this prospect, we varied one of these
parameters at a time while keeping the others fixed. For each
parameter set, we calculated the ratio J AP/J P between the
charge current in the AP and P configurations, and the results
are shown in Fig. 7. These calculations were done for a phase
difference δϕ = π/2, which means that J AP/J P is not strictly
equal to the critical current ratio J AP

c /J P
c , but they should be

the same order of magnitude.
In Fig. 7(a), we see that for large interface conductances,

the current ratio tends to one and, conversely, for very small
interface conductances, the ratio diverges. Thus, with respect
to the on-off ratio, low-interface conductances are the ideal
choice. On the other hand, a low-interface conductance also
means that the current is throttled even when the junction is
turned on. In practice, there will therefore be a tradeoff between
having a large on-off ratio (small conductance) and having a
large current magnitude in the on state (large conductance).

In Fig. 7(b), we see that for small spin-mixing conductances
Gϕ , the on-off ratio tends to one. This is because in this
limit, the spin-active properties are too weak to suppress
superconductivity in either the P or AP states, leading to a
large supercurrent in both the P and AP configurations. After
Gϕ ≈ 0.15G0, the gap in the central superconductor is strongly
suppressed in the P configuration but not the AP configuration,
resulting in very high on-off ratios. For very high spin-mixing
conductances Gϕ ≈ 0.9G0 (not shown), we also found a 0-π
transition with a sin(2δϕ) current-phase relation in the AP
configuration, resulting in an even higher on-off ratio.

In Fig. 7(c), we see that for superconductors larger than
about 0.7ξ , the on-off ratio tends to one. This is because in
this limit, the superconductor is large enough to sustain a
significant gap in both the P and AP configurations, enabling
large supercurrents to in both configurations. On the other
hand, for thin superconductors, the gap is strongly suppressed
in the P but not AP configuration, yielding high on-off ratios.
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FIG. 7. Numerical results for the on-off ratio J AP/J P as function
of (a) the tunneling conductance GT , (b) the spin-mixing conductance
Gϕ , and (c) the length of the central superconductor L.

IV. DISCUSSION

The results in Fig. 4 confirm that it should be possible to
toggle between current-phase relations with clear sin(δϕ) and
sin(δϕ/2) shapes magnetically using experimentally realistic
parameters. The current-phase relation remains 2π periodic in
the low-energy state due to discontinuities at δϕ = ±π , which
are smoothed out as the junctions become more asymmetric.

Note that there is a factor 50 difference between the
critical current in the P and AP states of Fig. 4. For potential
applications where it is mainly the shape and not size of the
current-phase relation that matters, this is of course not an
obstacle. For applications where the size of the supercurrent
is important as well, the setup we propose may instead be
considered as a sin(δϕ/2) junction with a magnetic on-off
switch, similar to the ideas in Refs. [32–34]. As shown in
Fig. 7, we find that this kind of setup can produce very high
on-off ratios of 100–1000, as long as the superconductor is
short enough and the spin mixing high enough, in line with
conventional wisdom regarding optimal spin-valve design.
The tunneling conductance was found to be the limiting
ingredient, with lower conductances consistently resulting in

higher on-off ratios. However, at the same time, lower interface
conductances mean lower currents in both the on and off states.
Thus, there is a tradeoff between achieving high on-off ratios
and high current densities in the on state.

In principle, it might be possible to create a similar device
using magnetic metals instead of insulators since it has
been experimentally demonstrated that superconducting spin
valves can be constructed out of metals too [35]. However,
it is then critical that the net tunneling conductance between
each superconducting layer is small enough. If the tunneling
conductance is too high, then one would end up with
both sin(δϕ)- and sin(δϕ/2)-shaped contributions in the AP
configuration instead of a pure sin(δϕ/2)-shaped current-phase
relation.

Although we have focused on using a magnetic field to
toggle between a sin(δϕ)- and sin(δϕ/2)-shaped current-phase
relation so far, the same basic idea can be extended to other
physical setups as well. For instance, consider an S/I/S′/I/S
structure, where S is a superconductor with a particular critical
temperature (e.g., Nb with Tc ≈ 9.2 K), S′ a superconductor
with a lower critical temperature (e.g., Al with T ′

c ≈ 1.2 K),
and the I are thin layers of nonmagnetic insulators. This
junction should act as an S/X/S system with a sin(δϕ) relation
above T ′

c , but as an S/X/S/X/S system with a sin(δϕ/2)
relation below T ′

c when the interface conductance is low
enough to permit most of the phase winding to occur at the
interfaces (as in Fig. 5). In other words, it should also be
possible to thermally toggle between these sin(δϕ/n)-shaped
current-phase relations [14].

V. CONCLUSION

We have demonstrated theoretically that by changing the
magnetic configuration from a P to AP alignment in a
spin-valve Josephson junction (S/F/S/F/S), it is possible to
toggle between a sin(δϕ)- and sin(δϕ/2)-shaped current-phase
relation, which retains a 2π periodicity due to discontinuities
at δϕ = ±π . The same mechanism may be used to construct
a Josephson junction with an on-off switch, achieving two to
three orders of magnitude difference between the on and off
states. We have also argued that the same procedure can be
generalized to create arbitrary sin(δϕ/n) junctions where n

is a magnetically tunable integer. This way to exert control
over superconductivity in nanoscale structures may spur new
fundamental research in superconducting spintronics [36] and
find practical applications in future cryogenic technology.
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