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Superconductor-insulator transition in disordered Josephson-junction chains
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We study the superconductor-insulator quantum phase transition in disordered Josephson-junction chains. To
this end, we derive the field theory from the lattice model that describes a chain of superconducting islands
with a capacitive coupling to the ground (C0) as well as between the islands (C1). We analyze the theory in the
short-range (C1 � C0) and in the long-range (C1 � C0) limits. The transition to the insulating state is driven by
the proliferation of quantum phase slips. The most important source of disorder originates from trapped charges
in the substrate that suppress the coherence of phase slips, thus favoring superconducting correlations. Using the
renormalization-group approach, we determine the phase diagram and evaluate the temperature dependence of
the dc conductivity and system-size dependence of the resistance around the superconductor-insulator transition.
These dependences have in general strongly nonmonotonic character, with several distinct regimes reflecting an
intricate interplay of superconductivity and disorder.
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I. INTRODUCTION

One-dimensional (1D) Josephson-junction (JJ) chains show
a remarkably rich physics. In the insulating regime, the
Coulomb blockade for Cooper-pair tunneling can be observed
[1]. This effect is characterized by a zero current state below
a certain threshold voltage at zero temperature T . At T �= 0,
thermally activated hopping of Cooper pairs has been observed
[2]. Above the threshold voltage, transport is governed by
charge solitons [3], kinklike excitations that show relativistic
effects like Lorentz contraction. Furthermore, in the case of
strong charge disorder, depinning effects are the dominant
mechanism for the onset of transport above the threshold
voltage [4]. In the conducting regime, where the Josephson
energy dominates over the charging energy, the current-voltage
curve shows a supercurrentlike behavior at low bias voltages
and a constant current at higher voltages [5,6].

Another interesting effect is the persistent current that
arises if a closed chain is pierced by a magnetic flux [7–
9]. In the classical regime of large Josephson coupling, a
sawtoothlike shape of the current-phase relation is found,
with a rounding near the transition points due to quantum
fluctuations originating from a finite charging energy. In the
limit of strong fluctuations, the relation develops a sinusoidal
shape. The most important fluctuations leading to this behavior
are quantum phase slips (QPS)—processes in which the
phase difference across the ring changes by 2π . Quantum
phase slips are also vital for a number of recently suggested
applications of 1D JJ chains in the context of metrology [10]
and decoherence-protected quantum computations [11–16].

Using a SQUID geometry enables tuning of the Josephson
energy in situ by applying a perpendicular magnetic field.
This provides a convenient way for exploration of the
superconductor-insulator transition (SIT) [17–21]. An early
theoretical description of JJ chains was introduced by Bradley
and Doniach [22] who considered a model with capacitive

coupling to the ground that can be mapped onto a
two-dimensional (2D) XY model showing a Berezinskii-
Kosterlitz-Thoulesss (BKT) transition [23–25]. An alternative
model, with junction capacitances only, was considered in
Ref. [26]. This model is characterized by insulating behavior
independent of the Josephson energy since quantum fluctua-
tions destroy phase coherence. In later works, the theory of
Ref. [22] has been extended by including dissipation [27–29]
and considering both capacitive couplings (to the ground and
between the islands) [9,27,30]. Also, a connection to the
Luttinger-liquid physics has been pointed out [31–33]. Effects
of disorder in JJ chains were studied in the context of persistent
current [7,13]. It was found, in particular, that random offset
charges destroy the coherence of QPS leading to a weaker
decay of the amplitude of the supercurrent in chains with ring
structure. One thus may expect that disorder should play an
important role also for the physics of SIT in JJ chains.

The SIT is a remarkable quantum phase transition which
separates two antagonist phases—the superconducting one
with zero resistivity and the insulating one with infinite re-
sistivity. The SIT arises naturally in low-dimensional systems,
i.e., in 1D and 2D geometry, since the Anderson localization
precludes, under conventional circumstances, the emergence
of an intermediate metallic phase. A particularly large body
of work has been carried out on SIT in 2D geometry.
Specifically, such a transition was studied experimentally in
a large variety of 2D structures and materials, including JJ
arrays [34,35], amorphous Bi and Pb [36,37], MoC [38],
MoGe [39], Ta [40], InO [41–46], NbN [47] and TiN films
[48–50], LaAlO3/SrTiO3 interfaces [51,52], SrTiO3 surfaces
[53,54], MoS2 flakes [55,56], FeSe thin films [57], LaSrCuO
surfaces [58], LixZrNCl layered materials [59], as well as
graphene-based hybrids [60]; see also the reviews [31,61].
The experimental studies were complemented by a large
body of theoretical work [62–65]. A theory by Fisher and
co-authors [62] describing SIT in terms of vortex condensation
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and invoking duality between the charge and vortex physics
predicted a single-parameter scaling near the SIT, with a
universal resistance h/4e2 at the transition. These predictions,
are however, in disagreement with many experiments. The
actual physics near the SIT is in general more complex
and includes also a mutual influence (renormalization) of
disorder (that controls the localization effects) and interactions
in different channels. The corresponding RG formalism was
developed by Finkelstein [63] and extended recently in
Ref. [65].

Experimental investigations of SIT in 1D geometry are
more scarce. In addition to experiments on JJ chains [17–21]
mentioned above, the SIT was studied on MoGe nanowires
[66–68]. The theory of destruction of superconductivity by
QPS in nanowires was developed in Ref. [69], see also Ref. [70]
for a review. On the qualitative level, the experimental obser-
vation of the SIT in 1D structures is consistent with theoretical
expectations. On the other hand, attempts to identify the
parameter controlling the transition and to characterize the
scaling near the SIT in experimental works—both on JJ arrays
and on nanowires—have led to contradictory conclusions,
largely inconsistent with previous theories.

Thus, further work, both theoretical and experimental, is
needed in order to understand the physics of SIT in 1D
systems, which served as one of the motivations for the present
paper. On the theory side, one can anticipate, in view of the
importance of disorder for the SIT in 2D geometry, that it may
play an important role for the physics of SIT in 1D systems
as well. With these motivations, we investigate in the present
work the influence of disorder on the SIT in JJ chains. Our main
goals are to determine the SIT phase diagram and to calculate
the temperature and length dependence of the conductivity
of a disordered JJ chain around the SIT. While we focus on
the JJ chain model, we expect that our results should be to a
large extent applicable also to a broader class of 1D systems
undergoing the SIT.

We consider a generic model with a capacitive coupling to
the ground (C0) and between the islands (C1) and study both
the cases of short-range (C1 � C0) and long-range (C1 �
C0) Coulomb interaction. Incorporating QPS fluctuations and
including the effect of random offset charges, we map the
lattice model in the low-energy regime to the sine-Gordon
theory. We further take into account a second type of disorder:
randomness in the QPS fugacity. Such randomness will
generically arise as a result of interplay of fluctuations in
the Josephson energy with random offset charges. Employing
the renormalization group (RG), we determine the phase
diagram of the system. As may be anticipated on the basis
of studies of the persistent current [7], random offset charges
weaken the effect of QPS, thus favoring superconducting
correlations. On the contrary, phase slips with random fugacity
are not weakened by random stray charges and thus widen
the regime of insulating behavior. Using the memory-function
framework, we calculate the temperature dependence of
resistivity ρ(T ) (in the long-system limit, N → ∞), as well
as the length dependence of the resistance of a finite chain,
R(N ). In the vicinity of the SIT, both these dependences
show pronounced nonmonotonic behavior, which reflects the
multifaceted physics of the problem at different energy and
length scales.

FIG. 1. Schematic depiction of a Josephson-junction chain. The
superconducting grains are coupled via tunnel barriers that provide a
capacitance C1 and are connected to the ground via capacitances C0.
The superconducting phase of an island i is denoted by θi and the
corresponding number of Cooper pairs by Ni .

The paper is structured as follows. In Sec. II we introduce
the lattice model and present its mapping, in the low-energy
sector, to a theory of sine-Gordon type. The case of short-range
interaction (C1 � C0) is considered in Sec. III. We first
analyze the RG equations (Sec. III A) and then study the
transport properties (Sec. III B). In Sec. IV we explore the
long-range-interaction limit, C0 � C1, relevant for most of
experimental realizations of JJ chains. Finally, in Sec. V we
summarize main results of the paper and compare our findings
to available experimental results.

II. MODEL

We consider a chain of superconducting islands that are
smaller than the bulk coherence length so that each of
them can be described by a single phase θ . The system is
sketched in Fig. 1. Weak links between the islands provide
Cooper-pair tunneling characterized by the Josephson energy
EJ. The Josephson coupling competes with charging effects
described by the capacitance matrix Cij which we assume to
contain on-site and nearest neighbor capacitances denoted by
C0 and C1, respectively. These two capacitances define two
charging energy scales E0 = (2e)2/C0 and E1 = (2e)2/C1.
The charging energy E0 plays a key role for the ultimate
long-scale behavior of the theory. In particular, a JJ chain is ex-
pected [22,30] to undergo a quantum superconductor-insulator
transition at K0 ≡ √

EJ/E0 ∼ 1. On the other hand, the
charging energy E1, while irrelevant in the case C0 � C1, has
strong impact on local properties of the system in the opposite
limit, C1 � C0. In particular, the parameter K1 ≡ √

EJ /E1

controls the superconducting correlations at distances shorter
than the screening length of the charge-charge interaction,
� = √

C1/C0 � 1.
It is convenient to introduce the dimensionless capacitance

matrix, Sij = Cij/C1, given by

Sij =
(

2 + 1

�2

)
δi,j − δi,j+1 − δi,j−1. (1)

The Hamiltonian of a clean JJ chain takes then the form

H = E1

2

∑
i,j

S−1
ij NiNj + EJ

∑
i

[1 − cos (θi − θi+1)], (2)

where Ni is the number of Cooper pairs on the ith is-
land canonically conjugate to the superconducting phase,
[Ni ,θj ] = iδi,j .

In this work we focus on low-energy properties of the model
(2) and of its generalizations (with disorder included) to be
introduced below. More precisely, we consider modes with
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momenta q � 1 (unless specified explicitly, we measure all
distances in units of the lattice spacing) and frequencies ω �
�0. Here the frequency cutoff (the width of the plasmonic
band)

�0 =
√

EJE1E0

E1 + E0
(3)

varies from the frequency u0 = √
EJE0 of phase oscillations

of a single grain to the plasma frequency associated to a single
Josephson junction, ωp = √

EJE1, as the Coulomb interaction
range � changes between zero and infinity.

The effective low-energy description of our model is
conveniently formulated in terms of the field φ(x) related to the
Cooper-pair density by πN (x) = −∂xφ(x) and, correspond-
ingly, obeying the commutation relation

[−∂xφ,θ (x ′)] = iπδ(x − x ′). (4)

On the Gaussian level, the (imaginary-time) action for φ reads

S0 = �0

2π2K

∫
dq

2π

dω

2π

[
ω2

�2
0

+ (1 + 1/�2)q2

q2 + 1/�2

]
|φ(q,ω)|2

(5)
and describes one-dimensional plasma waves with energy
dispersion

ε(q) = ωp|q|√
q2 + 1/�2

. (6)

Here we have introduced the dimensionless constant

K =
√

EJ

E0
+ EJ

E1
= K1

√
1 + 1

�2
(7)

that interpolates between K0 for � → 0 and K1 for � → ∞.
In terms of the superconducting phases, the action (5)

describes small long-wavelength fluctuations of θi around
the superconducting ground state, θi ≡ θ (x) = const, favored
by the Josephson coupling. It fully captures the physics
of the model at low temperatures and in the semiclassical
regime EJ � E0. The crucial role in the destruction of
the superconducting phase by charging effects is played by
quantum phase slips (QPS)—quantum events of 2π winding
of the phase difference θi − θi−1 on one of the Josephson
junctions. In the (imaginary-time) path-integral description of
the system, QPS are vortices in the superconducting phase
θ (x,τ ). In order to account for those topological excitations,
one needs to add to the quadratic action (5) a correction

Sps = y�0√
2π3

∫
dx dτ cos [2φ(x,τ )], (8)

where y is the dimensionless matrix element for the phase slip
(fugacity of a vortex). Phenomenologically, the correction (8)
can be understood as follows [71,72]: The operator e2iφ(x0,τ0)

acts as a translation operator that shifts θ (x,τ ) after a time
τ0 and for x < x0 by 2π , creating thus a QPS. A detailed
microscopic derivation of Eq. (8) is presented in Appendix A
for completeness.

Under the condition EJ � min(E1,E0), superconducting
correlations are well developed in the system, at least locally. A
QPS is then a kind of a tunneling process, and the microscopic

QPS amplitude is exponentially small:

y ∝ e−αK , (9)

with a numerical coefficient α depending on the screening
length �. Strictly speaking, the precise value of α depends
also on details of the ultraviolet cutoff that supplements the ef-
fective long-wavelength description of the system, Eqs. (5) and
(8). We refer the reader to Refs. [7,9,22,30] and Appendix B
for the estimates of α in various limiting cases. In the rest of
the paper, we treat y as a phenomenological parameter (small
in the regime K � 1) and focus on implications of QPS for
low-energy properties of the disordered system.

The main subject of the present paper is the effect of
disorder on transport properties of the system. Several sources
of disorder in JJ arrays are known. One unavoidable kind
of disorder is represented by random stray charges Qi that
“frustrate” the charging part of the Hamiltonian:

E1

2

∑
i,j

S−1
ij NiNj → E1

2

∑
i,j

S−1
ij (Ni − Qi)(Nj − Qj ).

(10)
The random stray charges influence phase slips via the
Aharonov-Casher effect [73]: in the course of a phase slip
between island i and i + 1 the wave function of the system
accumulates the phase factor exp(iQi) with

Qi = 2π
∑
k�i

Qi. (11)

Correspondingly, in the presence of stray charges the phase-
slip action (8) transforms into

Sps,Q = y�0√
2π3

∫
dx dτ cos [2φ(x,τ ) − Q(x)] . (12)

Statistical properties of the stray charges Q may depend on
various material-dependent aspects. In this work, we assume
for simplicity correlations of the stray charges to be short-
ranged and describe them by a single parameter, the variance
DQ:

〈Q(x)Q(x ′)〉 = DQ

2π2
δ(x − x ′). (13)

Another source of quenched disorder in a JJ array is
fluctuations of the charging and Josephson energies from
junction to junction. These fluctuations can lead to spatial
variations of the parameters of the quadratic action (5). Since
such variations do not directly influence the charge transport,
we will not take them into account. In addition, the spatially
fluctuating charging and Josephson energies influence locally
the value of the QPS amplitude y which is of key importance
for transport properties. Taking into account also the presence
of the stray charges (that provide a random phase of the
fluctuating term), we model this type of disorder by

Sξ =
∫

dx dτ [ξ (x)e2iφ(x,τ ) + H.c.] (14)

with random complex amplitude ξ . In analogy with Eq. (13),
we assume that ξ is short-range correlated [74],

〈ξ (x)ξ ∗(x ′)〉 = u2
0Dξ

(2π )2
δ(x − x ′). (15)
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The complete description of our model reads

S = S0 + Sps,Q + Sξ , (16)

where S0, Sps,Q, and Sξ are given by Eqs. (5), (12), and (14),
respectively. The action (16) constitutes the starting point for
our study of transport properties of disordered JJ chains that
we present in Secs. III and IV for the cases of short-range and
long-range interaction, respectively.

III. SHORT-RANGE COULOMB INTERACTION

We first study the system in the regime C1 � C0 when the
charge interaction is local in space. In this case the plasma
waves have a linear spectrum, and the quadratic part of the
action assumes the form of a Luttinger liquid:

S0 = 1

2π2u0K0

∫
dx dτ

[
u2

0(∂xφ)2 + (∂τφ)2
]
, (17)

with the Luttinger liquid parameter K0 = √
EJ/E0 and veloc-

ity u0 = √
EJE0. (We remind the reader that, in our notations,

distances are measured in units of the lattice spacing, so that
dimensions of energy and velocity coincide.)

We recognize now that the effective description of a
disordered JJ chain with local interaction, as provided by
Eqs. (16), (17), (12), and (14), is closely related to that of
a disordered interacting quantum wire developed in Ref. [75].
Specifically, the random fugacity term, Eq. (14), corresponds
to disorder-induced backward scattering in a quantum wire.
Further, the uniform QPS amplitude y can be viewed as
describing the effect of a (commensurate) periodic potential
on the electronic system. Finally, the stray charges Q play
the role of random forward scattering in the quantum-wire
problem. In what follows, we exploit the similarity between
our system and a model of a disordered quantum wire in
order to derive the appropriate RG description. This will allow
us to determine the phase diagram of a JJ chain with local
charge-charge interaction and to study the low-temperature
transport in the system.

A. RG equations

In order to derive RG equations for the action (16) with S0

given by Eq. (17), we largely follow the approach of Ref. [75].
We use the replica trick to perform the average over the random
QPS amplitude ξ . On the other hand, it proves convenient to
postpone the average over random stray charges till a later
stage of the derivation. Upon the averaging over ξ , the action
of our replicated theory takes the form

S =
n∑

i=1

(S0[φi] + Sps,Q[φi]) +
n∑

i,j=1

Sξ [φi,φj ], (18)

S0[φi] = 1

2π2u0K0

∫
dxdτ

[
u2

0(∂xφ
i)2 + (∂τφ

i)2
]
, (19)

Sps,Q[φi] = yu0√
2π3

∫
dxdτ cos

[
2φi − 2π

∫ x

−∞
dzQ(z)

]
,

(20)

Sξ [φi,φj ] = −u2
0Dξ

(2π )2

∫
dxdτdτ ′ cos[2(φi(x,τ ) − φj (x,τ ′))].

(21)

Here i = 1,2, . . . ,n is the replica index, and the limit n → 0
should be taken.

To construct RG equations, we analyze the correlation
function

R(x1 − x2,τ1 − τ2) = 〈ei2φj (x1,τ1)e−i2φj (x2,τ2)〉, (22)

where the angular brackets denote the average with respect
to the action (18) as well as over the random field Q(x). We
calculate this correlation function perturbatively in the phase
slip fugacity y (up to second order) and in the disorder strength
Dξ (up to first order). These perturbative corrections allow us
to infer the RG equations, see Appendix C for details. The
result reads:

dK0

dl
= −1

2
y2K2

0 [I0(DQ) − L0(DQ)] − 1

2
K2

0 Dξ, (23)

dy

dl
= (2 − πK0)y, (24)

dDξ

dl
= (3 − 2πK0)Dξ, (25)

dDQ

dl
= DQ, (26)

du0

dl
= −1

2
u0K0y

2r(DQ) − 1

2
u0K0Dξ, (27)

where

r(DQ) = L2(DQ) − I2(DQ) + 2

3π
DQ, (28)

l is the logarithm of the running length scale, In denotes the
nth modified Bessel function of the first kind, and Ln is the nth
modified Struve function. We stress that while Eqs. (23)–(27)
are perturbative in y (second order) and Dξ (first order), they
are exact in K0 and DQ.

In the absence of disorder (DQ = Dξ = 0), our RG
equations for K0 and y reduce to the standard Berezinskii-
Kosterlitz-Thouless (BKT) form,

dK0

dl
= −1

2
y2K2

0 , (29)

dy

dl
= (2 − πK0)y, (30)

describing a quantum superconductor-insulator transition at
πKc

0 = 2 for an infinitesimally small fugacity. The flow of
the velocity u0 vanishes in the clean limit due to space-time
symmetry.

Let us now analyze the RG flow in a disordered system.
If the superconducting correlations are sufficiently strong,
πK0 > 2, the superconducting state is stable with respect to
small y and Dξ . For πK0 < 2 phase slips may proliferate in
the course of RG. The random fugacity perturbation remains
irrelevant as long as πK0 > 3/2, and we first drop it from
our discussion. Although the QPS amplitude y grows under
RG for any πK0 < 2, its impact on the properties of the
system depends on the stray charges. If the bare charge
disorder is sufficiently weak, the coefficient DQ (growing
under RG) remains small at scales where the QPS amplitude
becomes of order unity and localization develops. On the other
hand, examination of Eq. (23) shows that for DQ � 1 the
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correction to K0 induced by QPS is proportional to y2/DQ.
Correspondingly, in this regime we expect localization effects
to proliferate only if y2/DQ becomes of order unity. This
conclusion receives further support in Sec. III B, where we
show that exactly the same parameter controls the perturbative
corrections to the conductivity of the system.

Under the assumption DQ � 1, the RG equations simplify
to

dK0

dl
= −1

2
K2

0 Dξ,y, (31)

dDξ,y

dl
= (3 − 2πK0)Dξ,y, (32)

du0

dl
= −1

2
u0K0Dξ,y. (33)

where Dξ,y = Dξ + 2y2/πDQ. Equations (31)–(33) corre-
spond to results of Giamarchi and Schulz [75] for the case
of a 1D system of spinless particles with backward-scattering
disorder, with identification of our πK0 to K of Ref. [75].
We see that strong random stray charges effectively make
the “regular” QPS contribution (12) indistinguishable from
the random-fugacity one, Eq. (14). In particular, although
formally derived under the condition y � 1, the RG equations
(23), (24), (26), and (27) remain valid at DQ � 1 in a
much wider range y2/DQ � 1. The critical value of K0

where the superconductor-insulator transition takes place (at
vanishing y) is changed by stray charges from 2/π to 3/2π .
The reduction of the effect of QPS on the properties of the
system under strong forward scattering has a simple physical
interpretation: In the presence of stray charges Q the QPS
do not add up coherently since they experience destructive
interference.

To establish the phase diagram of the model, we solve
RG equations (23)–(26) numerically. We work in the plane
spanned by πK0 and the QPS amplitude y, treating them as
independent parameters [see a discussion around Eq. (9)]. The
resulting phase diagram is shown in Fig. 2. The area to the left
of each transition line corresponds to the parameter regime
where the system is insulating, while the regime to the right
corresponds to the superconducting phase at zero temperature.
The black solid line (with stars) ending at πK0 = 2 separates
superconducting and insulating phases in a clean system.
The other two solid lines—red (no symbol) and blue (open
circles)—illustrate the shift of the transition due to a nonzero
(but relatively small) randomness Dξ in the QPS amplitude. As
expected, increasing this kind of disorder shifts the transition
point to the right, i.e., in favor of the insulating regime. On
the contrary, random stray charges have the opposite effect.
The dashed lines in Fig. 2 show the phase boundary in the
presence of a small amount of stray charges. It is seen that
even a very small value of the stray-charge disorder DQ

shifts quite appreciably the phase boundary, enhancing the
superconductivity.

B. Transport

We are now in a position to study the low-temperature trans-
port properties of our model (in the case of short-range interac-
tion). The current operator can be deduced from the continuity

1.8 1.9 2.0 2.1 2.2
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 2. Phase diagram for a JJ chain with short-range Coulomb
interaction in the πK0-y plane. The chain is in the insulating phase
(I) to the left of each transition line and in the superconducting phase
(S) to the right of it. The black solid line (with stars) corresponds to
the clean case (Dξ = DQ = 0). The other two solid curves describe a
chain without random stray charges (DQ = 0) but with random QPS
fugacity: Dξ = 0.1 (red), Dξ = 0.2 (blue, open circles). The dashed
curves include a small amount of stray charges (DQ = 10−12), with
the same value of Dξ as on the solid line with the same color (same
symbol).

equation ∂tρe + ∂xje = 0, where ρe = −(2e/π )∂xφ. We there-
fore find

je = 2e

π
∂tφ = 2eu0K0∂xθ. (34)

Using the Kubo formalism, the conductivity can be expressed
as

σ (ω) = i

ω
[4e2u0K0 + χ (ω)], (35)

where

χ (ω) = −
∫

dx

∫ t

−∞
dt ′eiω(t−t ′)〈[je(x,t),je(x ′,t ′)]〉 (36)

is the retarded current-current correlation function. In the clean
limit and in the absence of phase slips, the DC conductivity is
infinite:

σ (ω) = 4πe2u0K0

[
δ(ω) + i

π
P 1

ω

]
. (37)

Both types of phase-slip processes (homogeneous and random
fugacity) yield a finite DC limit. To compute the DC conduc-
tivity, we use the memory function formalism [76–79]. A finite
conductivity in the zero frequency limit implies, according to
Eq. (35), χ (0) = −4e2u0K0. By introducing the meromorphic
memory function

M(ω) = ωχ (ω)

χ (0) − χ (ω)
, (38)

the conductivity can be expressed as

σ (ω) = i4e2u0K0
1

ω + M(ω)
. (39)

It is further convenient to introduce the correlation function

C(ω) =
∫

dx

∫ ∞

0
dt eiωt 〈[F (x,t),F (0,0)]〉 , (40)
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where

F (x,t) = [H,je(x,t)] . (41)

The average in Eq. (40) can be performed at y = 0 and Dξ = 0
if one is only interested in the lowest order of perturbation
theory. The memory function can now be expressed as

M(ω) = 1

−χ (0)

C(ω) − C(0)

ω
. (42)

Perturbative computation of the memory function to the
lowest nontrivial order in y and Dξ can be carried out in
full analogy with Refs. [77,79]. Details of this calculation
are presented for completeness in Appendix D. To obtain the
conductivity, we combined the RG procedure, which allows
us to renormalize the theory up to the infrared cutoff set by
the temperature or by the system size, with the perturbative
evaluation of the memory function.

1. Clean limit

We start the analysis of the DC conductivity with the clean
limit, Dξ = DQ = 0. Our model, Eqs. (17) and (8), can be
viewed in that case as describing interacting fermions in
a periodic potential. The physical process behind the finite
resistance is then the Umklapp scattering. It is known [78]
that under incommensurate filling the Umklapp scattering
processes induced by interaction and periodic potential are
extremely inefficient and lead to exponentially large conduc-
tivity in the system. This is not the issue in the present case,
however, as our periodic potential is commensurate. On the
perturbative level the resulting conductivity reads in the static
limit:

σ (T ) = 8e2a

y2h

�2(πK0)

�4(πK0/2)

(
2πaT

u0

)3−2πK0

, (43)

where we have restored explicitly the lattice spacing a.
Incorporating renormalization effects transforms the power-
law temperature dependence of conductivity, Eq. (43), into
a more complex behavior. To establish it, we renormalize the
theory from the original ultraviolet cutoff a down to the thermal
length Nth(T ) = u0/T where the RG, Eqs. (29) and (30), is
terminated. Since the velocity u0 itself gets renormalized, this
implies the following equation for the corresponding RG scale
l∗(T ):

el∗ = u0(l∗)

T
. (44)

Combining this renormalization with Eq. (43) yields the
following behavior of the conductivity with temperature T :

σ (T ) ∼ u0[l∗(T )]

Ty2[l∗(T )]
. (45)

The symbol “∼” in Eq. (45) and in analogous formulas
below means “up to a numerical coefficient of order unity.”
In the clean case the velocity u0 is not renormalized, so
that l∗(T ) = ln (u0/T ). It is convenient to normalize the
conductivity by its bare value as σ (0) = σ (T = u0). The
temperature dependence of the correspondingly normalized
resistivity ρ/ρ(0), with ρ = 1/σ and ρ(0) = 1/σ (0), is shown
for the clean case in Fig. 3(a). If we are in the superconducting

10 6 10 5 10 4 0.001 0.01 0.1 1
10 8

10 6

10 4

0.01

1

1 10 100 1000 10 4 10 5
0.01

0.1

1

10

100

1000

10

(a)

(b)

4

FIG. 3. (a) Temperature-dependent resistivity in the clean case for
short-range Coulomb interaction. The numbers on the curves indicate
the value of πK0. The value of the fugacity is the same for every curve,
y = 0.1. Inset: Phase diagram in the πK0-y plane. The stars mark the
position of the corresponding resistivity curve with the same color. To
the left of the black line, the chain is in the insulating phase (I), while
to the right it shows superconducting correlations (S). The dashed
parts are qualitative extrapolations illustrating the flow towards the
insulating (infinite resistivity) fixed point. (b) Dependence of the
resistance with array length N at T = 0 with the same parameters as
for the resistivity plot.

regime (black curve, πK0 = 2.2), the resistivity decreases
with decreasing temperature. In the insulating regime (green
and blue curve, πK0 = 1.9 and 1.8) the resistivity shows
a strongly nonmonotonic dependence. Specifically, ρ(T )
decreases at relatively high temperatures (quite similarly to
superconducting curves) because the growth of y2 needs to
overcome the additional factor 1/T in Eq. (45). Therefore,
the resistivity starts to increase only at lower temperatures,
where K0 is renormalized below 3/2π . Since our treatment is
perturbative in y, we have to stop the renormalization when
y ∼ 1. Since the sine-Gordon theory in the clean case can
be mapped onto a fermionic system with umklapp scattering,
we expect an RG flow towards the Mott-insulator fixed point
(infinite resistivity) if umklapp scattering is relevant. We
therefore plot as a dashed curve the extrapolation extracted
from the RG beyond the perturbative regime in order to show
the qualitative tendency at low temperatures. The parameters
of the red curve (πK0 = 2.082) lie on the transition line. Using
the BKT equations, we analytically find

ρcrit(T )/ρ(0) = T/u0

[1 + (πK0 − 2) ln(u0/T )]2 (46)
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for the resistivity on the critical line, where K0 is assumed to
be not too far from Kc

0 = 2/π .
The resistivity ρ(T ) calculated above characterizes the

problem in the thermodynamic limit, N → ∞. This corre-
sponds to the situation when the system size N is much larger
than the thermal length Nth(T ), so that the infrared cutoff
for the renormalization effects is provided by the temperature
T , while the dependence of the resistance on N is simply
Ohmic. It is important to analyze also the opposite situation,
N � Nth(T ). The appropriate characteristics of the system
in this case is the length-dependent resistance R(N ) at zero
temperature. To determine it, we renormalize the theory until
the cutoff reaches the system length N and then make use of
the relation R = ρ · N . The result reads

R(N ) ∼ h

e2
y2[l = ln N ]. (47)

The resulting dependences R(N ) are presented in Fig. 3(b).
All curves are normalized by the resistance in the ultraviolet:
R(0) = R(N = 1). The parameters (bare values of y and K0)
are identical to the resistivity curves of Fig. 3(a). Curves
in the insulating regime show an increasing resistance with
system size (green and blue, πK0 = 1.9 and 1.8), while for
the superconducting (black, πK0 = 2.2) and the critical (red,
πK0 = 2.082) curves the resistance decreases. The critical
curve has the following system-size dependence [cf. Eq. (46)]:

Rcrit(N )/R(0) = 1

[1 + (πK0 − 2) ln(N )]2 , (48)

i.e., the resistance at criticality drops with increasing N in a
logarithmically slow fashion. This implies that curves that are
on the insulating side but very close to the critical line (not
shown in the figure) will show a nonmonotonic dependence:
R(N ) will first decrease with increasing N and only then will
start increasing. This nonmonotonicity in “weakly insulating”
dependences R(N ) is, however, much less pronounced than
that in the corresponding ρ(T ) curves; the difference is related
to the additional factor of T in the T dependence in Eq. (46)
in comparison with the N dependence in Eq. (48).

2. Disordered system: Random stray charges

After having analyzed the clean limit, we now discuss
the effect of random stray charges. Using the results from
Appendix D, we obtain on the level of the perturbation theory

σ (T ) ∼
⎧⎨
⎩

e2a
hy2

(
2πaT

u0

)3−2πK0
, DQu0/aT � 1,

e2a
DQ

hy2

(
2πaT

u0

)2−2πK0
, DQu0/aT � 1.

(49)

Already at this stage, we see that the power of T is reduced by
unity for the case of strong random stray charges, as compared
to the regime in which stray charges are weak. Incorporating
renormalization effects, we find the temperature dependence
of conductivity:

σ (T )

σ (0)
∼

⎧⎨
⎩

y2
0

y2(T )
u0(T )

T
, DQ(T ) � 1,

y2
0 DQ(T )
y2(T )

u0(T )
T

, DQ(T ) � 1 ,
(50)

where y0 is the bare value of the fugacity. Since the velocity is
renormalized when random stray charges are present, we need
to solve the equation el∗ = u0(l∗)/T numerically to find l∗(T ).
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FIG. 4. (a) Scaling of the resistivity with temperature in the pres-
ence of random offset charges for short-range Coulomb interaction.
The numbers at the curves indicate the values of πK0. The other
parameters DQ = 10−3 and y = 6 × 10−3 are the same for all curves.
In the gray region random stray charges are weak (the boundary is at
the temperature TQ). The black curve (πK0 = 1.65) corresponds to a
superconducting system (although phase slips are relevant). The green
and blue curve (πK0 = 1.5 and 1.4) are in the insulating regime. The
dashed blue and green lines, which correspond to the temperature
range T < Tps, represent extrapolations to demonstrate the tendency
at lowest temperatures (flow towards the Anderson insulator). Inset:
Phase diagram in the πK0-y plane. The stars show the position of the
parameters for the resistivity plots in the phase diagram. To the left of
the black line, the system shows insulating behavior (I), while to the
right it shows superconducting correlations (S). (b) Length-dependent
resistance at T = 0 for the same parameters as for the resistivity
curves. The characteristic scales, which correspond to the temperature
scales TQ and Tps in the panel (a), are NQ (boundary of gray region)
and Nps (beginning of the dashed line, seen on the blue curve only).

The scaling behavior of the resistivity ρ = 1/σ including
random offset charges is depicted in Fig. 4(a). For high
temperatures (gray region) the curves are similar to the clean
case, Fig. 3, for the same values of K0. (It is worth emphasizing
that the values of K0 used in Fig. 4 are smaller than those in
Fig. 3 since stray charges shift the SIT phase boundary, as is
seen from the comparison of the insets of both figures.)

There is a crossover temperature, TQ/u0 = D
(0)
Q , where the

renormalized strength of stray charges [DQ(l)] reaches a value
of order unity. If the system is still in the perturbative regime
at this temperature (y � 1), the resistivity is suppressed at
lower temperatures by an additional small factor 1/DQ(T ) ∝
T according to the second line of Eq. (50). In the plot we used
an interpolation formula to match smoothly the two regimes
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[DQ(T ) smaller and larger than unity, or, equivalently, T above
and below TQ] of Eq. (50).

As Eq. (49) indicates, the perturbative parameter in the
strong disordered case, DQ(T ) � 1, is y2(T )/DQ(T ) rather
than y2(T ). This confirms the conclusion made in Sec. III A
that random stray charges stabilize superconducting corre-
lations. Thus, in the regime of strong stray charges there
is a competition between them and the phase slips. On the
superconducting side of the SIT, which is represented by the
black curve (πK0 = 1.65), the stray charges are sufficiently
strong to suppress the effect of phase slips. On the other hand,
on the insulating side represented by the green (πK0 = 1.5)
and blue (πK0 = 1.4) curves, phase slips win over stray
charges. In this case the resistivity shows an upturn at low
temperatures. We expect that for lower temperatures (beyond
the perturbative regime) the resistivity will continue to grow
because the proliferation of phase slips will destroy the
superconducting correlations and the quantum localization
will take over. To illustrate qualitatively this behavior, we
perform an extrapolation of the RG into the strong-coupling
regime (shown by dashed lines).

As is clear from the above discussion, the temperature
dependence in the insulating regime is strongly nonmonotonic
and in general consists of three regions of temperatures with al-
ternating signs of dρ/dT . Such a behavior is well pronounced
for the blue curve (πK0 = 1.4). At high temperatures T � TQ

(gray region), the resistivity grows with lowering temperature.
In this regime the disorder is weak and the strong growth
of the phase-slip fugacity results in dρ/dT < 0. Below the
temperature TQ, random stray charges suppress the influence
of phase slips, which leads to a decrease of resistivity with
lowering temperature, dρ/dT > 0. However, phase slips grow
strongly enough to overcome the suppression by stray charges.
The corresponding upturn of ρ(T ) is visible only in the
strong-coupling regime (shown by dashed lines), since we need
to renormalize down to K0 = 1/π to overcome the additional
power of T [cf. Eq. (49)]. This happens at a temperature Tps

which can be estimated as

Tps ∼ u0(y(0))
2

3−2πK0

(
u0

TQ

) 1
3−2πK0

(51)

assuming πK0 is not too close to 3/2. The temperature range
T < Tps is shown on the blue and green curves in Fig. 4(a)
by dashed line. For y(0) � 1 the two scales TQ and Tps are
distinct, Tps � TQ.

The red curve, πK0 = 1.565, is the SIT phase boundary.
We determine the temperature dependence of resistivity at this
critical line for sufficiently low temperatures, T � TQ, where
the stray charges are important. Solving the corresponding
RG equations Eqs. (31)–(33), we find (the renormalization
of the velocity can be neglected close to the critical point
Kc

0 = 3/2π ):

ρcrit(T ) ∼ T/u0[
1 + (

πK
Q
0 − 3

/
2
)

ln(TQ/T )
]2 , (52)

where K
Q
0 = K0[l = ln NQ] is the renormalized value of K0

at the mean free path NQ = 1/D
(0)
Q .

To determine the dependence of the resistance R(N ) on the
system size for N < Nth(T ), we terminate the renormalization

by N , which yields

R(N )

R(0)
∼

⎧⎨
⎩

y2[ln(N)]
y2

0
, N � 1/D

(0)
Q ,

y2[ln(N)]
y2

0 D
(0)
Q N

, N � 1/D
(0)
Q .

(53)

The dependences R(N ) are shown in Fig. 4(b) where the
same values of the parameters as in Fig. 4(a) are used. In
analogy with the ρ(T ) plot, we interpolate in the intermediate
regime where DQ ∼ 1 to obtain a smooth matching of the two
limits of Eq. (53). For the chosen parameters, the insulating
curves [green (πK0 = 1.5) and blue (πK0 = 1.4)] show a
monotonically increasing behavior. For chains that are longer
than the mean free path NQ, the growth is weakened (in an
intermediate range of N ) since phase slips can no longer
interfere coherently. At the scale Nps ∼ u0/Tps, which is
the correlation length at which the system enters the strong
coupling regime, the resistance growth is accelerated again.
The superconducting curve (black, πK0 = 1.65) shows a
strongly nonmonotonic behavior of R(N ). Specifically, for
small chain sizes (shorter than mean free path, gray region)
the resistance is increasing, so that one could think that
the system is in the insulating phase. However, for larger
systems, the resistance starts to decrease: At T = 0 and
in the thermodynamic limit the parameters of the black
curve correspond to the superconducting regime [see inset
of Fig. 4(a)]. The red curve (πK0 = 1.565) is on the transition
line and shows qualitatively the same behavior as the black
curve (πK0 = 1.65). The decrease at large N is, however,
much weaker. We find for chain sizes larger than the mean
free path NQ

Rcrit(N ) ∼ 1[
1 + (

πK
Q
0 − 3

/
2
)

ln(N/NQ)
]2 (54)

for the length dependence of the resistance on the phase
boundary.

3. Disordered system: Random stray charges and random fugacity

We are now going to analyze how disorder that produces
phase slips with random fugacity influences the transport
characteristics. It is clear that this kind of disorder reduces
the conductivity in contrast to random stray charges. The
total memory function is now the sum of the contributions
from phase slips with homogeneous and random fugacity, see
Appendix D. The conductivity of the system thus reads

σ = 1

σ−1
ps + σ−1

ξ

, (55)

where σps originates from homogeneous phase slips and can
be calculated using Eq. (49); σξ originates from phase slips
with random fugacity (Appendix D),

σξ (T ) ∼ e2a

hDξ

(
2πaT

u0

)2−2πK0

. (56)

Using σ0 = e2/h as a reference conductivity and performing
the renormalization from the bare ultraviolet cutoff a to the
thermal length Nth(T ), we find

σξ (T )

σ0
∼ u0(T )

T Dξ (T )
(57)
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FIG. 5. Scaling of the temperature-dependent resistivity contribu-
tions originating from phase slips with homogeneous fugacity (a) and
from phase slips with random fugacity (b). The numbers at the curves
indicate the value of πK0. The other parameters are the same for
all curves: y = 10−2,DQ = 10−3, and Dξ = 10−4. The dashed lines
at low temperatures are extrapolations illustrating the flow towards
the insulating (infinite resistivity) fixed point. The inset in (a) shows
the position of the systems in the phase diagram. Parameters that lie
to the right of the black line show superconducting correlations (S),
while those to the left are characterized by insulating behavior (I).

and

σps(T )

σ0
∼

{ 1
y2(T )

u0(T )
T

, DQ(T ) � 1,

DQ(T )
y2(T )

u0(T )
T

, DQ(T ) � 1.
(58)

The contributions to the resistivity from phase slips with
homogeneous and random fugacity, ρps = 1/σps and ρξ =
1/σξ , are shown in Fig. 5. The total resistivity of the system
is given by the sum of both contributions, ρ = ρps + ρξ . In
each of the panels, the black curve (πK0 = 1.7) corresponds
to the superconducting phase, the green (πK0 = 1.5) and blue
(πK0 = 1.43) curves to the insulating phase, and the red curve
(πK0 = 1.594) to the SIT phase boundary; see the phase
diagram in the inset of Fig. 5(a). For the insulating phase,
both contributions ρps and ρξ show a nonmonotonic behavior.
In the case of random phase slips, the disorder Dξ , which
corresponds to impurity induced backscattering processes in
the context of 1D fermionic systems [75], does not grow fast
enough at the first stage of RG, yielding a decreasing ρξ . At
a lower temperature, this behavior is reverted, and the system
starts to flow towards the localization fixed point (as shown
by dashed lines in the figure). The temperature dependence
of the ρps contribution, which typically dominates the total
conductivity, is still more complex and is similar to the case

of the only stray-charge disorder, Fig. 4(a). (This similarity is
not so surprising, since the random QPS term is effectively
generated at large scales by stray charges and regular QPS.) In
particular, the blue curve (πK0 = 1.43) in Fig. 5(a) exhibits
three regions with alternating signs of dρ/dT . Specifically, the
resistivity ρps increases with lowering T above the temperature
TQ defined by DQ(TQ) ∼ 1. Below TQ, one first observes a
decrease of ρps, since random stray charges suppress the effect
of quantum phase slips. However, with further lowering the
temperature, phase slips take over, and the resistivity starts
again to increase.

As pointed out above, the contribution ρps is usually larger
than ρξ . This is because (i) the fugacity fluctuations on the
UV scale are expected not to exceed the average fugacity and
(ii) this inequality is further enhanced by renormalization, see
Eqs. (24) and (25). In principle, one can imagine a model with
a bare value of y2 much smaller than that of Dξ , in which case
ρξ would become important. It remains to be seen whether
such a model may be physically relevant in the context of JJ
chains.

IV. LONG-RANGE COULOMB INTERACTION

In the previous sections, we have presented a detailed
analysis of the transport properties of a disordered JJ chain with
short-range Coulomb interaction, � � 1. We now turn to the
analysis of the model (16) in the opposite limit � � 1 relevant
to many experimental realizations of the system. As discussed
in Sec. III, the random QPS term (14) is effectively generated
at large scales by an interplay of stray charges and regular
QPS. In view of this and for simplicity of the presentation, we
assume in this section that the bare magnitude of the random
QPS term is zero, Dξ = 0.

For the purpose of the RG analysis, it is convenient to recast
the action (5) into a different form (see Appendix A):

S0 = 1

2π2K

∫ 1

−1

dq

2π

∫ �0

−�0

dω

2π

×
[

ω2

�0
+ �0q

2

q2(1 − ug) + ug

]
|φ(q,ω)|2. (59)

The parameter ug = 1/(1 + �2) has the meaning of the group
velocity of the plasmons (measured in units of �0) at the cutoff
momentum q = 1, while K is given by

K =
√

EJ(E1 + E0)

E1E0
. (60)

We will see below that K plays the role of the effective
Luttinger-liquid parameter (the phase stiffness) at the cutoff.

A. RG treatment

We start our analysis with the presentation of the RG
equations valid for arbitrary screening length �. We sketch
here only the main points of the derivation and refer the reader
to Appendix E for details.

An elementary step of our RG consists in the (perturbative-
in-y) elimination of the modes φ(ω,q) with

1 − dl < q < 1 or (1 − ugdl)�0 < ω < �0 , (61)
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with the subsequent rescaling of momentum and energy to
restore the initial cutoffs. The peculiarity of the present case is
that the Gaussian action (59) contains irrelevant perturbations
and its parameters K and ug are renormalized even to the
zeroth order in the fugacity. Specifically, we get the following
RG equations:

dK

dl
= −K(1 − ug), (62)

dug

dl
= 2ug(1 − ug). (63)

Equations (62) and (63) have a line of (stable) fixed points
with K = const and ug = 1 describing a generic JJ chain with
finite � in the infrared limit and an (unstable) fixed point K =
ug = 0 corresponding to a system with infinite-range Coulomb
interaction.

The scaling of the QPS amplitude y imposed by the
Gaussian action (59) is given by (see Appendix E 1)

dy

dl
= 1 + ug

2
(2 − πK)y. (64)

The factor (1 + ug) in Eq. (64) reflects the engineering
dimension of y, while the factor (2 − πK) shows that the
parameter K can be interpreted as the phase stiffness at the
cutoff.

Equations (62), (63), and (64) summarize the scaling
properties of the parameters K , ug, and y to the lowest
order of perturbation theory. In Appendix E 2 we extend the
perturbative treatment of the model to the second order in y

and show that in the presence of random stray charges the
resulting RG equations take the form

dK

dl
= −(1 − ug)K − 1

2
y2K2(1 + ug)

I1(DQ) − L1(DQ)

DQ

,

(65)
dug

dl
= 2ug(1 − ug) + y2

2
K(1 + ug)ug

×
[

(1 + ug)
I1(DQ) − L1(DQ)

DQ

−ug[I0(DQ) − L0(DQ)]

]
. (66)

Equations (64), (65), and (66) constitute the main result of
this subsection. We will use them in Sec. IV B to study the
low-temperature transport properties of the system.

It is easy to see that, according to Eq. (66), 1 − ug ∝ y2K in
the infrared limit. Thus, within our accuracy, the RG equations
reduce to

dy

dl
= (2 − πK)y, (67)

dK

dl
= −(1 − ug)K − y2K2 I1(DQ) − L1(DQ)

DQ

, (68)

dug

dl
= 2(1 − ug) + y2K

[
2

I1(DQ) − L1(DQ)

DQ

− I0(DQ) + L0(DQ)

]
. (69)

It is worth emphasizing that the equations (64) and (65)
are equivalent to Eqs. (24) and (23) (for Dξ = 0) under the
identification K0 = K

√
ug. We also recover Eq. (27) from

Eq. (69) setting u0 = �0/
√

ug apart from the additional term
−(1 − u2

0/�0) on the right hand side arising due to a slightly
different renormalization scheme employed in the present
section. Thus, Eqs. (67), (68), and (69) automatically capture
the correct long-distance physics studied in Sec. III. At the
same time they predict new features in the behavior of the
system at intermediate length scales 1 � N � K where,
according to Eq. (64), the phase-slip amplitude experiences
a fast drop discussed previously in Ref. [30]. In the next
subsection (Sec. IV B) we will discuss implications of these
phenomena for the low-temperature transport properties of the
system.

B. Transport in a JJ array with long-range interaction

In analogy with the case of short-range interaction,
Sec. III B, we supplement now the RG equations (64), (65),
and (66) by the expressions for the conductivity of the system
obtained from the memory-function formalism,

σ (T )

σ (0)
∼

⎧⎨
⎩

y2
0 Nth(T )
y2(T ) , DQ(T ) � 1,

y2
0 DQ(T )Nth(T )

y2(T ) , DQ(T ) � 1 ,
(70)

where Nth(T ) is the thermal length at which the RG flow
is stopped by finite temperature. In the intermediate regime
DQ(T ) ∼ 1 we interpolate between both limits. The scaling
equation for temperature reads (we remind the reader that our
RG scheme preserves the energy cutoff �0)

dT (l)

dl
= ugT (l). (71)

The length Nth(T ) is then the scale where the renormalized
temperature T (l) reaches the cutoff �0. To avoid confusion,
we emphasize that all our results yield the resistivity ρ(T )
as a function of the physical temperature T , which yields the
starting point for the RG flow T (l), i.e., T (l = 0) = T .

The RG equations (64), (65), and (66) predict, in general, a
strongly nonmonotonic temperature dependence of resistivity
and length dependence of the resistance of the JJ chain.
Figure 6(a) shows the temperature dependence of a clean
(DQ = 0) JJ chain for fixed � = 10 at various values of K0.
The corresponding scaling of the zero-temperature resistance
is shown in Fig. 6(b). Both in the superconducting and insulat-
ing phases, the resistivity shows a rapid drop at temperatures
of the order of the cutoff �0 due to the proliferation of local
superconducting correlations. Upon lowering the temperature,
the system enters into the local regime where the scaling
of the QPS amplitude is governed by the infrared stiffness K0.
In the vicinity of the critical point πK0 = 2 the resistivity of the
system first continues to drop not only in the superconducting
phase [black curve, πK0 = 2.157, in Fig. 6(a)] but also at
criticality (red line, πK0 = 2.001) and in an adjacent part
of the localized phase (green curve, πK0 = 1.529) due to the
factor Nth(T ) in Eq. (70). On the critical line (red curve, πK0 =
2.001) the low-temperature scaling of the resistivity is given
by Eq. (46). In the insulating phase (green, πK0 = 1.529,
and blue, πK0 = 1.372, curves), the localization develops
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FIG. 6. Temperature dependence of the resistivity (a) and length
dependence of the zero-temperature resistance (b) of a clean JJ chain
with screening length � = 10 and ultraviolet QPS amplitude y = 0.1.
The numbers at the curves indicate the value of πK0 controlling
the infrared scaling of the QPS amplitude. The dashed lines at
low temperatures are extrapolations illustrating the flow towards
the insulating (infinite resistivity) fixed point. The inset shows the
position of each of the curves in the phase diagram of the system.

at lowest temperatures. The scaling of the zero-temperature
resistance with the system size, Fig. 6(b), offers a more
direct visualization of the superconductor-insulator transition,
since the critical curve is characterized by an almost constant
resistance [see Eq. (48)].

Finally, we incorporate the effects of random stray charges,
which makes the temperature and system-size dependence of
the resistivity even more intricate, see Fig. 7. At short scales
(gray region) the effect of the stray charges is negligible and
the scaling of the transport characteristics of the system is
similar to the clean case. At lower temperatures or larger
system sizes, the interplay of stray charges and phase slips
leads to nonmonotonic dependences ρ(T ) and R(N ) with
three different regions of behavior, in analogy with the case of
short-range interaction, see Secs. III B 2 and III B 3 and Figs. 4
and 5. In total, the curves may show as much as four different
regions of behavior, so that the overall dependences ρ(T ) and
R(N ) are in general quite involved and strongly nonmonotonic.
These distinct regions are clearly seen in Fig. 7. Specifically,
at short length scales N (or relatively high temperatures)
the resistivity or resistance drop quickly due to the scale
dependence of the Luttinger-liquid parameter K . For larger
scales the phase slips start to play a role and enhance the
resistance. At still larger N the effect of phase slips gets
suppressed by stray charges. Finally, for the insulator side of
the SIT [magenta (πK0 = 1.091), blue (πK0 = 1.186), and
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1000
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FIG. 7. Temperature dependence of the resistivity (a) and length
dependence of the zero-temperature resistance (b) of a JJ chain with
screening length � = 10, weak random stray charges DQ = 10−3,
and ultraviolet QPS amplitude y = 0.1. The numbers at the curves
indicate the value of πK0 controlling the infrared scaling of the QPS
amplitude. The dashed lines at low temperatures are extrapolations
illustrating the flow towards the insulating (infinite resistivity) fixed
point. The inset shows the position of each of the curves in the phase
diagram of the system.

green (πK0 = 1.437) curves in Fig. 7)], the phase slips blow
up at longest scales, driving the system into the insulating
fixed point. This complex, strongly nonmonotonic behavior
makes an experimental identification of the SIT on the basis
of experimental data (available for a limited range of T and
N ) a highly nontrivial task. We will compare our results with
available experimental data in Sec. V.

V. SUMMARY AND DISCUSSION

To summarize, we have studied the transport around the
SIT in disordered JJ chains. We have started from a lattice
model that describes a chain of superconducting islands with a
capacitive coupling to the ground (C0) as well as between the
islands (C1) and mapped it onto a theory of the sine-Gordon
(disordered-Luttinger-liquid) type. This low-energy theory
includes QPS fluctuations as well as two types of disorder:
random stray charges and randomness in the QPS fugacity.
We have considered both limits of short-range (C1 � C0) and
long-range (C1 � C0) Coulomb interaction and studied the
resistance of the system by using the RG approach.

The fixed point of the SIT is of the BKT type and is
characterized by the Luttinger-liquid constant πK0 = 3/2 and
by zero effective fugacity, Dξ,y = 0 (strength of random phase
slips) that controls the resistivity in the presence of offset
charges. It is worth emphasizing that even a tiny amount of
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stray charges shifts essentially the SIT boundary in favor of the
superconducting phase, see Fig. 2. The fact that the disorder
promotes the superconductivity may seem counterintuitive at
first sight. It is interesting to mention that an enhancement
of superconductivity by random potential was also found in
3D and 2D systems [64,65], although the mechanism in the
present case is different.

At the critical line (separating the superconducting and
insulating phases in the RG flow diagram) the resistivity of
an infinite system vanishes linearly with temperature (with a
logarithmic correction), Eq. (52), while the zero-temperature
resistance approaches zero logarithmically with increasing
system length N , Eq. (54). The overall dependences ρ(T )
and R(N ) are, however, considerably more complex and
show several distinct regimes. Specifically, for the case of
a short-range interaction, curves belonging to the insulating
phase exhibit in general three regimes of behavior taking
place consecutively with lowering T (or increasing N ), see
Figs. 5 and 4. At relatively high T (or small N ) the QPS
fluctuations lead to increase of resistivity. At lower T random
stray charges become important and suppress the effect of
QPS. However, with further lowering T , the Luttinger-liquid
constant πK0 gets renormalized below the critical value 3/2,
so that random QPS become relevant, driving the system into
the insulating fixed point. For the superconducting phase,
the first two of these regimes show up. In the case of a
long-range interaction, an additional high-temperature regime
emerges, where ρ(T ) and R(N ) quickly drop with lowering T

(respectively, increasing N ), Fig. 7.
The curves ρ(T ) and R(N ) around the SIT have thus

strongly nonmonotonic character: The T and N dependences
in the intermediate regimes is essentially different from
the ultimate low-T (large-N ) asymptotics. This makes the
experimental determination of the transition point a rather
difficult task. Indeed, experimental data are usually obtained
in a quite restricted range of N and temperatures, so that the
observed behavior may still differ strongly from the infrared
asymptotics. Below we briefly discuss the existing experi-
mental data and their interpretation provided in experimental
papers and compare them with our findings.

The most detailed experimental investigation of the SIT in
JJ chains was carried out in Ref. [17] where the resistance
of arrays (made of Al, with Al2O3 tunnel barriers) with a
length N up to the maximal value N = 255 was studied
in the temperature range from 1 K down to 50 mK. The
junctions had a SQUID geometry, and the SIT was tuned by the
magnetic field. The array was designed in such a way that the
screening length � was quite large, � � 10. The obtained set
of R(T ) curves for an array with a maximal length (N = 255),
Fig. 3 of Ref. [17] is quite similar to our theoretical results
[see, in particular, Figs. 4(a) and 7(a) of the present work].
Experimental curves that are well on the insulating side show
a nonmonotonic dependence (first increase with lowering T ,
then decrease, and then again increase), in similarity with
our findings. It is tempting to identify the positions of the
maximum and minimum on these R(T ) curves, 400 mK and
100 mK, as corresponding to TQ and Tps, respectively. An
independent determination of the bare values of y and DQ

would be needed to verify this identification. We also note
that the low-T minimum is not observed on insulating R(T )

curves for shorter chains, N = 63, which implies that they are
way too short to probe the large-N behavior. Relatively short
system sizes may also explain why the quantitative criterion
for the SIT deduced in Ref. [17] does not conform to the
theory. Specifically, the authors of Ref. [17] have concluded
that their experimental data imply an SIT at (in our notations)
πK0 = 2/

√
� (i.e., at πK0 � 2/3 for their value of �). This

is in disagreement with our theory that yields a transition
at πK0 = 3/2. We speculate that chain lengths N in the
experiment were probably not sufficiently large and/or the
temperature was not low enough to probe the actual SIT. In
other words, the results in Ref. [17] were likely substantially
affected by intermediate regimes analyzed in our work.

As has been pointed out in Sec. I, we expect that our
results should be relevant to the SIT not only in JJ chains
but also in a broader class of 1D systems. In view of this,
we briefly discuss also the experimental results for the SIT
in semiconductor nanowires. The theoretical description of
such systems and its mapping to the present model is briefly
discussed in Appendix F. The SIT was studied in MoGe
nanowires in Refs. [66,67]. While in those works the nanowires
were relatively short (with the maximal length 0.5 μm), in a
later paper [68] the transition was analyzed on considerably
longer wires (up to 25 μm) favorable for the investigation of the
infrared physics. It was found in Ref. [68] that, when the wire
cross section is made smaller, the system undergoes a transition
from the superconducting to the insulating phase that is
visualized by the behavior of the resistivity ρ(T ) with lowering
temperature. Also, Ref. [68] demonstrated that application of
the magnetic field serves as an alternative way to drive the tran-
sition. On this qualitative level, these observations agree with
theoretical expectations. A surprising finding of Ref. [68] is
that the separatrix curve ρ(T ) separating the superconducting
and insulating phases is essentially temperature independent.
This is in a clear disagreement with the theoretical expectation
of the linear (with a logarithmic correction) vanishing of the
resistivity at the critical line at low temperature, Eq. (52). This
discrepancy might possibly be attributed to the fact that the
temperature range in which the resistivity was measured in
Ref. [68], from 2–4 K down to 0.4 K was insufficient to probe
the infrared asymptotic behavior. An alternative possibility is
that some coupling to the environment may have affected the
results by suppressing quantum coherence and thus stabilizing
the metallic behavior in wires that would otherwise experience
an RG flow towards the insulating fixed point.

In a recent preprint [80], an experimental study of the
depinning in JJ chains deeply in the localized phase has
been carried out. The authors have found an agreement with
theoretical expectations based on the Luttinger-liquid picture
in the presence of disorder, which is in correspondence with our
model. They have also suggested that previous results on SIT in
JJ chains [17] may have been influenced by an external noise.

Summarizing this brief discussion of related experiments,
we conclude that both classes of 1D systems, JJ arrays and
semiconductor nanowires, serve as an outstanding playground
for the experimental investigation of SIT in 1D systems. On
the other hand, more experimental work is clearly needed
to investigate the T and N dependence of resistivity (or
resistance) around the SIT and to identify various scaling
regimes and the actual position of the transition.
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Before closing the paper, we make comments on two issues
that have been left apart in the paper.

(i) We have not included random spatial fluctuations of
the Luttinger-liquid constant K0 in our effective model. In
principle, such fluctuations will also arise as a result of
junction-to-junction fluctuations in charging and Josephson
energies. We do not expect any essential modifications of
our results due to such fluctuations, assuming their relative
magnitude is small. On the other hand, this type of disorder
may affect essentially the energy transport in a system, since
it tends to localize the bosonic modes. A related problem has
been considered in the context of quantum wires in Ref. [81].

(ii) In the insulating phase, the ρ(T ) curves enter, at a
certain temperature, the strong-coupling regime (as indicated
by dashed lines in our figures). An interesting question is
the fate of the ρ(T ) dependences below this temperature. It is
expected that the interaction-induced dephasing in a disordered
Luttinger liquid [82] breaks down in this regime, and the
system undergoes, at a nonzero temperature, a many-body
localization transition into a phase with infinite resistivity
[83,84] (for a recent review see Ref. [85]). This is a true
transition only if the coupling to an external bath is zero;
its experimental observation thus requires that this coupling is
sufficiently weak. The MBL behavior has been experimentally
demonstrated in the vicinity of SIT in a disordered 2D system
[46]. It is natural to expect that it can be observed in the 1D
counterpart of such systems as well.
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APPENDIX A: DERIVATION OF THE FIELD THEORY
IN THE NONLOCAL CASE

In this Appendix, we derive the field-theory description of
a JJ chain with arbitrary range of charge-charge interaction.
While the derivation follows closely the general procedure
outlined in the literature [22,28,30,72,86,87], we include it to
make the presentation in this paper self-contained. To render
the infrared singularities finite, we assume the system to have
ring geometry with Nx islands and junctions. We focus here
on the case of a clean JJ array and derive Eqs. (5) and (8) of
the main text. The generalization to the case of a disordered
chain and the derivation of Eq. (12) is then straightforward.

We aim at deriving the path-integral formulation of the
partition function of the system. To this end, we discretize the
imaginary time into Nτ steps. The step size �τ is chosen to be
of the order of the characteristic time for the local dynamics
in the JJ chain,

�τ =
√

E1 + E0

EJE1E0
= 1

�0
. (A1)

The time step (A1) interpolates between 1/
√

EJE0 in the local-
interaction limit and 1/

√
EJE1 in the limit � → ∞.

(a) (b)

FIG. 8. Attribution of lattice variables in the derivation of the
sine-Gordon theory before (left) and after (right) the Poisson
resummation over charges and of the Villain approximation.

At each vertex of the space-time lattice obtained after the
discretization, we introduce a resolution of identity,

1 =
∑
N

∫ π

−π

dθ

2π
|N 〉〈θ |e−iθN , (A2)

where θ is the phase of a superconducting island and N is its
charge. In what follows, we attribute the phase θn

i to the site
(x,τ ) = (i,n) and the island charges N n

i to the vertical links
of the space-time lattice. The components of the (discrete)
gradients of the θ field are denoted by ∂xθ and ∂τ θ and are
attributed to the horizontal and vertical links, respectively. We
summarize our notations in Fig. 8 (left panel).

The imaginary-time action describing our system assumes
now the form:

S = −i
∑

vert.links

N n
i (∂τ θ )ni + E1�τ

2

∑
vert.links

S−1
ij N n

i N n
j

+EJ�τ
∑

hor.links

(
1 − cos

[
(∂xθ )ni

])
. (A3)

We proceed by performing Poisson resummation over the
charges N n

i in favor of a new integer-valued field vn
i (also

defined on vertical links). Furthermore, we adopt the Villain
approximation for the Josephson couplings

exp[−EJ�τ (1 − cos γ )] ≈
∑

h

exp

[
−EJ�τ

2
(γ + 2πh)2

]

(A4)

and get

S = K2
1

2K

∑
vert.links

Sij

[
(∂τ θ )ni − 2πvn

i

][
(∂τ θ )nj − 2πvn

j

]

+ K

2

∑
hor.links

[
(∂xθ )ni − 2πhn

i

]2
, (A5)

where K = √
EJ(E1 + E0)/E1E0 and hn

i is an integer-valued
field attributed to the horizontal links. The partition function
of the model now reads

Z =
∫ 2π

0
Dθ

∑
{v},{h}

e−S. (A6)

Note that the integration over each θn
i in Eq. (A6) is limited

to the interval (0, 2π ). However, the summation over the
longitudinal (with zero curl) part of the vector field (hn

i ,v
n
i )
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promotes the integration over the superconducting phase to the
full real line, resulting in an ordinary Gaussian integral. Thus,
eliminating θn

i and the longitudinal component of (hn
i ,v

n
i ) from

the partition function we get the action for the “vorticity”
of the vector field (hn

i ,v
n
i ). The latter is characterized by the

circulation of (hn
i ,v

n
i ) around each elementary plaquette of our

lattice (see right panel of Fig. 8),

pn
i = hn

i + vn
i+1 − hn+1

i − vn
i , (A7)

together with circulations over the two global loops in the
system,

H0 =
∑

i

h0
i and V0 =

∑
n

vn
0 . (A8)

In terms of vorticities introduced above and in Fourier space
(with dimensionless frequency ω) the action of our model
acquires the form

S = 2π2

NxNτE0�τ
V̄ 2

0 + 2π2EJ�τ

NxNτ

H̄ 2
0

+ 2π2K

NxNτ

∑
(q,ω)�=0

U−1(ω,q)|p(ω,q)|2, (A9)

where

U (ω,q) = �(ω) + �(q)

(1 − ug)�(q) + ug
, (A10)

�(ξ ) = 2(1 − cos ξ ) , ug = 1

1 + �2
, (A11)

and

V̄0 = NxV0 +
Nx−1∑
i=1

i
∑

n

pn
i , (A12)

H̄0 = NτH0 −
Nτ −1∑
n=1

n
∑

i

pn
i . (A13)

Applying the Poisson resummation procedure to the sum-
mation over V0 in the partition function, one can see that this
summation is equivalent to the summation over all possible
sectors of the theory with different total charge of the chain
and can be safely dropped. Straightforward algebra allows then
to rewrite the action (A9) as

S = 2π2EJ�τ

Nx

Nτ −1∑
n=0

H 2
n + 2π2K

NxNτ

∑
q �=0,ω

U−1(ω,q)|p(ω,q)|2,

(A14)

where in the last sum all the terms with q = 0 are excluded
and [cf. definition (A8)]

Hn =
∑

i

hn
i . (A15)

We are now in a position to derive the sine-Gordon type
description of our system. First, we introduce the Hubbard-
Stratonovich field φ̃ and decouple the vortex interaction term
in Eq. (A14) according to

exp

⎧⎨
⎩−2π2K

NxNτ

∑
q �=0,ω

U−1(ω,q)|p(ω,q)|2
⎫⎬
⎭

∝
∫

Dφ̃ exp

⎧⎨
⎩− 1

2π2KNxNτ

∑
q �=0,ω

U (ω,q)|φ̃(ω,q)|2 + 2i

NxNτ

∑
q �=0,ω

φ̃(ω,q)p∗(ω,q)

⎫⎬
⎭. (A16)

Note that the field φ̃(x,τ ) introduced here by definition has no q = 0 Fourier components. However, the variables Hn in Eq. (A14)
are related to the local vorticities pi

n via Hn − Hn+1 = ∑
i p

n
i . In order to carry out the summation over Hn in the partition

function, one thus needs to introduce an additional field φ0(τ ) resolving the corresponding Kronecker δ-function constraint,

δ

(
Hn − Hn+1 −

∑
i

pn
i

)
=

∫ π

0

dφ0(n)

π
exp

[
−2iφ0(n)

(
Hn − Hn+1 −

∑
i

pn
i

)]
. (A17)

The summations over Hn lead now to the action

S = 1

2π2KNxNτ

∑
q,ω

U (ω,q)|φ(ω,q)|2

+ 2i
∑
x,τ

φ(x,τ )p(x,τ ), (A18)

where the field φ is compact in the τ direction (with
compactification radius π ) and possesses the mode expansion

φ(x,τ ) = φ0(τ ) + πmτ

Nτ

+ 1

Nx

∑
q �=0

φ̃q(τ ). (A19)

All the transformations performed so far on our lattice
model were essentially exact (up to Villain approximation).
However, our treatment misses the physics at time scales
shorter when �τ that is the characteristic time for a quantum
phase slip. It is expected on physical grounds that quantum
phase slips described by the vortex numbers p(x,τ ) bear some
action cost Sshort (per phase slip) coming from those omitted
time scales. Therefore, the action (A18) should be modified
by adding a correction term

δS = Sshort

∑
x,τ

p2(x,τ ). (A20)
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When the superconducting correlations are (locally) well
developed, Sshort � 1, we can perform the summation over
p(x,τ ) to the lowest order in y = exp[−Sshort], the amplitude
of a quantum phase slip. The resulting action takes the form
of a sine-Gordon theory:

S = 1

2π2KNxNτ

∑
q,ω

U (ω,q)|φ(ω,q)|2 + 2y
∑
x,τ

cos 2φ(x,τ ).

(A21)

Here U (ω,q) is given by Eqs. (A10) and (A11).
Equation (A21) constitutes the main result of this Appendix.

In the continuum limit, q,ω � 1, it reduces to

S = 1

2π2K

∫ 1

−1

dq

2π

∫ �0

−�0

dω

2π
U (ω,q)|φ(ω,q)|2

+ 2y�0

∫
dxdτ cos 2φ(x,τ ) , (A22)

where we have restored the physical dimension of frequency
and

U (ω,q) = ω2

�0
+ q2�0

(1 − ug)q2 + ug
, ug = 1

1 + �2
, (A23)

K =
√

EJ(E1 + E0)

E1E0
, �0 =

√
EJE1E0

E1 + E0
. (A24)

Equations (A22), (A23), and (A24) are equivalent to Eqs. (5)
and (8) of the main text.

Before closing this Appendix, let us briefly mention another
justification of the transformation of the action (A18) to the
form (A22). To this end, we note that Eq. (A22) with y ∼ 1 can
be understood as the first term in the expansion of the effective
action for the field φ in harmonics cos nφ. On the other hand,
the RG equations for the action (A18) discussed in the main
text show that the QPS amplitude y rapidly renormalizes down
on the first few steps of the RG procedure provided that the
system is locally superconducting and that at short scales
K � 1. It is also easy to show that the amplitudes of higher
harmonics vanish even faster. Thus, Eq. (A22) constitutes an
adequate description of the system on length scales larger
than the lattice spacing and time scales larger then �τ . A
further discussion of this point can be found in Appendix B
where the action (A18) is analyzed in full detail for the case
of infinite-range Coulomb interaction, � = ∞.

APPENDIX B: INFINITE-RANGE INTERACTION

In this Appendix, we study the theory in the limit of
infinite-range Coulomb interaction (� → ∞). For this special
case we provide another connection between our lattice model
and the sine-Gordon theory (which supports the results of
Appendix A), derive an estimate for the fugacity, Eq. (9), and
compare our results to previous works.

Our starting point is Eq. (A14). In the limit � → ∞ (ug →
0), the interaction between vorticities U−1(ω,q) is momentum

independent and gapped. We thus approximately find

1

V

∑
q �=0,ω

U−1(ω,q)|p(ω,q)|2

� 1

V

∑
q �=0,ω

|p(ω,q)|2

=
∑
n,i

(
pn

i

)2 − 1

Nx

∑
n

[∑
i

pn
i

]2

. (B1)

In the next step we perform the summations over vorticities
{p}. As discussed in Appendix A, we incorporate the constraint
Hn − Hn+1 = ∑

i p
n
i via the introduction of an auxiliary field

φn ∈ (0,π ) [cf. Eq. (A17)]. We then arrive at the action

S = (2π )2K1

2Nx

∑
n

(Hn)2 + 2i
∑

n

φn(Hn+1 − Hn)

−�τ
∑

n

U (φn), (B2)

where

e
− U (φ)√

EJE1 =
∑

z

e2iφz exp[−f (z)],

f (z) = − (2π )2K1

2Nx

z2 − ln
∫ π

0

dω

π
e2iωz(g(ω))Nx ,

g(ω) =
∑

p

exp

[
−K1(2π )2p2

2
− 2iωp

]
.

(B3)

The action (B2) describes a particle on a ring (coordinate φ

and momentum H ) moving in a potential U (φ). Since f (z) is
a periodic function with period Nx , we can write

e
− U (φ)√

EJE1 =
Nx−1∑
z0=0

e2iφz0 exp[−f (z0)]
∑
z1

e2iNxz1φ

= π

Nx

Nx−1∑
z0=1

e2iφz0 exp[−f (z0)]
∑

k

δ

(
φ − πk

Nx

)
.

(B4)

We now observe that the potential U (φ) is not a smooth
function. However, we argue that for Nx � 1, the exponential
exp [U (φ)/

√
EJE1] converges in the sense of distributions to

the discrete Fourier transform

1

π
exp

[
− U (φ)√

EJE1

]
→

Nx−1∑
z0=0

e2iφz0 exp[−f (z0)]. (B5)

One can show now that for Nx � 1 and K1 � 1 the potential
U (φ) is approximately given by

U (φ) = 2y(Nx)[1 − cos 2φ] + const , (B6)

where

y(Nx) =
√

EJE1Nx exp

[
−2π2K1

(
1 − 1

Nx

)]
. (B7)

We have thus reduced the model of a JJ chain with infinite-
range interaction of a length Nx to a quantum mechanics
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with the cosine potential (B6), i.e., to a zero-dimensional
version of the sine-Gordon theory. Equation (B7) thus yields
the QPS amplitude at scale Nx for the chain with infinite-range
interaction. These results can be compared to the findings of
Refs. [7,9] where the suppression of the persistent current by
QPS in a JJ chain with ring geometry was studied. It was found
there that the effective QPS amplitude at length Nx is given by

y(Nx) ∝ E
3/4
J E

1/4
1 Nxe−8K1(1−γ /Nx ) , (B8)

with γ = 1/2 + π2/8. Comparing Eqs. (B7) and (B8), we see
that our approach yields the same form of the QPS amplitude
in its dependence on K1 and Nx as was obtained in Refs. [7,9].
On the other hand, the numerical coefficient in the exponent
of Eq. (B7) is different from that in Eq. (B8). This difference
in the numerical coefficient can be traced back to the fact that
our model is only approximate at the scale of the order of the
bare ultraviolet cutoff of the problem (Nx ∼ 1).

APPENDIX C: DERIVATION OF RG EQUATIONS
FOR SHORT-RANGE INTERACTION

In this Appendix, we present the main steps of the derivation
of the RG equations in the case of short-range Coulomb
interaction, Eqs. (23)–(28) of Sec. III A. We calculate the

correlation function (22) perturbatively in y (second order)
and Dξ (first order). To this order, phase slips and disorder do
not mix. The correction due to disorder (∝Dξ ) is therefore the
same as in Ref. [75]. In zeroth order we obtain

R(0)(r) = e−2πK0F1(r), (C1)

where

F1(x,τ ) = 1

2
ln

(
x2 + (u0|τ | + a)2

a2

)
. (C2)

Taking into account the contribution to the phase slips yields

R(r) = e−2πK0F̃1(r), (C3)

F̃1(x,τ ) = F1(x,τ ) + d

K0
cos (2θr) , (C4)

where θr is the angle between the vector (x,u0τ ) and the x axis.
The constant d parametrizes the anisotropy between space and
time [75]. Initially d = 0 but it gets generated during the RG.
For the purpose of this derivation we explicitly reintroduce the
lattice spacing a. In the following we calculate the second-
order correction ∝y2. To this end, we exploit the following
equality for the averaging over the Gaussian action of the
clean system:

lim
n→0

n∑
a=1

〈e2i[φj (r1)−φj (r2)] cos[2φa(r1)] cos[2φa(r2)]〉0

= 1

4
e−2πK0[F1(r1−r2)+F1(r3−r4)]

∑
σ=±

[e2πK0σ [F1(r1−r3)+F1(r2−r4)−F1(r1−r4)−F1(r2−r3)] − 1]. (C5)

The average over the random stray charges is evaluated by assuming a Gaussian distribution,

P [Q] = exp

{
− π2

DQa

∫
dx Q2(x)

}
. (C6)

We find

〈cos[Q(x3)] cos[Q(x4)] + sin[Q(x3)] sin[Q(x4)]〉Q = exp

{
−DQ

|x3 − x4|
a

}
. (C7)

The second-order correction to R assumes thus the form [here ri = (xi,u0τi)]:

y2

16π3a4
e−2πK0F1(r1−r2)

∫
d2r3d2r4e−2πK0F1(r3−r4)e−DQ

|x3−x4 |
a

∑
σ=±

[e2πK0σ [F1(r1−r3)+F1(r2−r4)−F1(r1−r4)−F1(r2−r3)] − 1]. (C8)

The first exponential factor in the above integrand is a power-law function of r = |r3 − r4|. This allows us to expand the square
bracket in r and perform the integration over the polar angle of r. While carrying out the integration over the center mass
coordinate R = (r3 + r4)/2, we use the following identities∫

d2R [F1(R − r1) − F1(R − r2)]
(
∂2
X + ∂2

Y

)
[F1(R − r1) − F1(R − r2)] = −4πF1(r1 − r2), (C9)

∫
d2R [F1(R − r1) − F1(R − r2)]

(
∂2
X − ∂2

Y

)
[F1(R − r1) − F1(R − r2)] = −2π cos 2θr1−r2 . (C10)

As a result, we obtain for the second-order correction

2π
y2

2
K2

0

∫ ∞

a

dr

a

(
r

a

)3−2πK0
{
F1(r1 − r2)

[
I0

(
DQ

r

a

)
− L0

(
DQ

r

a

)]
+ 1

2
cos 2θr1−r2

[
I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

]}
,

(C11)

064514-16



SUPERCONDUCTOR-INSULATOR TRANSITION IN . . . PHYSICAL REVIEW B 96, 064514 (2017)

where In are modified Bessel functions of the first kind and Ln are modified Struve functions. Equation (C11) represents starting
terms of the expansion of exp [−2πKeff

0 F̃1(r1 − r2)] with

Keff
0 = K0 − y2

2
K2

0

∫ ∞

a

dr

a

(
r

a

)3−2πK0
[

I0

(
DQ

r

a

)
− L0

(
DQ

r

a

)]
, (C12)

deff = d − y2

4
K2

0

∫ ∞

a

dr

a

(
r

a

)3−2πK0
[

I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

]
, (C13)

and

F̃1(r) = F1(r) + deff

Keff
0

cos (2θr) . (C14)

The effective constants Keff
0 and deff determine the low-energy behavior of the correlator R. Hence, varying the cutoff a → a + da

should not change them. Consequently, we find

K0(a + da) = K0(a) − y2

2
K2

0 [I0(DQ) − L0(DQ)]
da

a
, (C15)

d(a + da) = d(a) − y2

4
K2

0

[
I2

(
DQ

r

a

)
− L2

(
DQ

r

a

)
− 2

3π
DQ

r

a

]
da

a
, (C16)

y2(a + da) = y2(a)

(
a + da

a

)4−2πK0

, (C17)

DQ(a + da) = DQ(a)
a + da

a
. (C18)

Using the parametrization a(l) = el results in the RG equations
for K0, y, and DQ stated in the main text in Sec. III A, see
Eqs. (23)–(28). The relation between the renormalization of d

and u0 is given by [75]

du0

dl
= −2

u0

K0

dd

dl
. (C19)

The contribution of Sξ to renormalization (i.e., terms linear in
Dξ ) is the same as in Ref. [75].

APPENDIX D: MEMORY FUNCTION

In this Appendix, we present the calculation of the memory
function in the limit of local Coulomb interaction, Sec. III B.
We use the action (16) in the local limit � → 0 and go over to
the Hamiltonian description:

H = H0 + Hps + Hξ , (D1)

H0 = 1

2

∫
dx

[
u0K0(∂xθ )2 + u0

π2K0
(∂xφ)2

]
, (D2)

Hps,Q = yu0√
2π3a2

∫
dx cos[2φ(x) − Q(x)], (D3)

Hξ =
∫

dx

[
ξ (x)

a3/2
e2iφ(x) + H.c.

]
. (D4)

Here, we have again explicitly introduced the lattice spacing
a. The commutator of H with the current operator splits into
two parts: F = Fps + Fξ , where

Fps = −2

√
2

π
ieu2

0K0
y

a2
[sin 2φ(x) cosQ(x)

+ cos 2φ(x) sinQ(x)], (D5)

Fξ = −4πe
u0

a3/2
K0[ξ (x)e2iφ(x) − ξ ∗(x)e−2iφ(x)]. (D6)

In order to proceed, we have to compute the correlation
function

C(ω) =
∫

dx

∫ ∞

0
dt eiωt 〈[F (x,t),F (0,0)]〉 , (D7)

where the angular brackets denote averaging over disorder as
well as with respect to H. To the lowest order in y and Dξ ,
the averaging can be performed with respect to H0 instead of
the full Hamiltonian. To this order, the correlation function
C(ω) splits into two independent parts: C = Cps + Cξ . In the
following, we sketch the calculation of both of them.

1. Random fugacity part

The conductivity of a disordered 1D system has been
calculated in Ref. [88] using the memory function formalism.
For completeness, we demonstrate here the key steps. We
calculate the (time-ordered) correlation function

Cξ (x,τ ) = 〈TτFξ (x,τ )Fξ (0,0)〉 (D8)

in imaginary time τ and analytically continue it to real time
afterwards. The quantum average over exponentials yields

〈e2iφ(x,τ )e−2iφ(0,0)〉0 = e−2πK0F1(x,τ ), (D9)

where at finite temperature 1/β

F1(x,τ ) = 1

2
ln

[
β2u2

0

π2a2
sinh

(
π

u0β
x+

)
sinh

(
π

u0β
x−

)]
(D10)
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and x± = x ± iu0τ . After the disorder averaging, we arrive at

Cξ (x,τ ) = −8e2 u4
0

a3
K2

0 Dξδ(x)e−2πK0F1(x,τ ). (D11)

The corresponding retarded function can be found via analyt-
ical continuation (cf. Ref. [71]),

Cξ (t > 0) = A

(
πa

u0β

)2πK0
[

sinh

(
πt

β

)]−2πK0

, (D12)

where A = 16e2(u4
0/a

3)K2
0 Dξ sin(π2K0). The Fourier trans-

form to real frequency thus reads

Cξ (ω) =
∫ ∞

0
dt eiωtCξ (t)

= Aa

u0

(
2πa

βu0

)2πK0−1

B

(
1 − 2πK0,πK0 − iωβ

2π

)
,

(D13)

where B(x,y) denotes the Euler Beta function. The integral in
Eq. (D13) converges only for 2πK0 < 1 but can be analytically

continued to arbitrary K0. The memory function assumes in
the limit ω → 0 the form

Mξ (T ) = 2πi �2(πK0)u0K0

�(2πK0)a
Dξ

(
2πaT

u0

)2πK0−2

, (D14)

which leads to Eq. (56) of the main text.

2. Phase-slip part

For the phase-slip contribution we compute

Cps(x,τ ) = 〈TτFps(x,τ )Fps(0,0)〉 (D15)

= − 4

π
e2(u0/a)4K2

0 y2e−2πK0F1(x,τ )e−DQ|x|/a.

(D16)

After analytic continuation, we arrive at

Cps(ω) = γ

(
πa

u0β

)2πK0
∫ ∞

0
dt

∫ u0t

−u0t

dx
eiωte−DQ|x|/a[

sinh
(

π
u0β

(u0t − x)
)

sinh
(

π
u0β

(u0t + x)
)]πK0

, (D17)

where γ = (8/π )e2(u0/a)4K2
0 y2 sin(π2K0). It is convenient to change variables to the dimensionless light-cone variables z =

π/(u0β) (u0t + x) and z̄ = π/(u0β) (u0t − x):

Cps(ω) = γ
u0β

2

2π2

(
πa

u0β

)2πK0
∫ ∞

0
dz

∫ ∞

0
dz̄

ei
βω

2π
(z+z̄)e− DQu0β

2πa
|z−z̄|

[sinh(z) sinh(z̄)]πK0
. (D18)

The integrals are convergent for 0 < K0 < 1/π but can be analytically continued. We analyze both integrals in the limit of weak
and strong disorder.

For DQu0β/a � 1, we find in zeroth order

C(0)
ps (ω) = γ

4

u0β
2

2π2

(
2πa

u0β

)2πK0

B2

(
1 − πK0,

πK0

2
− iβω

4π

)
. (D19)

The correction linear in DQ reads in the limit ω → 0

C(1)
ps (ω)

ω→0→ −DQu0β

2πa
γ

u0β
2

2π2

(
πa

u0β

)2πK0
(

A1(K0) + iβω

2π
A2(K0)

)
, (D20)

where the dimensionless functions A1 and A2 are defined as

A1(K0) =
∫ ∞

0
dz

∫ ∞

0
dz̄

|z − z̄|
(sinh z sinh z̄)πK0

, A2(K0) =
∫ ∞

0
dz

∫ ∞

0
dz̄

(z + z̄)|z − z̄|
(sinh z sinh z̄)πK0

. (D21)

For the memory function we find in the DC limit

Mps(T ) = iu0K0

2a
y2

[
�4(πK0/2)

�2(πK0)

(
2πaT

u0

)2πK0−3

− 23−2πK0
1

π
sin(π2K0)A2(K0)DQ

(
2πaT

u0

)2πK0−4]
. (D22)

A similar result for DQ = 0 was obtained in Ref. [77] for umklapp scattering in 1D systems.
In the opposite limit DQu0β/a � 1, contributions away from the diagonal z = z̄ are suppressed. We thus find

Cps(ω) ≈ γ
u0β

2

2π2

(
πa

u0β

)2πK0
∫ ∞

0
dz

ei
βω

π
z

[sinh (z)]2πK0

∫ ∞

0
dz̄ e− DQu0β

2πa
|z−z̄| (D23)

≈ γ
2a2

u0DQ

(
2πa

u0β

)2πK0−1

B

(
1 − 2πK0,πK0 − iβω

2π

)
. (D24)
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In the zero frequency limit, the memory function reads

Mps(T ) = 2iu0K0

a

�2(πK0)

�(2πK0)

y2

DQ

(
2πaT

u0

)2πK0−2

. (D25)

Equations (D22) and (D25) yield Eq. (49) of the main text.

APPENDIX E: LONG-RANGE COULOMB INTERACTION:
RG ANALYSIS

In this Appendix we derive the RG equations describing
the JJ chain with long-range Coulomb interaction, Sec. IV A.
Our starting point is Eqs. (59) and (12).

1. Lowest-order scaling

We start with the derivation of the scaling equations for
K , ug, and y to first order in y. Straightforward dimensional
analysis leads in this approximation to RG equations (62) and
(63). To find the scaling of the QPS amplitude, we follow the
standard route [71] and perform averaging of the phase-slip
part of the action over the eliminated modes. With the cutoff
procedure described in the main text this leads to

dy(l)

dl
= 1 + ug

2
y(l)[2 − πKε(ug)]. (E1)

Here

ε(ug) = 4

π (1 + ug)

∫ 1

0
dq

(
1

q2 + 1
+ ug

q2ug + 1

2q2ug + 1 + q2

)
.

(E2)

The function ε(ug) is smooth on the interval 0 � ug � 1.
Its value at ug = 1, ε(1) = 1, is universal and guarantees
the correct scaling of the QPS amplitude at the infrared
fixed-point ug = 1. On the other hand, the value of ε(ug) at
ug = 0 is nonuniversal and depends on the details of the cutoff
procedure. Within our cutoff scheme ε(0) = 1. Moreover, the
full variation of ε(ug) on the interval 0 � ug � 1 turns out to
be numerically small (of the order of 1%). We can thus safely
assume ε(ug) ≡ 1 which leads us to Eq. (64).

2. Correlation functions and second-order correction

We are now in a position to derive the RG equations
describing our system to the second order in y. To accomplish
this goal we analyze the vertex function

R(r1) = 〈e2iφ(r1)e−2iφ(0)〉 (E3)

and examine its variation upon variation of the cutoff. The RG
equations can then be read off from the requirement

Rdl(x1(1 + dl),τ1(1 + ugdl),ug(0),K(0))

= Rl=0(x1,τ1,ug(dl),K(dl)). (E4)

Here Rdl is the correlation function in the theory with the
momentum cutoff |q| � 1 − dl while Rl=0 stands for the
correlation function with initial cutoff |q| � 1.

To zeroth order in y

R(0)(r1) = e−2KF (r1) (E5)
with

F (r) = π2
∫

|q|<1

dq

2π

∫
|ω|<�0

dω

2π

2 − 2 cos qx cos ωτ

ω2

�0
+ �0q2

(1−ug)q2+ug

. (E6)

Equation (E4) leads then immediately to Eqs. (62) and (63).
Let us now proceed with the perturbative treatment of the

QPS action. In the second order in y we find a correction (cf.
closely related discussion in Appendix C)

δR = y2

4π3
K2e−2KF (r1)

∫
d2r e−2KF (r)e−2π2DQ|x|

×
∫

d2R[r · ∇R(F (R − r1) − F (R))]2. (E7)

Note that here the time is dimensionless (rescaled with �0).
Since the function F (r) is even in both x and τ , cross terms of
the form x · τ originating from the scalar product in the square
bracket disappear. Transforming the integral over center of
mass coordinates to Fourier space results in

δR = y2

4π3
K2e−2KF (r1)

×
∫

d2q

(2π )2
[Ixq

2 + Iτω
2](2 − 2 cos qr1)F 2(q), (E8)

where

Iζ =
∫

d2r ζ 2 e−2KF (r)e−DQ|x|, ζ = x,τ , (E9)

and

F (q) = − 2π2

ω2 + q2

(1−ug)q2+ug

. (E10)

Evaluating the correction to R after one step of RG, we get

δRdl(x̃1,τ̃1) = y2(0)

4π3
K2(0)e−2K(0)Fdl (x̃1,τ̃1,ug(0))

∫
|q|<1−dl

dq

2π

∫
|ω|<1−ugdl

dω

2π
(2 − 2 cos qr̃1)

×F 2(q,ug(0)) [q2 Ix,dl(K(0),ug(0),DQ(0)) + ω2 Iτ,dl(K(0),ug(0),DQ(0))]. (E11)

We know from the zeroth order calculation that

K(0)Fdl(x̃1,τ̃1,ug(0)) = K (0)(dl)F0(x1,τ1,u
(0)
g (dl)), (E12)

x1(1 + dl) = x̃1, τ1(1 + ugdl) = τ̃1. (E13)
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The superscript (0) emphasizes that only corrections for y = 0 are taken into account at this stage. It is easy to show that

Ix,dl(K(0),ug(0),DQ(0)) = (1 + dl)3(1 + ugdl) Ix,0(K (0)(dl),u(0)
g (dl),DQ(dl)),

Iτ,dl(K(0),ug(0),DQ(0)) = (1 + dl)(1 + ugdl)3 Iτ,0(K (0)(dl),u(0)
g (dl),DQ(dl)).

(E14)

The disorder strength is renormalized as DQ(dl) = (1 + dl)DQ. We further need to rescale the integrals over q and ω in Eq. (E11)
as q̃ = (1 + dl)q and ω̃ = (1 + ugdl)ω. Further, we exploit

K2(0)F 2
dl(q,ug(0)) = (1 + dl)2(1 + ugdl)2(K (0)(dl))2F 2

0 (q̃,u(0)
g (dl)). (E15)

Finally, we arrive at

δRdl(r̃1,ug(0),K(0),DQ(0)) = y2(0)

4π3
(1 + dl)2(1 + ugdl)2(K (0)(dl))2e−2K (0)(dl)F0(r1,u

(0)
g (dl))

×
∫

|q|<1

d2q̃

(2π )2

[
q̃2Ix,0

(
K (0)(dl),u(0)

g (dl),DQ(dl)
) + ω̃2Iτ,0

(
K (0)(dl),u(0)

g (dl),DQ(dl)
)]

× [2 − 2 cos q̃r1]F 2
0

(
q̃,u(0)

g (dl)
)
. (E16)

The full correlation function takes now the form

Rdl(r1) = e−2KF (r1)

{
1 + y2(dl)

4π3
K2

∫
d2q

(2π )2
[q2Ix,0 + ω2Iτ,0](2 − 2 cos qr1)F 2

0 (q)

}

×
{

1 + π

2
(1 + ug)y2(0)K3dl

∫
d2q

(2π )2
[q2Ix,0 + ω2Iτ,0](2 − 2 cos qr1)F 2

0 (q)

}
. (E17)

Here, we have suppressed the superscript (0) of K and ug (in order to make the formula slightly less cumbersome) and used the
rescaling law for the QPS amplitude,

y(dl) =
[

1 +
(

1 + ug − π

2
(1 + ug)K

)
dl

]
y(0). (E18)

Finally, we need to compare Eq. (E17) to the correlator calculated at the original cutoff but with different couplings:

Rl=0 = e−2K(0)F0(r1,ug(0))

{
1 − 2 δK F0(r1) − 2K

∂F0

∂ug
δug

}{
1 + y2(dl)

4π3
K2

∫
d2q

(2π )2
[q2Ix,0 + ω2Iτ,0](2 − 2 cos qr1)F 2

0 (q)

}
.

(E19)

We introduced here the corrections as δK = K(dl) − K(0)
and δug = ug(dl) − ug(0).

If we would attempt to describe the renormalization of the
quadratic action at all momenta q, we would have to use a
functional RG. Instead, we consider the long-wavelength limit
of F0(q):

F0(q) � −2π2

ω2 + q2/ug
. (E20)

This yields

δK = − 1
2 (1 + ug)y2K3Iτ,0 dl,

δug = 1
2 (1 + ug)y2K2ug(Iτ,0 − ugIx,0) dl.

(E21)

This is sufficient both at the first stage of RG where the
dominant effect in the renormalization of K and ug is of zeroth
order in y, as well as at longer length scales where the system
approaches the local limit and our approximation will give
the asymptotically correct form of the y2 contributions to the
renormalization. Within our accuracy, the functions Ix,0 and

Iτ,0 can be evaluated in the local limit:

Ix � C
1

K

[
I0(DQ) − L0(DQ) − I1(DQ) − L1(DQ)

DQ

]
, (E22)

Iτ � C
1

K

I1(DQ) − L1(DQ)

DQ

. (E23)

Here C is a numerical constant that we set to unity within our
accuracy, and In and Ln are modified Bessel functions of the
first kind and modified Struve functions, respectively. We are
now in a position to write down the RG equations up to second
order in the phase-slip fugacity:

dK

dl
= −(1 − ug)K − 1

2
y2K2(1 + ug)

I1(DQ) − L1(DQ)

DQ

,

(E24)

dy

dl
= 1 + ug

2
[2 − πK]y, (E25)
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dug

dl
= 2ug(1 − ug) + y2

2
K(1 + ug)ug

×
[
(1 + ug)

I1(DQ) − L1(DQ)

DQ

−ug(I0(DQ) − L0(DQ))
]
, (E26)

dDQ

dl
= DQ, (E27)

which leads to Eqs. (67)–(69) of the main text. Here the Bessel
and Struve functions have the following asymptotic behavior:

I0(x) − L0(x) ∼
{

1 − 2
π
x, x → 0,

2
πx

, x → ∞,
(E28)

1

x
[I1(x) − L1(x)] ∼

{
1
2 − 3

2π
x, x → 0,

2
πx

, x → ∞.
(E29)

Finally, we notice that, since we rescale frequencies as
ω̃ = (1 + ugdl)ω, temperature is also rescaled and satisfies
the equation

dT

dl
= ug T . (E30)

This is Eq. (71) of the main text.

APPENDIX F: GAUSSIAN PHASE FLUCTUATIONS:
COMPARISON OF JJ CHAINS WITH
SUPERCONDUCTING NANOWIRES

A model analogous to the one defined in Sec. II is expected
to describe also the physics of multichannel disordered super-
conducting wires at the SIT and deeply in superconducting
and insulating phases [7,69]. Comparison of our action with
that derived in Ref. [69] for the case of a dirty multichannel

wire yields the following correspondence of parameters

1

aE0
↔ C̃

e2
,

a

E1
↔ s σ

e2�
, aEJ ↔ s σ�/e2, (F1)

where C̃ is the capacitance per unit length, σ is the normal
state conductance, s is the cross section of the wire, and � is
the modulus of the superconducting order parameter. We have
also introduced the lattice spacing a of the JJ chain into our
action. The capacitance per unit length of the wire behaves as

C̃−1 ∼ ln(d/R), (F2)

where R is the radius of the wire and d is the distance to a
nearby metallic plate. Using the RHS of Eq. (F1) to calculate
the dimensionless parameter K0 and the screening length Ls ≡
a�, we get

K0 ∼
√

C̃

rs

Nch
l

ξ
, Ls ∼ ξ

√
Nchrs

C̃
. (F3)

Here, rs ≡ e2/vF is the ratio of the interparticle spacing to
the Bohr radius, Nch is the number of channels in the wire,
l is the mean free path, and ξ is the coherence length of the
superconductor in the dirty limit. While the model of a wire has
a continuous character, the bare superconducting correlation
length ξ plays the role of the UV cutoff. Dividing Ls by ξ , one
can define an effective dimensionless screening parameter �

� ∼
√

Nchrs

C̃
. (F4)

For a large number of channels, � is much larger than unity.
On the other hand, for a wire with just a few channels, � can
be of order unity.

The stray-charge disorder DQ has not been included in the
model of Ref. [69]. Determination of its strength requires a
separate analysis; we expect that the bare value of DQ becomes
smaller with increasing Nch. Finally, while some results for
the bare QPS fugacity y were found in Ref. [69], its analysis
appears to require further work.
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