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Nonequilibrium superconductivity in driven alkali-doped fullerides
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We investigate the formation of nonequilibrium superconducting states in driven alkali-doped fullerides A3C60.
Within a minimal three-orbital model for the superconductivity of these materials, it was recently demonstrated
theoretically that an orbital-dependent imbalance of the interactions leads to an enhancement of superconductivity
at equilibrium [M. Kim et al., Phys. Rev. B 94, 155152 (2016)]. We investigate the dynamical response to a
time-periodic modulation of this interaction imbalance and show that it leads to the formation of a transient
superconducting state which survives much beyond the equilibrium critical temperature Tc. For a specific range
of frequencies, we find that the driving reduces superconductivity when applied to a superconducting state
below Tc while still inducing a superconducting state when the initial temperature is larger than Tc. These
findings reinforce the relevance of the interaction-imbalance mechanism as a possible explanation of the recent
experimental observation of light-induced superconductivity in alkali-doped fullerenes.
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I. INTRODUCTION

The optical stimulation of solids by means of strong light
pulses has opened new routes for the investigation of collective
phenomena in quantum materials [1]. A fascinating one
consists in inducing superconductivity (SC) beyond the limits
where it can be stabilized at equilibrium, which are set, e.g.,
by temperature, external pressure, or doping concentration. A
series of experiments in different compounds revealed light-
induced modifications of the electronic properties suggestive
of the formation of a transient superconducting state extending
above the equilibrium critical temperature Tc [2–6]. Recently,
the remarkable observation of a superconductinglike response
above Tc in the molecular compound K3C60 [6] enlarged this
experimental panorama and raised new questions about the
possible mechanisms leading to transient SC above Tc.

The possibility of a light-stimulated superconducting phase
extending above the equilibrium critical temperature was
originally proposed by Eliashberg [7], who considered the
quasiparticle redistribution induced by a laser excitation with
frequencies below the equilibrium superconducting gap. The
above experiments are far beyond this limit with excitation
frequencies much larger than the superconducting gap, thus
requiring the investigation of alternative mechanisms for
light-induced superconductivity.

In the case of K3C60 the laser frequencies for which the
transient response is observed are close to the frequencies of
four intramolecular phonons, the T1u modes with frequencies
in the midinfrared range 60 � ωT1u

� 180 meV. The effect dis-
appears for much larger excitation frequencies. This suggests
that the observed effect might be related to the light-induced
excitation of these phonon modes [6,8].

From the theoretical point of view, various mechanisms
have been investigated so far, such as the nonlinear excitations
of phononic modes [5,9,10] and their coupling to the electronic
density [11,12] or the effective slowing down of the electronic
motion [13,14]. While all these mechanisms lead to an increase
in the superconducting coupling which is expected to provide
a source of transient SC in a broad class of superconductors,

K3C60 appears to be a peculiar case. Indeed, the absence
of any enhancement or even the suppression of SC below
Tc reported in Ref. [6], together with the appearance of a
transient response above Tc, is not fully understood within
an effective SC coupling enhancement. Furthermore, SC in
alkali-doped fullerides is strongly affected by the nontrivial
interplay between pairing, electronic correlations, and orbital
degrees of freedom [15–19], requiring the investigation of
the mechanisms for transient SC within a proper theoretical
framework taking this interplay into account.

The first step in this direction was recently taken by
Kim et al. [8], working in the framework of the low-energy
electronic description of fullerides based on the Jahn-Teller-
induced inversion of the effective Hund’s coupling [16],
which provides one of the most successful descriptions of the
unconventional superconducting properties of these materials
[17]. These authors demonstrated that a specific orbital-
dependent perturbation of the on-site repulsive interactions
does enhance SC at equilibrium. Such a perturbation was
motivated by the possible modulations of the electronic
interactions that result from the excitation of a local phononic
mode, as already demonstrated for other correlated organic
compounds [20,21]. Furthermore, a first-principles calculation
[8] for K3C60 revealed that the favorable perturbation is,
indeed, induced under the assumption that light excites the T1u

mode [6] as a result of the structural and electronic changes
associated with this excitation.

This proposal relies entirely on equilibrium considerations,
however, and this raises the outstanding question of the
relevance of this mechanism to the nonequilibrium response
of the system and to the transient light-induced SC. In this
work we address this question. We investigate the nonequi-
librium dynamics induced by the time- and orbital-dependent
modulation of the electron-electron repulsion. We show that
this results in a transient superconducting state, which can be
induced when the system is initially well above its equilibrium
critical temperature. The properties of this transient state can be
very dramatically different from the equilibrium expectation
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and depend on the frequency of the modulation. In particular,
we uncover a regime of frequency in which the modulation
leads to the reduction of SC below Tc and to the creation of
SC above Tc.

In the following we first introduce the model and the
nonequilibrium perturbation considered in this work together
with the method used to describe the nonequilibrium dynam-
ics. After presenting our results we discuss possible implica-
tions of the description of the experimental observations.

II. MODEL

The minimal description of strongly correlated supercon-
ductivity in alkali-doped fullerenes is given by the following
three-band model [16] arising from the t1u lowest unoccupied
molecular orbital states of the C60 molecule half filled with
electrons donated by the alkali atoms:

H =
∑
kσ

3∑
a=1

ε(k)c†kaσ ckaσ +
∑

i

Hloc(i), (1)

where the local Hamiltonian Hloc(i) is of the Kanamori type
[22] and takes into account intra- and interorbital electron-
electron repulsion, spin-flip, and pair-hopping terms, with a
negative (inverted) Hund’s coupling JH resulting from the
competition between the Hund’s coupling and the Jahn-Teller
intramolecular interactions [16]. The explicit expression of the
local Hamiltonian reads

Hloc =
∑

α

Uαniα↑niα↓ + (U − 2JH )
∑
α �=α′

niα↑niα′↓

+ (U−3JH )
∑

α<α′σ

niασ niα′σ +JH

∑
α �=α′

c
†
iα↑c

†
iα′↓ciα↓ciα′↑

+ JH

∑
α �=α′

c
†
iα↑c

†
iα↓ciα′↓ciα′↑, (2)

where α,α′, and σ indices indicate orbital and spin degrees of
freedom, respectively.

At equilibrium the interaction terms on each orbital
are degenerate Uα = U . The phonon excitation induces
the modification of the local interactions energies Uα due
to the coupling between the local electronic configurations and
the coordinate of the displaced phononic mode along a given
direction q(t) = A sin �t . In general, this is due to the fact that,
for an odd-parity mode, such as T1u, at the lowest order the
displaced phononic coordinate couples quadratically with the
local double-occupied states [20,21]. For a single-band case
this leads to an additional term in the local Hamiltonian,

He−ph ∝ q(t)2n↑n↓, (3)

meaning the oscillation of the local interaction with a fre-
quency 2� around a renormalized value due to the fact that
the square of the mode displacement has a finite average
〈q(t)2〉 �= 0. In the multiband case, neglecting contributions
coming from the coupling between different orbital electronic

configurations, Eq. (3) is generalized to

He−ph =
∑

α

Cαq(t)2nα↑nα↓

≡
∑

α

�Uα[1 − cos 2�t]nα↑nα↓, (4)

where the coefficients �Uα are specific properties of the
phononic mode and of the direction of excitation, determined
by the light-pulse polarization. Here we take advantage
of the first-principles results of Ref. [8] showing that the
displacement of the normal coordinate of the T1u mode along
a given direction leads to the removal of the orbital degeneracy
between Uα , leading to two orbitals with a smaller interaction
with respect to the third one. We insert this result in Eq. (4)
by considering �U = −[δU,δU,0], with δU > 0, so that the
intraorbital interaction terms in Eq. (2) become

Ux,y(t) = U − r(t)
δU

2
(1 − cos 2�t), Uz(t) = U, (5)

where r(t) is a smooth ramping function, defined as r(t) =
1/2 − 3/4 cos πt/τ + 1/4 cos3 πt/τ for t < τ and r(t) = 1
for t � τ , which phenomenologically takes into account the
time τ during which the modulation of U is switched on.

We implemented and used the time-dependent Gutzwiller
approximation [23,24] extended to the multiband supercon-
ducting case [25–27]. The method is based on the variational
ansatz for the time-evolved state,

|�(t)〉 

∏

i

Pi(t)|�0(t)〉, (6)

where |�0(t)〉 is an uncorrelated wave function describing
the coherent quasiparticle dynamics and P(t) is a projector
onto the local Hilbert spaces giving the weights of the
local atomic multiplets. The dynamics of both quantities
are determined via the time-dependent variational principle
δ
∫ 〈�(t)|i∂t − H |�(t)〉 = 0. At equilibrium the variational

ansatz (6) is equivalent to the rotationally invariant slave-boson
technique [28], which has already been successfully used to
describe equilibrium strongly correlated SC in the present
model [29].

The method is extended to the finite-temperature case by
the introduction of a time-dependent variational density matrix
[30,31],

ρ(t) = P(t)ρ∗(t)P(t)†, (7)

where the projector P(t) has the same definition as in
(6) and ρ∗(t) = ∑

n pn|�n(t)〉〈�n(t)| is the density matrix
corresponding to a complete set of uncorrelated states |�n(t)〉
and a distribution pn. The dynamical equations for (7) are
obtained by applying the finite-temperature generalization of
the Dirac-Frenkel variational principle [32]. They are solved
numerically, with an initial condition corresponding to the
equilibrium thermal state. Details about the methods are
reported in the Appendix.

III. RESULTS

In the following we will consider a semicircular density of
states with a bandwidth W = 0.5 eV and take U = 0.5 eV
and JH = −0.02 eV. In the inset of Fig. 1(c) we show that at
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FIG. 1. Dynamics of the global order parameter for two driving
frequencies, � = 0.1875 eV (blue lines) and � = 0.15 eV (red lines),
at (a) zero temperature and (b) T = 58 K > Tc 
 42 K. (c) Transient
order parameter as a function of temperature. The color code is as in
(a). The shaded area highlights the regime for which SC is suppressed
below Tc and created above. For T < Tc (diamonds), where an almost
steady value is reached during the dynamics, we extract this value
taking a time average. For T > Tc (circles) we take the value of
the switched order parameter at t = 3 ps. Dashed lines are guides
to the eye. Inset: Zero-temperature order parameter as a function of
U . The star indicates the values of parameters considered in this work.

equilibrium this corresponds to a superconductor on the weak-
correlation side of the superconducting dome determined by
the electron-electron repulsion U in the model (1). This is
consistent with, e.g., the pressure dependence of Tc observed
experimentally for K3C60 [33]. We take the modulation
frequency � as an adjustable parameter in a range reasonably
including the typical frequencies of T1u modes, and we fix
δU/U = 0.1. We choose a ramping time τ = 0.9 ps. The
following results do not depend qualitatively on this choice.

In Figs. 1(a) and 1(b), we plot the dynamics of the orbital
averaged amplitude of the order parameter Psc = ∑

α P α
sc/3,

where P α
sc = |〈c†α,↑c

†
α,↓〉|, for two different driving frequencies

and at two temperatures below and above the equilibrium
critical temperature Tc 
 42 K [T = 0 K in Fig. 1(a) and
T = 58 K in Fig. 1(b)]. A tiny symmetry-breaking field is
introduced for T > Tc to allow SC to develop [34].

For the larger driving frequency (� = 0.1875 eV), we
observe the increase in the superconducting order parameter
at zero temperature and the formation of a finite order pa-
rameter for T > Tc. This establishes that the SC-enhancement
mechanism based on the imbalance of U does apply out of
equilibrium. In particular, the formation of a finite order pa-
rameter above Tc signals that the initial normal metal becomes
an unstable state due to the increase in the critical temperature
induced by the average perturbation. Both enhancement of
the order parameter below Tc and its formation for T > Tc

are expected from the equilibrium predictions of the average
interaction imbalance, and they are due to the energetic
stabilization of the local multiplets with a singlet pair in the x

or y orbitals [8].
We notice that, in principle, the continuous modulation of

the interactions might lead to a continuous energy absorption
inside the system which would eventually destroy the transient
superconducting state. However, the persistence of the super-
conducting state as long as the interaction modulation is active
suggests that no sizable energy absorption occurs in this case.
In the following we show that this strongly depends on the
frequency of the interaction modulation.

The strong deviation from the above equilibrium expec-
tations is observed when the driving frequency is lowered
to � = 0.15 eV. Starting from the superconducting state,
the order parameter undergoes a decrease instead of the
expected increase. On the other hand, a finite order parameter
is still established above the critical temperature, although
its amplitude is smaller than the one established for � =
0.1875 eV.

In Fig. 1(c) we compare the transient order parameter
as a function of the initial temperature to the equilibrium
one. The former is extracted as a time average over the
time interval �t = tmax − tmin, P sc = ∫ tmax

tmin
dτPsc(τ )/�t , for

T = 0 K, while we estimate it for T > Tc from the value it
takes at t = 3 ps. For � = 0.1875 eV, the nonequilibrium
perturbation enhances SC for all temperatures, up to about
T � 100 K, way above equilibrium Tc. On the contrary, the
� = 0.15 eV case shows a remarkable suppression of SC for
T < Tc and the formation of SC up to temperatures slightly
below the previous case, T � 90 K.

The above results show that at the frequency � = 0.15 eV
the dynamical modulation of the interaction leads to the
suppression of the order parameter with respect to the value
expected from the sole interaction imbalance. This strongly
suggests that some energy absorption due to the continuous
modulation of the interaction occurs at this value of the
driving frequency. In order to obtain insights into this, we
study the orbital-resolved dynamics of the zero-temperature
superconductivity at three increasing frequencies (Fig. 2).
We compare it to the time evolution obtained by an imbalance
of U equal to the average of the modulated case (5) switched on
during the same ramp time Ux,y(t) = U − r(t)δU/2, hereafter
called unmodulated dynamics.

The imbalance of U lifts the orbital degeneracy between the
components of the superconducting order parameter P α

sc. For
the slowest driving frequency [� = 0.0625eV in Fig. 2(a)] the
order parameter components display an oscillating behavior
with a fast component ω = 2� which reflects the periodical
modulation of Uα and a slower component related to the am-
plitude of the superconducting gap. Only the slow component
is retained in the case of the unmodulated dynamics (dashed
lines).

In both cases a global enhancement of the order parameter
is observed, although it is smaller with respect to what is
expected from the equilibrium imbalanced case (see arrows
in Fig. 2). This is understood from the fact that the average
interaction imbalance is switched on in a finite time, whereas
the equilibrium limit is expected to be recovered for an
infinitely slow switching.
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FIG. 2. Zero-temperature dynamics of the order parameter am-
plitude for x,y orbitals (red lines) and the z orbital (blue lines).
Driving frequencies (a) � = 0.0625 eV, (b) � = 0.125 eV, and (c)
� = 0.1875 eV. Dashed lines show unmodulated dynamics after the
switching of a constant imbalance of U equal to the average of the
periodic modulation (see text). The arrows represent the expected
equilibrium order parameters corresponding to the average interaction
imbalance.

We notice that the modulated and unmodulated dynamics
tend to separate at long times (t � 1.5 ps), where a larger order
parameter is established in the latter case. This suggests that the
effect of the continuous interaction modulation induces some
energy absorption inside the system, leading to a slow decrease
of the order parameter at long times. As already anticipated,
this effect is strongly dependent on the modulation frequency,
and it is almost absent at the larger driving frequency [� =
0.1875 eV in Fig. 2(c)], where the modulated and unmodulated
dynamics become almost equivalent, with the only difference
being the fast oscillations of small amplitude in the modulated
case.

A dramatic effect of the dynamical modulation occurs at
intermediate frequencies. This is clearly seen in Fig. 2(b)
for the driving frequency � = 0.125 eV, where the periodic
modulation leads, in sharp contrast to the average interaction
imbalance, to an almost complete suppression of the supercon-
ducting order already for times of the order of the ramping τ .

The nonmonotonic response of the transient state to the
frequency of the interaction modulation is summarized in
Fig. 3, where we report the existence of the frequency
range 0.09 eV � � � 0.16 eV, in which SC is suppressed
instead of enhanced. This frequency range exists between a
lower-frequency region in which the enhancement of SC is
smaller than the case of the unmodulated dynamics and a
higher-frequency region in which the perturbation becomes
completely antiadiabatic with respect to the periodic change
of U and thus coincides with the unmodulated one.

We trace back the origin of the behavior observed in
the different regimes to the doublon excitations induced
by the periodic modulation of U . Figures 3(b)–3(d) display

FIG. 3. (a) Stationary zero-temperature superconducting order
parameter normalized by the equilibrium value as a function of the
driving frequency. Dashed lines show the stationary order parameter
for the constant U -imbalance dynamics. Arrows show the transient
states considered in Fig. 2 and in (b)–(d). The dotted line represents
the equilibrium value. The shaded area represents the spectrum of
excitations of the nonequilibrium doublons (see text). Dynamics
of the average number of intraorbital double occupations for the
driving frequencies (b) � = 0.0625 eV, (c) � = 0.125 eV, and (d)
� = 0.1875 eV and the constant U imbalance (dashed lines). (e)
Dynamics of the internal energies for the three frequencies in (b)–(d)
(see arrows).

the dynamics of the double occupancies on each orbital
Dα = 〈nα↑nα↓〉 for the three frequencies representative of
the different regimes. Due to the asymmetric value of the
interaction the number of pairs is enhanced in the (x,y)
orbital and lowered in the (z) orbital. However, the dynamics
is markedly different in the different regimes of frequency.
At small and large frequencies [Figs. 3(b) and 3(d)], the
dynamics closely follows the unmodulated one with super-
imposed 2� oscillations indicating the creation of double
occupancies on top of the orbitally imbalanced populations of
nonequilibrium doublons. Such a process becomes resonant
in the intermediate-frequency regime [Fig. 3(c)] where the
strong amplification of the doublons oscillations is observed.
As shown by the dynamics of the system’s internal energy
E(t) = 〈H〉 [Fig. 3(e)], such a large number of excitations
leads to a sizable energy absorption, which suppresses SC
with respect to what is expected for the unmodulated dynamics
[dashed line in Fig. 3(a)].

This shows that the energy absorption induced by the
modulation frequency is responsible for the superconductivity
suppression in the frequency region 0.09 eV � � � 0.16 eV.
We find that the origin of such behavior is the resonance
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between the modulation frequency 2� and the spectrum of
the nonequilibrium excitations of the orbitally imbalanced
populations of doublons induced by the asymmetric interaction
[shaded area in Fig. 3(a)]. Such a spectrum is extracted from
the frequency spectrum FD of the dynamics of doublons
following the sudden switch of a fixed U imbalance, Ux,y(t) =
U − θ (t)δU [35]. We compute FD at fixed δU and then
integrate over a window equal to the amplitude of the
interaction imbalance considered in the modulated dynamics
0 < δU < 0.05 eV. The resulting spectrum has a broad three-
peak structure which exactly matches the frequency region for
which SC is suppressed.

An investigation of the structure of the spectrum revealed
that the two sidebands mainly depend on the value of JH

and disappear for JH = 0, indicating processes of interorbital
origin. On the other hand, the central peak weakly depends on
JH and decreases with U (not shown), suggesting processes
within the renormalized quasiparticle bandwidth, as expected
from the fact that the number of excited doublons is in a small
quench regime (δU/U = 0.1).

We finally observe that, as already anticipated in the
discussion of Fig. 2, away from the resonance a small energy
absorption is present for the slow-driving case, whereas
it is almost negligible for the fast one. This reflects the
mismatch between the modulated and unmodulated dynamics
for frequencies smaller than the resonance.

IV. DISCUSSION

The above results show that the dynamical modulation of
the interaction that can be induced by the excitation of a
molecular vibration may lead to significantly different effects
compared to equilibrium. This is due to energy absorption
effects, which in the present case of interest are particularly
evident in a range of driving frequency for which the
modulation is resonant with the characteristic energies of the
induced nonequilibrium excitations.

In such a region the effect of modulation competes with
the effect of the interaction imbalance. The average imbalance
favors the formation of a transient superconducting state with a
larger order parameter extending much beyond the equilibrium
critical temperature, while the time-dependent modulation
induces energy absorption into the system. The latter effect
may lead to a depletion of the initial superconducting state,
but in spite of this, it does not preclude the SC order parameter
from becoming finite above the equilibrium Tc due to the
former, although with a smaller value with respect to the
case in which the equivalence between the modulated and
unmodulated dynamics is established. Therefore, the signature
of a transient SC state above Tc may survive also in the region
where pairs are resonantly excited, as shown in Fig. 1 for
� = 0.15 eV, thus realizing a nontrivial dynamical response
for which SC is dynamically extended beyond Tc and not
enhanced for T < Tc.

In connection to the light-induced transient response in
K3C60, we stress that our results are based on the assumption
that the main effect of the light pulse is the excitation of the
T1u phonon mode that in turn leads to the discussed interaction
imbalance modulation. While this is not the only possible
outcome of the light excitation and other types of excitation,

FIG. 4. Enhancement of superconductivity as a function of the
amplitude of the interaction imbalance. � = 0.1875 eV.

e.g., of electronic origin [36], may play an important role, the
above observations show that the discussed mechanism is a
valid source for a transient superconductivity response above
Tc in alkali-doped fullerides.

Support for the considered mechanism comes from the fact
that the superconductinglike transient response is observed for
frequencies close to the phononic ones and for large enough
laser fluence (�1 mJ cm−2). Under the present assumption,
the latter can be understood considering that a larger laser
fluence translates into a larger displacement of the phonon
mode and therefore to a larger amplitude of the interaction
imbalance. As shown in Fig. 4, a larger interaction amplitude
imbalance δU/U = 0.2 leads to an enhancement of the
discussed effects, correctly describing, on a qualitative level,
the experimental dependence of the transient state on the
laser fluence. In this respect, it should be noticed that the
value of the interaction imbalance amplitude considered in this
minimal model δU/U = 0.1 might be an overestimation of the
distortion that can be induced in a more realistic description
of fullerides [8].

An important aspect of our theoretical results is that, in a
frequency regime, the dynamical response to the modulation
can be different when the initial state is a superconducting
state at T < Tc and a normal state at T > Tc. With respect
to the available experimental observations [6,37] we mention
that a similar effect has been observed in Ref. [6], where no
enhancement of the transient superconducting gap below Tc

was reported.
All the above elements emphasize the relevance of the

present mechanism for the description of the transient response
of stimulated fullerides. Despite this, additional evidence is
needed in order to fully clarify the origin of such a light-
induced transient state. In this respect, experiments changing
the alkali atom, such as the Mott-insulating compound Cs3C60,
might be useful for detecting possible transient changes in
the electronic correlations induced by the light pulse. At the
same time an extensive frequency-dependence investigation
of the transient response below and above Tc would be useful
to better highlight the possible differences between the two
cases, as described by our results.

In conclusion we have investigated the nonequilibrium
dynamics of a minimal model describing SC in alkali-
doped fullerides subject to the orbital asymmetric periodic
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modulation of the local interaction energies. This perturbation
results from the assumption that the effect of the light pulse is
the excitation of a local vibrational mode and it is known
to enhance SC at equilibrium [8]. We showed that this
leads to the dynamical formation of a superconducting state
extending beyond the equilibrium critical temperature Tc. Due
to the correlated nature of such systems we showed that the
transient state, while extending SC beyond Tc, may show
no significant enhancement of the superconducting properties
below Tc where a SC suppression can even occur. This captures
some nontrivial observations in the light-induced response of
K3C60 which validate the mechanism as a possible source of
light-induced SC in these systems.
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APPENDIX: GUTZWILLER APPROXIMATION
FOR MULTIBAND SUPERCONDUCTIVITY

In this Appendix we give some details of the time-
dependent variational approach used to study the dynamics
in the present model. For a detailed general formulation of the
time-dependent Gutzwiller approximation we refer the reader
to Ref. [24]. In the following we will discuss the extension to
the present multiband superconducting case.

1. General formulation

We consider the Hamiltonian defined in Sec. II, which we
divide into a hopping part H0 = ∑

〈i,j〉
∑

αβ t
α,β

i,j c
†
iαcjβ and the

local interaction Hloc defined in Eq. (2). Greek indices include
both orbital and spin degrees of freedom.

The dynamics is described starting from the following
ansatz for the time-evolving wave function:

|�(t)〉 ≡
∏

i

Pi(t)|�0(t)〉. (A1)

|�0(t)〉 is a single-particle wave function which is meant to
describe the dynamics of delocalized quasiparticles, and Pi(t)
are operators acting on the local Hilbert space defined by the
Fock states |�,i〉.

The variational dynamics is determined by the time-
dependent variational principle

δ

∫
〈�(t)|i∂t − H|�(t)〉 = 0. (A2)

An exact expression for the Lagrangian defining the above
variational principle can be analytically obtained in the limit
of infinite lattice coordination once the following constraints
are imposed on the variational ansatz at each time t :

〈�0(t)|P†
i (t)Pi(t)|�0(t)〉 = 1, (A3)

〈�0(t)|P†
i (t)Pi(t)ρ̂

N,A
i |�0(t)〉 = 〈�0(t)|ρ̂N,S

i |�0(t)〉, (A4)

where ρ̂
N,A
i are the normal (N) and anomalous (A) components

of the local single-particle density matrix defined as[
ρ̂N

i

]
α,β

= c
†
iαciβ, (A5)[

ρ̂A
i

]
α,β

= c
†
iαc

†
iβ . (A6)

A convenient representation of the local projectors is
obtained in the so-called mixed original-natural basis repre-
sentation

Pi =
∑
�,n

ϕi,�n(t)|�,i〉〈n,i|, (A7)

where |n,i〉 are the Fock states in the natural basis defined by a
new set of creation and annihilation operators d

†
i,αdi,α for which

the expectation values of the local single-particle density ma-
trix onto the uncorrelated wave function |�0(t)〉 are diagonal
for the normal component and zero for the anomalous one,

〈�0(t)|d†
iαdiβ |�0(t)〉 = δα,βn0

iα(t), (A8)

〈�0(t)|d†
iαd

†
iβ |�0(t)〉 = 0 ∀α,β. (A9)

The elements ϕi,�n(t) are the set of local variational parameters
defining the projectors Pi , and they can be rewritten in the
more convenient form

ϕi,�n(t) = �i,�n(t)√
P 0

n,i(t)
, (A10)

where P 0
n,i are the diagonal occupation probabilities of the

uncorrelated wave function of the local Fock states in the
natural basis, expressed in terms of the variational density
matrix n0

i,α(t),

P 0
n,i(t) = 〈�0(t)||n,i〉〈n,i||�0(t)〉

=
∏
α

n0
i,α(t)nα

[
1 − n0

i,α(t)
]1−nα

. (A11)

The matrices �̂i , with elements �i,�n, contain the set of
all the local variational parameters. In the present spatial
homogeneous case all the �̂i matrices are equal, and we
neglect the site index i.

With the above definitions the constraints can be written in
terms of the local matrices �̂,

Tr[�†(t)�(t)] = 1, (A12)

Tr[�†(t)�(t)d†
iαdiβ] = 〈�0(t)|d†

iαdiβ |�0(t)〉 = δαβn0
α,

(A13)

Tr[�†(t)�(t)d†
iαd

†
iβ] = 〈�0(t)|d†

iαd
†
iβ |�0(t)〉 = 0. (A14)

Plugging the above definitions into the expression of the
Lagrangian L(t) = 〈�(t)|i∂t − H|�(t)〉 and imposing the
condition δ

∫ t

0 dτL(τ ) = 0, the following equations of motion
are obtained [24]:

i∂t �̂(t) = Hloc(t)�̂(t) + 〈�0(t)|δH�[�̂]

δ�̂†(t)
|�0(t)〉, (A15)

i∂t |�0(t)〉 = H�[�̂]|�0(t)〉. (A16)
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Hloc is the original time-dependent local Hamiltonian, and
H�[�̂] is a quadratic Hamiltonian which is obtained from
the original tight-binding Hamiltonian H0 upon the following
transformation of the fermionic operators:

ciα →
∑

β

Rαβ[�]diβ + Qαβ[�]d†
iβ . (A17)

The transformation matrices R[�̂(t)] and Q[�̂(t)] entering in
Eq. (A17) depend on time through the local matrices �̂(t), and
their explicit expressions read

Rαβ[�̂] = 1√
n0

β(t)
(
1 − n0

β(t)
)Tr[�̂†(t)ciα�̂(t)d†

iβ], (A18)

Qαβ[�̂] = 1√
n0

β(t)
(
1 − n0

β(t)
)Tr[�̂†(t)ciα�̂(t)diβ]. (A19)

With the above substitution the quasiparticle Hamiltonian H�

acquires the general matrix form

H� =
∑

k

�
†
k

(
R† t̂kR R† t̂kQ
Q† t̂kR Q† t̂kQ

)
�k, (A20)

where �
†
k = (d†

k,1,d
†
k,2, . . . ,d

†
k,N ,dk,1,dk,2, . . . ,dk,N ) and t̂k is

the discrete Fourier transform of the hopping matrix elements
in the Hamiltonian H0.

The coupled equations of motion (A15) and (A16) describe,
respectively, the dynamics of the local degrees of freedom
and of the delocalized quasiparticles. The two dynamics are
coupled in a mean-field way in which each degree of freedom
provides an effective field for the other, implying a mutual
feedback between the localized and delocalized degrees of
freedom. This is a big improvement of the present method
with respect to standard mean-field (Hartree-Fock) approaches
in which only the delocalized quasiparticles are described.
For this reason the method is able to capture correlation
effects beyond the mean field, such as the strongly correlated
superconductivity discussed in the present case.

2. An explicit implementation

We now explicitly illustrate the implementation of the above
general formulation for the three-orbital model discussed in the
main text in the presence of superconductivity.

The variational wave function depends on the choice of the
variational matrix �̂ defined in the mixed basis of original and
natural Fock states. In the three-orbital case the dimension of
the local Hilbert space is 64, so that in total 64 × 64 = 4096
variational parameters are contained in �̂. Such a large number
of variational parameters is conveniently reduced by exploiting
the symmetries of the Hamiltonian, as described in Ref. [25].

The original Hamiltonian has a U (1) × SU (2) × O(3) sym-
metry corresponding to charge conservation and invariance
with respect to spin and orbital rotations, respectively. This
can be readily appreciated by writing the local Hamiltonian in
terms of the charge operators N and the spin S and orbital L
rotations generators [38]:

Hloc = U − 3JH

2
N̂ (N̂ − 1) − 2JH S2 − J

2
L2 + 5

2
JH N̂,

(A21)

where, restoring the separation between orbital and spin
indices, N̂ = ∑

aσ c
†
aσ caσ , S = 1

2

∑
a

∑
σσ ′ c

†
aσ τ σσ ′caσ , and

La = i
∑

bc

∑
σ εabcc

†
bσ ccσ ; τ are Pauli matrices; and εabc is

the Levi-Civita tensor.
In order to describe superconductivity we break the U (1)

symmetry, which corresponds to allowing for nonzero �̂

matrix elements between states with different numbers of
particles. In such a situation, the matrix Q defined in Eq. (A19)
is nonzero, so that the quasiparticle Hamiltonian becomes an
effective multiband BCS Hamiltonian. The removal of the
orbital degeneracy introduced by the imbalanced interaction
terms explicitly breaks the O(3) symmetry, so that only the
SU (2) symmetry is left. We impose the SU (2) symmetry onto
the �̂ matrix following the method outlined in Ref. [25]. This
leads to N� = 429 independent variational parameters.

The �̂ matrix can be expanded onto a basis of N� matrices
satisfying

Tr(�̂†
k�̂k′) = δk,k′ , k,k′ = 1, . . . ,N�, (A22)

so that all the information about the variational parameters can
be stored in a time-dependent vector of complex number |α(t)〉
of dimension N� [25]:

�̂(t) =
N�∑
k=1

αk(t)�̂k. (A23)

Next, we define the matrices of dimension N� × N� contain-
ing the possible combinations of traces over the matrix basis
�̂k , [

ρ̂N
αβ

]
k,k′ = Tr(�̂†

k�̂k′c†αcβ), (A24)[
ρ̂S

αβ

]
k,k′ = Tr(�̂†

k�̂k′c†αc
†
β), (A25)

[r̂αβ]k,k′ = Tr(�̂†
kciα�̂k′d

†
iβ), (A26)

[q̂αβ]k,k′ = Tr(�̂†
kciα�̂k′diβ), (A27)

[Ôi]k,k′ = Tr(�̂†
kOi �̂k′), (A28)

where Oi represents any local many-body operator.
With the above definitions the constraints and the hopping

renormalization matrices R and Q become

〈α(t)|α(t)〉 = 1, (A29)

〈α(t)|ρ̂N
α,β |α(t)〉 = δαβn0

α(t), (A30)

〈α(t)|ρ̂A
α,β |α(t)〉 = 0 ∀α,β, (A31)

Rα,β (t) = 〈α(t)|r̂α,β |α(t)〉√
n0

β(t)
[
1 − n0

β(t)
] , (A32)

Qα,β(t) = 〈α(t)|q̂α,β |α(t)〉√
n0

β(t)
[
1 − n0

β(t)
] . (A33)

Inserting the above definitions in the evolution of the �̂ matrix
[Eq. (A15)], we obtain the time evolution in terms of the |α(t)〉
vector:

i∂t |α(t)〉 = Ĥloc(t)|α(t)〉. (A34)
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Ĥloc(t) is the N� × N� Hamiltonian, defined as follows:

[H̃loc(t)]k,k′ = [Hloc(t)]k,k′ +
∑
αβ

Dαβ

⎧⎨
⎩ 1√

n0
β(t)

[
1 − n0

β(t)
] [r̂α,β]k,k′ − 1 − 2n0

β (t)

2n0
β(t)

[
1 − n0

β(t)
] [

ρ̂N
αβ

]
k,k′

⎫⎬
⎭ + H.c.

+
∑
αβ

Sαβ

⎧⎨
⎩ 1√

n0
β(t)

[
1 − n0

β(t)
] [q̂α,β]k,k′ − 1 − 2n0

β(t)

2n0
β(t)

[
1 − n0

β(t)
][

ρ̂A
αβ

]
k,k′

⎫⎬
⎭ + H.c. (A35)

The matrices D and S are defined through the occupations on the quasiparticle wave function |�0(t)〉:
Dαβ =

∑
kγ

[R† t̂k]γα〈�0(t)|d†
kγ dkβ |�0(t)〉 + [Q† t̂k]γα〈�0(t)|dkγ dkβ |�0(t)〉, (A36)

Sαβ =
∑
kγ

[R† t̂k]γα〈�0(t)|d†
kγ d

†
kβ |�0(t)〉 + [Q† t̂k]γα〈�0(t)|dkγ d

†
kβ |�0(t)〉. (A37)

The dynamics described by Eq. (A34) is coupled to
the dynamics of the wave function |�0(t)〉 [Eq. (A16)],
which can be fully expressed through the dynamics of the
occupations �

α,β

k (t) = 〈�0(t)|d†
kαdkβ |�0(t)〉 and �

α,β

k (t) =
〈�0(t)|d†

kαd
†
kβ |�0(t)〉:

i∂t�
α,β

k (t) = 〈�0(t)|[d†
kαdkβ,H�]|�0(t)〉, (A38)

i∂t�
α,β

k (t) = 〈�0(t)|[d†
kαd

†
kβ,H�]|�0(t)〉. (A39)

The system of coupled equations (A34), (A38), and (A39) fully
describes the dynamics within the variational ansatz (A1) in a
lattice with an infinite coordination number.

The number of coupled differential equations is further
reduced by the fact that in the present case the hopping matrix
is diagonal in both spin and orbital indices and we consider
only the possibility of intraorbital pairing. This means that
�

α,β

k = δα,β�α
k and �

α,β

k = δa,b(1 − δσσ ′)�aσ,aσ ′
k , where in the

last case we separated orbital (a,b) and spin (σ,σ ′) degrees of
freedom. Moreover, the matrix R is diagonal in both orbital
and spin indices, while the matrix Q is diagonal in the orbital
index and couples only states with opposite spin.

The dynamics is unitary and preserves the normalization
and the density constraints (A29)–(A30), so that they need to
be enforced only at equilibrium. On the contrary, we found that
the constraint on the anomalous density is no longer conserved
by the unitary dynamics as the particle-hole symmetry is lifted
by the imbalanced interaction. In that case we introduce a set of
time-dependent Lagrange multipliers enforcing the constraints
at each time step.

The equations of motion are solved using the explicit fourth-
order Runge-Kutta method with a time discretization δt =
0.01 starting from the variational estimation of the equilibrium
ground state. The latter is obtained from the stationary limit of
the equations of motion

�|α〉 = H̃loc|α〉, (A40)

E�|�0〉 = H�|�0〉. (A41)

This corresponds to finding the ground state of a nonlinear
eigenvalue problem with appropriate Lagrange parameters
enforcing the constraints at t = 0. This can be done recursively

at a fixed value of the variational density matrix n0 [25].
Therefore, a full minimization of the obtained ground-state
energy with respect to n0 gives the variational estimation of
the ground-state energy.

3. Finite temperature

The finite-temperature extension closely follows the zero-
temperature one, where the variational ansatz for the time-
evolving ground state is replaced by the ansatz for the time-
dependent density matrix,

ρ(t) =
∑

n

pn|�n(t)〉〈�n(t)|

=
∑

n

pnP(t)|�0,n(t)〉〈�0,n(t)|P†(t)

= P(t)ρ�(t)P†(t); (A42)

namely, the Gutzwiller projection is done on each uncorrelated
state |�0,n(t)〉 describing an uncorrelated density matrix
ρ�(t) = ∑

n pn|�0,n(t)〉〈�0,n(t)| through the distribution pn.
The Dirac-Frenkel extension of the time-dependent variational
principle reads

δ

∫ ∑
n

pn〈�n(t)|i∂t − H|�n(t)〉 = 0. (A43)

With the same definitions of projectors and constraints as in the
previous section the equations of motion are equivalent to the
zero-temperature case with the averages of the uncorrelated
wave function replaced by traces over the uncorrelated density
matrix,

i∂t �̂(t) = Hloc�̂(t) +
∑

n

pn〈�0,n(t)|δH�[�̂]

δ�̂†(t)
|�0,n(t)〉,

(A44)

i∂t |�0,n(t)〉 = H�[�̂]|�0,n(t)〉. (A45)

A practical solution of Eqs. (A44) and (A45) is obtained by
starting with the initial estimation of the finite-temperature
expectation values for the quasiparticle occupations �

α,β

k (t) =
Tr[ρ�(t)d†

kαdkβ] and �
α,β

k (t) = Tr[ρ�(t)d†
kαd

†
kβ], leading to the
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following equations of motion:

i∂t�
α,β

k (t) = Tr{ρ�(t)[d†
kαdkβ,H�]}, (A46)

i∂t�
α,β

k (t) = Tr{ρ�(t)[d†
kαd

†
kβ,H�]}, (A47)

which can be written only in terms of combinations of �
α,β

k and
�

α,β

k . Therefore, the explicit time evolution for each |�0,n(t)〉
[Eq. (A45)] is, in practice, not needed, and the distribution pn

is defined once and for all by the initial variational estimation
of the thermal state.

The initial thermal state is obtained by minimizing the
variational estimation of the free energy [30]. In doing so,
for a simplification of the minimization procedure, we neglect
the contribution coming from the entropy of the local degrees
of freedom. This is a reasonable approximation since we focus
on the weak-coupling side of the superconducting dome far
from the Mott transition, where the contribution of the entropy
of the local degrees of freedom is small. Its inclusion would
lead to a weak renormalization of the equilibrium transition
temperature, but no qualitative difference in the dynamics
is expected with respect to what was reported in the main
text.
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