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Superfluidity in density imbalanced bilayers of dipolar fermions
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We study the zero temperature phase diagram of an imbalanced bilayer of dipolar fermions. We consider
perpendicularly aligned identical dipoles in two layers and investigate the effect of population imbalance on
the ground state phase at different layer spacings and average densities. The attractive part of the interlayer
interaction could lead to the BEC-BCS crossover and the Fermi surface mismatch between two layers results in
interesting uniform and nonuniform superfluid phases, which we have investigated here using the BCS mean-field
theory together with the superfluid-mass density criterion. The density imbalance reduces the pairing gap. At low
densities, where the system is on the BEC side of the crossover, this reduction is quite smooth while a dense system
rapidly becomes normal at intermediate density polarizations. Stable homogeneous superfluidity is predicted to
appear on the phase diagram when the dipolar length exceeds both the layer spacing and the average intralayer
distance between dipoles, a regime which should be readily accessible experimentally. This homogeneous
superfluid phase becomes unstable at intermediate densities and layer spacings. We have also examined that
these uniform and inhomogeneous superfluid phases survive when the effects of intralayer screenings are also
incorporated in the formalism.
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I. INTRODUCTION

The interplay between Bardeen-Cooper-Schrieffer (BCS)
pairing and Zeeman field in superconductors and several
interesting phenomena associated with the pairing between
two spin components of electrons with mismatched Fermi
surfaces has long been the subject of theoretical investigations
[1–9]. Gapless excitations in a superconductor subjected to an
external magnetic field, where bounded Cooper pairs coexist
with unpaired normal electrons [1], has been predicted. This is
usually referred to as Sarma, breached-pair superfluid [10], or
internal gap [11] phase. Another possibility with mismatched
Fermi surfaces is the nonuniform superfluidity of Fulde, Ferrell
[2], Larkin, and Ovchinnikov [3] (FFLO) type. Unlike the
conventional superconductors, Cooper pairs in the FFLO phase
carry finite momentum and therefore the superfluid gap has a
spatially oscillating behavior. In spite of the several theoretical
proposals and over half a century of experimental quests, no
clear evidence of these exotic phases has been reported in
superconductors so far, because of the hindering of external
magnetic fields by the Meissner effect [12], as well as the
requirement for very clean systems [4,13–15]. Nevertheless,
the heavy fermion and iron-based superconductors are very
promising candidates for their observation [15–17]. Alterna-
tive theoretical proposals, such as electron-hole bilayers in
semiconductor heterostructures [18,19], different flavors of
quarks [20], and isospin asymmetric nuclear matter [21] for
the observation of these exotic superfluid phases also exist.

In the past two decades, experimental breakthroughs in
cooling and trapping dilute atomic gases [22–27] brought new
hope for the realization of several long-awaited condensed
matter dreams. In neutral atomic gases, there is usually a full
control over the sign and the strength of short range s-wave
interaction, through the so-called Feshbach resonance [28,29].
In fermionic systems, this tunability leads to the observation of
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BCS-Bose-Einstein condensation (BEC) crossover, between
weakly bounded Cooper pairs on one side and bosonic
molecules of two fermionic atoms on the other side [30–34].
Exotic superfluid phases have already been studied extensively
in fermionic systems consisting of different fermions or hy-
perfine states of the same atom [12,35–41]. In two component
fermionic systems with mass and/or population imbalance,
the Sarma phase has been predicted to be stable deep into the
BEC side of the resonance [42,43], where a mixture of the
BEC of bosonic molecules and normal fermionic atoms lead
to the gapless superfluidity. In contrast, near the BCS side, the
system is vulnerable to instability towards an inhomogeneous
phase-separated system, or a nonuniform superfluid state of
FFLO type. The FFLO phase in ultracold Fermi gases with
short range interactions has been predicted for optical lattices
as well as for homogeneous systems; however, the predicted
parameter window in the phase space is usually thought to be
very narrow [44–47].

In recent years there has been an immense theoretical
and experimental interest in ultracold dipolar systems such
as heteronuclear polar molecules [48–60], and magnetic
[61–67] and Rydberg [68–70] atoms. The long-range and
anisotropic interaction between dipoles, and its tunability
through external fields, makes dipolar systems very rich
playgrounds for the realization of interesting phenomena such
as BCS-BEC crossover [71,72], density wave instabilities
[73–75], and topological states [76,77]. Moreover, imbalanced
dipolar systems may also pave the way for the observation of
above mentioned exotic superfluid phases [78].

In this paper, we explore and propose a density imbalanced
bilayer system of dipoles as a suitable platform for the
observation of exotic superfluid phases such as Sarma and
FFLO. For this we consider identical fermionic dipoles
confined in a bilayer geometry, where only the populations of
two layers are different. Dipoles are aligned perpendicular to
the layers by an external electric or magnetic field, depending
on the nature of their moments. Layered geometry suppresses
chemical reactions originating from the attractive part of the
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dipole-dipole interaction [79]. On the other hand, the layer
indices act as pseudospin degrees of freedom and the problem
could be treated within the standard BCS mean-field theory.
We begin with the Hamiltonian of the system, keeping
only the pairing order parameter between two layers, which
originates from the attractive part of the interlayer interaction.
Considering a fixed number of dipoles in each layer, we obtain
the gap function and the chemical potentials of each layer, self-
consistently. Then, we calculate the superfluid mass density,
whose sign determines instabilities of the uniform superfluid
state towards nonuniform superfluid phases [40,41]. In this
way, we find the phase diagram of the imbalanced bilayer
system in the plane of density polarization and intralayer
coupling strength, for different values of the spacing between
two layers. We finally use the random phase approximation
(RPA) to investigate the effects of many-body screening on
the phase diagram.

The rest of this paper is organized as follows. In Sec. II, we
introduce our model, describe how we obtain the superfluid
order parameter, and the mass density to examine the stability
of superfluid phase. In Sec. III we illustrate our numerical
results for different physical quantities as well as the zero
temperature phase diagram of an imbalanced bilayer dipolar
system. We summarize and conclude in Sec. IV. Finally, we
have devoted an Appendix to discuss the effects of screening
on the order parameter and phase diagram.

II. THEORY AND FORMALISM

In this section, we aim to present the basic theory and the
criteria for the realization of different phases in an imbalanced
bilayer system of dipolar fermions. To this end, we first
introduce the model Hamiltonian of the system. Then, using
the BCS mean-field approximation we determine the normal or
superfluid phases of the ground state. As already mentioned, an
imbalanced system can host exotic phases such as Sarma and
FFLO, which here we have characterized using the so-called
superfluid mass density, introduced in the last part of this
section.

A. Model Hamiltonian

A bilayer system of dipoles which are aligned perpendicular
to the planes (see Fig. 1) is described by the following
Hamiltonian:

H =
∑

k

ξa
k a

†
kak +

∑
k

ξ b
k b

†
kbk + 1

2A

∑
q

VS(q)ρa
qρa

−q

+ 1

2A

∑
q

VS(q)ρb
qρb

−q + 1

A

∑
q

VD(q)ρa
qρb

−q. (1)

Here, operators ak(a†
k) and bk(b†k) destroy (create) a dipole

with momentum k in layers a and b, respectively; ξ
a(b)
k =

h̄2k2/(2ma(b)) − μa(b) is the single particle dispersion of
dipoles in layer a (b), measured with respect to the corre-
sponding chemical potential μa(b). As two layers host identical
dipoles with unequal populations, we will have ma(b) = m,
but μa �= μb. In Eq. (1), we have also introduced the density
operators as ρa

q = ∑
k a

†
k+qak and ρb

q = ∑
k b

†
k+qbk. Finally,

the dipolar interaction between particles belonging to the same

Magnetic
atom

Polar
molecule

Rydberg 
atom

FIG. 1. Schematic representation of a bilayer system of dipoles
with population imbalance. The spacing between two layers d ,
intralayer interaction VS, and interlayer interaction VD are indicated
in the figure. In the lower spot, several examples of the physical
systems where the dipole-dipole interaction could be relevant have
been sketched.

S and different D layers are respectively written as [80]

VS(r) = Cdd

4π

1

r3
(2)

and

VD(r) = Cdd

4π

r2 − 2d2

(r2 + d2)
5
2

, (3)

where Cdd is the dipole-dipole interaction strength, which
depends on the microscopic origin of the dipolar interaction,
r is the in-plane distance between two dipoles, and d is the
distance between two layers as indicated in Fig. 1. Particles in
the same layer repel each other, while the interaction between
two dipoles from different layers is attractive for r �

√
2d

and repulsive at larger in-plane separations. Therefore, the
BCS-BEC crossover is expectable with tuning the strength
of the attractive interlayer interaction [72,81]. The Fourier
transforms of the intralayer and interlayer interactions read
[82]

VS(q) = Cdd

4

[
8

3
√

2πw
− 2q eq2w2/2erfc

(
qw√

2

)]
(4)

and

VD(q) = −Cdd

2
q e−qd . (5)

Here, erfc is the complementary error function. Note that the
divergence in the Fourier transform of VS(r) has been tackled
here by introducing a short distance cutoff w [37]. In the
following, we will show how the superfluid gap function of
the system could be obtained within the BCS theory.

B. Mean-field approximation

In order to study the superfluidity, we utilize the BCS
mean-field approximation to reduce the Hamiltonian (1) into
a solvable single particle problem. For simplicity, we neglect
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the intralayer interaction and consider only the s-wave pairing
between particles of different layers. Therefore, the superfluid
order parameter reads

�k = − 1

A

∑
k′

VD(k − k′)〈b−k′ak′ 〉, (6)

and the mean-field Hamiltonian could be written as

H MF =
∑

k

[ξa
k a

†
kak + ξb

k b
†
kbk − (�∗

kb−kak + H.c.)]. (7)

Diagonalizing the above Hamiltonian with the help of the
Bogoliubov transformations gives the excitation spectrum as

E±
k = Ek ± δμ, (8)

where Ek =
√

ξ 2
k + �2

k , ξk = h̄2k2/(2m) − (μa + μb)/2, and
δμ = (μa − μb)/2. We should note that here we are labeling
the higher density layer as layer a and the lower density one
as layer b; therefore, δμ � 0. In contrast to the balanced
system for which excitation energies have no zeros and the
superfluid state is always gapped, for a system with population
imbalance, the upper excitation branch E+

k has no zeros,
whereas the lower excitation branch E−

k , could have one
or two zeros. Thus, with a topological phase transition, the
Fermi surface of the lower excitation branch changes from a
sphere into a spherical shell. Similar phase transitions have
been also predicted for imbalanced systems of fermions with
short-range interactions [40,41], and for electron-hole bilayers
in semiconductor heterostructures [19].

The gap equation, which is obtained by minimizing the free
energy of the system with respect to the order parameter, reads

�k = − 1

2A

∑
k′

VD(k − k′)
�k′

Ek′
[1 − f +

k′ − f −
k′ ], (9)

where f ±
k = 1/[1 + exp(βE±

k )] is the Fermi-Dirac distribu-
tion function with β = 1/(kBT ) the inverse temperature. We
consider fixed density of dipoles in each layer, so the gap
equation should be complemented by the number equations
for the densities of each layer

na(b) = 1

2A

∑
k

[(
1 + ξk

Ek

)
f

+(−)
k +

(
1 − ξk

Ek

)
(1−f

−(+)
k )

]
,

(10)

which could be solved to give the chemical potentials of two
layers at fixed densities. Now, the self-consistent solutions of
Eqs. (9) and (10) allow us to obtain μa , μb, and �k for given
temperature, layer spacing, and layer densities. A finite pairing
distinguishes the superfluid state from the normal one.

C. Stability of the uniform superfluid state

A nonzero solution for the gap function alone is not
necessarily associated with a homogeneous superfluid state
as the ground state of the system. The sign of superfluid
mass density is another criterion which can be used to
qualitatively analyze different superfluid phases [83,84]. For
s-wave pairing, the superfluid mass density at zero temperature
can be calculated from (for its more general form see, e.g.,

Refs. [19,40,41])

ρs = m(na + nb) − h̄2

4π

∑
j

(k−
j )3

∣∣ dE−
k

dk

∣∣
k=k−

j

, (11)

where E−
k is the lower branch of the quasiparticle dispersion,

as defined in Eq. (8), whose j th zero is located at k−
j . As

detailed in Ref. [84], two paramagnetic and diamagnetic
superfluid mass densities contribute to the total superfluid mass
density, ρs . The competition between these two contributions
determines the sign of the total mass density. A negative
superfluid mass density means that the paramagnetic term
dominates over the diamagnetic one and therefore there
is a current against the superfluid velocity. This could be
considered as a characteristic of the FFLO phase, where
quasiparticles, due to the finite momentum of the Cooper pairs,
produce a flow canceling the superfluid current. Therefore, a
positive superfluid mass density is a sign of uniform superfluid
being a local minimum of the energy, whereas negative
superfluid mass density guarantees the instability of the Sarma
phase towards a nonuniform superfluid phase [84].

In the following we will investigate different phases of the
system at zero temperature, calculating the pairing gap which
distinguishes the normal phase from the superfluid one, and
the sign of the superfluid mass density, which characterizes the
stable Sarma phase or its instability towards the FFLO phase.

III. RESULTS AND DISCUSSION

Before turning to the discussion of our numerical findings,
we should note that an imbalanced bilayer of perpendicular
dipoles at the zero temperature could be specified by three
dimensionless parameters. The density polarization α = (na −
nb)/(na + nb), the dimensionless average in-plane separation
between dipoles λ = r0

√
2π (na + nb), and the dimensionless

distance between two layers d/r0, where r0 = mCdd/(4πh̄2)
is the characteristic length of dipole-dipole interaction [79].

Our results in this section are obtained from the self-
consistent solution of Eqs. (9) and (10) at a vanishing
temperature. This gives the s-wave pairing gap as a function of
the wave vector k, together with the chemical potentials of two
layers. Afterward, we use Eq. (11) to find the superfluid mass
density, which serves as the stability criterion of the uniform
superfluid phase. Note that in the following we have expressed
all lengths and energies in the units of r0 and ε0 = h̄2/(mr2

0 ),
respectively.

Figure 2 illustrates the effect of the population imbalance
α on the pairing gap, which slowly decreases at small particle
densities, while a dense system becomes normal, with a
small density imbalance between two layers. The mismatch
between two Fermi surfaces generally counteracts the pairing,
but this should affect more the weak BCS type of pairing
at large densities than the strong molecularlike binding of
two dipoles at smaller densities [85]. Figure 3 compares the
wave vector dependence of the superfluid gap function of an
unpolarized (i.e., density balanced) system with the ones of
polarized systems. The suppression of the pairing gap with
density imbalance is again evident from this figure. It is also
worth mentioning that our results for α = 0 are in very good
agreement with the results of Zinner et al. in [72], where the
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FIG. 2. Maximum value of the superfluid gap function �max (in
units of ε0) as a function of the density polarization α, at d = 0.5r0

and for several average particle densities.

BCS-BEC crossover of dipolar fermions in balanced bilayer
structures has been investigated. In Fig. 4 we show the pairing
gap and the lower branch of the excitation energy E−

k as a
function of the wave vector, for fixed values of the interlayer
spacing d = 0.5r0, and the density polarization α = 0.55,
at different particle densities. As it is clearly noticeable,
at λ = 0.5 the excitation energy has one zero, meaning a
spherical Fermi surface for the lower band. Whereas for
λ = 1.5 and 3, the Fermi surface is a spherical shell, as the
lower band of the excitation energy has two zeros. Zeros in
the excitation spectrum together with a finite superfluid gap
function is an indication of the gapless superfluid state. Note

FIG. 3. Comparison between the paring gaps of unpolarized
bilayer systems with polarized ones as functions of the wave vector,
for d = 0.2r0 and λ = 2 (top) and for d = r0 and λ = 0.4 (bottom).
Note that in each panel the pairing gaps are scaled with the superfluid
gap at k = 0 of the corresponding unpolarized system �0.

-

FIG. 4. Wave vector dependence of the superfluid gap �k (top)
and the lower branch of the excitation energy E−

k (bottom), in units of
ε0, at fixed interlayer spacing d = 0.5r0 and density polarization α =
0.55. Three different particle density parameters, λ = 0.5, 1.5, and
3 correspond to the Sarma, FFLO, and normal phases, respectively.
Note that the blue dotted line in the top panel is not easily visible, as
the pairing gap is zero for the normal phase at λ = 3.

that the upper excitation branch of the quasiparticle energy E+
k ,

is always positive and does not carry a physical significance
in our discussions here.

The zero temperature phase diagram of an imbalanced
bilayer of dipolar fermions in the λ − α plane, and for two
different values of the layer spacing, d = 0.5 r0 and d = r0,
has been presented in Fig. 5. We have observed that the
superfluid order parameter is always zero for d � 1.5r0,
irrespective of the density parameter λ and the polarization
α. Moreover, the system is in the normal phase also at large
average densities. We found stable uniform superfluid (i.e.,
Sarma) phase only at very small layer spacings, namely at
d � 0.63r0. This is in contrast to the electron-hole bilayer for
which the interlayer spacing mainly affects only the transition
line between different phases, but not the number of observed
phases [18,19]. The black dashed line in the top panel of
Fig. 5 refers to the zero average chemical potential defined
as μ = (μa + μb)/2, which separates the BEC region with
negative average chemical potential on its left side from the
BCS region with positive average chemical potential on its
right side. This clearly shows that the Sarma phase is stable
only on the BEC side of the crossover.

In order to verify whether these exotic superfluid phases
are robust against the many-body screening due to the so-
far-omitted intralayer interaction between dipoles, or not, we
use the random-phase approximation [86] to find the effect
of screening on the phase diagram. For this, we replace the
bare interlayer potential VD(k) in Eq. (9) with the screened
one within the RPA (see the Appendix for details), and
repeat all the procedure to obtain the screened phase diagram.
As the screening is naturally very weak at low intralayer
couplings, it should not affect significantly the Sarma-FFLO
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FIG. 5. Zero temperature phase diagram of an imbalanced bilayer
of dipolar fermions as a function of the average density parameter
λ and the density polarization α, obtained for interlayer distances
d = 0.5 r0 (top) and d = r0 (bottom). The green color shows the
stable Sarma phase (S), the pink color refers to the unstable region
(FFLO), and the yellow one is the normal phase, all obtained with
the bare interlayer interaction. In the top panel, the blue symbols
show the Sarma-FFLO phase transition boundary obtained with the
RPA-screened interlayer interaction and the red symbols define the
screened phase transition boundary between FFLO and normal states.
The thick dashed line in the top panel corresponds to the zero average
chemical potential (i.e., μ = 0) line, such that on its left (right) side,
the average chemical potential is negative (positive).

phase boundary. On the other hand, the border between FFLO
and normal phases at higher densities is expected to move
towards the lower densities, shrinking the FFLO phase region.
This has been confirmed by our full numerical solutions,
as shown by symbols in the top panel of Fig. 5. As it is
well known [85,87], the normal-phase RPA would generally
overestimate the screening. Therefore, we expect that the exact
FFLO-normal phase boundary would lie somewhere between
the bare and RPA results.

Finally, in Fig. 6 we illustrate the behaviors of different
system parameters across the phase transitions. The behavior
of superfluid order parameter, superfluid mass density, and
the average chemical potential has been plotted versus the
average density parameter λ for three different values of
the polarization, and for d = 0.5r0. Vanishing of the or-
der parameter �max specifies the normal-superfluid phase
transition. Clearly, the average chemical potential μ in the
normal region is λ2ε0/2. The stable and unstable uniform
superfluid states are characterized by the sign change in the
superfluid mass density ρs . Interestingly, at small density
region where the Sarma phase is predicted to be stable, the
average chemical potential also becomes negative, which is
a characteristic of an ideal Bose gas. This suggests that the
Sarma state is indeed a mixture of BEC of strongly bonded
dipoles and unpaired fermionic dipoles from the higher density
layer.

FIG. 6. Representations of (top) the maximum value of the
superfluid gap �max (in units of ε0), (middle) the superfluid mass
density ρs [in units of m/(2πr2

0 )], and (bottom) the average chemical
potential μ (in units of λ2ε0/2), versus the average particle density
parameter λ, at a fixed interlayer spacing d = 0.5r0 and for different
density polarizations. The superfluid-normal phase transition is
characterized by � → 0, or equivalently μ → λ2ε0/2. The sign
change in the superfluid mass density indicates a transition between
the stable uniform and the nonuniform superfluid states. This sign
change roughly cooccurs with a sign change in the average chemical
potential indicating that the Sarma phase is stable on the BEC side of
the crossover.

IV. SUMMARY AND CONCLUSION

We have investigated how population imbalance in a bilayer
system of dipolar fermions affects the pairing between two
layers, and what exotic quantum phases appear in the zero
temperature phase diagram of this system. We have used the
BCS mean-field theory to calculate the superfluid gap function
and the superfluid mass density criterion to determine the
instability of the Sarma phase towards nonuniform superfluid
states. We have shown that population imbalance reduces the
superfluid gap and the superfluidity is suppressed at large
population imbalances. This suppression is quite abrupt in
dense systems. We have also obtained the zero temperature
phase diagram of the imbalanced system which suggests that
a bilayer system of dipolar fermions is very promising for
the observation of Sarma and FFLO phases. We have finally
employed the random phase approximation to examine how
the area of different phases in the phase diagram is affected
by the many-body screening due to the intralayer interactions.
Our findings indicate that the screening pushes the FFLO-
normal boundary towards the FFLO region. However, this
region remains wide enough to be detectable experimentally.
We should recall that these exotic superfluid phases require
that both the distance between two layers and the average
in-plane separation of particles be comparable or smaller
than the dipolar length r0 (see Fig. 5). This regime of small
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interlayer spacing and low density should be readily accessible
experimentally with polar molecules such as NaK and KRb,
whose dipolar lengths could reach few thousands of angstroms,
i.e., comparable with the wavelength of visible light.

ACKNOWLEDGMENTS
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APPENDIX: SCREENED INTERACTIONS WITHIN
THE RANDOM PHASE APPROXIMATION

The screened effective interaction matrix of a bilayer
system within the RPA and in the static (i.e., ω = 0) limit
can be written as

V RPA(q) = [1 + V (q)χRPA(q)]V (q), (A1)

where V (q) is the 2 × 2 bare interaction matrix

V (q) =
(

VS(q) VD(q)
VD(q) VS(q)

)
, (A2)

with the bare intralayer and interlayer interactions being
defined in Eqs. (4) and (5). In Eq. (A1), χRPA(q) is the matrix
of static density-density response function in the random phase
approximation

χRPA(q) = χ0(q)[1 − V (q)χ0(q)]−1. (A3)

Here χ0(q) is the matrix of noninteracting density-density
response function and for a bilayer system in the normal phase
(�k = 0), where the noninteracting interlayer response χ0

ab(q)
is zero, it reads

χ0(q) =
(

χ0
a (q) 0
0 χ0

b (q)

)
, (A4)

where χ0
a(b)(q) = −m/(2πh̄2)[1 − (q − 2kF,a(b))√

1 − (2kF,a(b)/q)2] is the Stern-Lindhard function of
layer a(b), with the Fermi wave vector kF,a(b) = √

4πna(b)

[86].
As the intralayer interaction VS(q) depends on an artificial

short-distance cutoff parameter w, we improve upon the RPA,

FIG. 7. Superfluid gap (in units of ε0) as a function of wave
vector, obtained with the bare interaction (red solid lines) and with the
screened interaction within the RPA (blue dashed lines) at d = 0.5r0

and for different polarizations and particle densities.

with the help of the Hubbard local field factor GH(q) =
VS(

√
k2

F + q2)/VS(q) [86], replacing the bare intralayer in-
teraction with

V H
S (q) = [1 − GH(q)]VS(q)

= Cdd

2

[√
k2

F + q2 − q
]
, (A5)

where, in the second line, we have taken the w → 0 limit. This
approximation has two main benefits. First, it partially includes
the effects of exchange hole, missing in the standard RPA,
and, second, it also removes the cutoff dependence from the
model. Now using the screened interlayer interaction V RPA

D (q)
instead of the bare one in the gap equation (9), we can calculate
the order parameter. In Fig. 7, we have compared the pairing
gaps obtained from the screened interlayer interaction with the
ones of bare interaction for several values of the polarization
and density. Evidently, at low densities where the system is
deep into the BEC side of the BEC-BCS crossover, screening
is negligible, while at larger densities, the RPA screening
completely suppresses the superfluidity.
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