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We use a numerical solution of the deterministic time-dependent Ginzburg-Landau (TDGL) equations to
determine the response induced by a probe field in a material quenched into a superconducting state. We
characterize differences in response according to whether the probe is applied before, during, or after the phase
stiffness has built up to its final steady-state value. We put an emphasis on the extent to which superfluid response
requires a non-negligible phase stiffness, which for the considered quench has to build up dynamically. A key
finding is that the time-dependent phase stiffness controls the likelihood of phase slips as well as the magnitude of
the electromagnetic response. Additionally, we address the electromagnetic response expected if the probe itself
is strong enough to activate phase slip processes. If the probe is applied before phase stiffness is sufficiently built
up, we find that phase slips occur so that the vector potential is compensated and no long-term supercurrent is
induced, while if it is applied at sufficient phase stiffness a weak probe pulse will induce a state with a long-lived
supercurrent. If the probe is strong enough to activate the phase slip process, the supercurrent state will only
be metastable with a lifetime that scales logarithmically with the amplitude of fluctuations in the magnitude of
the order parameter. Finally, we study the response to experimentally motivated probe fields (electric field that
integrates to zero). Interestingly, depending on the relative time difference of the probe field to the buildup of
superconductivity, long-lived supercurrents can be induced even though the net change in vector potential is zero.
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I. INTRODUCTION

Quench dynamics, in other words the response of a
system to sudden changes in parameters, is of great current
interest in the context of cold atomic gases [1] and correlated
electron systems [2–4]. Quench dynamics may be studied
experimentally by measuring the response to a weak applied
probe field. One expects different responses according to
whether the probe is applied prior to the quench, during the
quench, or long enough after that the system has relaxed into
a thermal or prethermal state.

Recent reports of optically induced high-transition-
temperature superconductivity [5,6] along with theoretical
interpretations [7–13] give a particular topicality to the ques-
tion of the electromagnetic response of a material quenched
into a superconducting state. In Ref. [14], we studied this
question within a BCS model that allowed for a time-
dependent magnitude of the order parameter but assumed
perfect phase stiffness at all times. This analysis provided
a reasonable account of the transient response at energy scales
of the order of the superconducting gap or for probe fields
applied a reasonable time after the quench. However, the low
frequency response is controlled by the behavior of the phase
of the superconducting order parameter. The importance of the
phase stiffness and phase slips can be seen from the general
expression for the supercurrent j = ∇φ − 2eA in terms of
the gradient of the superconducting phase φ and the vector
potential A. If a superconductor is quenched in the presence of
a vector potential, then the phase adjusts (to the extent possible)
so that ∇φ = 2eA and the supercurrent is small, whereas if
the vector potential is applied long after the superconductor is
quenched then the phase is fixed, typically such that ∇φ = 0,
and the supercurrent is proportional to −2eA. The key issues
of the timing of the probe relative to the establishment of
phase rigidity and the strength of the probe relative to the field

required to drive phase slips were beyond the scope of this
previous work.

In this paper, we investigate the interplay between the
timing of the quench and the application of a probe field
via solutions of the time-dependent Ginzburg-Landau (TDGL)
equations [15–17]. While TDGL equations have been exten-
sively studied [15–17], this particular issue seems not to have
been previously considered. We concentrate mainly on the
case of a one-dimensional system with periodic boundary
conditions, but present a few results for the two-dimensional
case. The main conclusions we draw are not crucially affected
by the dimensionality or geometry of the system considered
but we note and discuss those aspects that are particular to the
one-dimensional case. We thus use the one-dimensional case
solely due to reasons of numerical convenience. We study the
fully determininstic TDGL equation. The inclusion of noise
(full model A dynamics) will be seen not to significantly affect
the phenomena of interest here (see Refs. [18,19] for a recent
interesting study of quenches using model A dynamics).

The rest of this paper is organized as follows. In Sec. II,
we present the equations to be solved and the methods of
solution. In Sec. III, we describe those aspects of the physics
of a quench that are relevant to our analysis in Secs. IV
and V of the response to differently tailored probe fields.
Section VI is a summary and conclusion. An Appendix gives
details of our numerical procedure and verifies convergence.

II. FORMALISM

We use the deterministic TDGL equations [16,17] to
describe the dynamics of the complex superconducting order
parameter � = |�|eiφ , along with the charge density ρ and
current density �j in the presence of electromagnetic fields
represented by the vector potential �A(t) and scalar potential
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�(t). We choose units such that h̄ = c = e = 1, implying
that the superconducting flux quantum �0 ≡ hc/2e = π . The
equations are

1

D
(∂t + 2i	)� = 1

ξ 2β
�[r(t) − β|�|2] + [ �∇ − 2i �A(t)]2�,

(1)

ρ = 	 − �

4πλ2
TF

, (2)

j = σ [−∇	 − ∂tA(t)] + σ

τs

Re

[
�∗

(∇
i

− 2A

)
�

]
. (3)

Here D is the normal state diffusion constant, 	 is the electro-
chemical potential per electron charge, ξ = √

6Dτs is related
to the superconducting coherence length ξ0 = ξ/

√
r/β, where

τs is the spin-flip scattering time, λTF is the Thomas-Fermi
static charge screening length, and β is a system-dependent
constant that sets the magnitude of the order parameter. The
quench is specified by the time dependence of the parameter
r(t) ∼ [Tc(t) − T ], with T and Tc being the temperature
and the superconducting critical temperature. We consider an
interaction quench in which the system Hamiltonian is changed
in such a way as to vary the transition temperature from less
than to greater than the physical temperature. For definiteness
we measure lengths in units of ξ and time in units of ξ 2/D

(which we write simply as D−1 since ξ is our unit of length) and
choose parameters β = 1, σ = 1, τsD = 1

6 , and λ2
TF/ξ

2 = 1.
We chose those units for definiteness, but we verified that none
of the general conclusions depend on this choice of parameters
unless otherwise stated.

The TDGL equations must be supplemented by the conti-
nuity equation

∂tρ + �∇ · �j = 0 (4)

and the Poisson equation for the scalar potential

∇2� = −4πρ. (5)

We solve the coupled partial differential equations,
Eqs. (1)–(5), with periodic boundary conditions in one or two
dimensions using a finite difference approach. We discretized
time in steps of D�t = 0.001 and space in units �x/ξ = 1 and
checked numerically that the results obtained are converged
with respect to �t and �x on the scale of the plots shown (see
the Appendix).

The partial differential equations require initial conditions.
We assume that for t < 0 the parameter r < 0 so there is no
superconductivity and that at t = 0 r is suddenly switched
to a positive value (we chose r = 0.1, so ξ0 = 1/

√
0.1). The

prequench state at t � 0 is characterized by small thermal
fluctuations, which for positive r will grow exponentially,
leading eventually to an equilibrium superconducting state.
We therefore choose as initial condition at t = 0 a state
with random, small order parameter values. We considered
two cases: (i) absolute values of the order parameter drawn
randomly from a uniform distribution |�| ∈ [0,�ini] and
phase values drawn randomly from a uniform distribution
φ ∈ (−π,π ] on the different lattice sites (see the Appendix,
left panel of Fig. 10) and (ii) fixed magnitude |�| = �ini

with phase values randomly drawn from a uniform distribution
φ ∈ (−π,π ] (see the Appendix, right panel of Fig. 10). Both
initial conditions give very similar results (see the Appendix),
and all of the results in the following are obtained by assuming
that the initial conditions are characterized by a fixed small
magnitude and a random phase.

III. QUENCH DYNAMICS

In this section, we recapitulate basic aspects of the quench
dynamics in the absence of applied probe fields in order to
set the stage for the subsequent discussion of the response
to probe fields. We consider a quench into a superconducting
state achieved by instantaneously changing the interactions so
that at time t < 0 the transition temperature Tc is less than
the sample temperature T while at time t > 0 the transition
temperature is greater. An example of two experiments for
which such a study of a quench might be relevant are given in
Refs. [5,6]. We suppose that the quench occurs in the presence
of a spatially uniform, time-independent vector potential
�A. The nonsuperconducting state is characterized by small

fluctuations in the superconducting order parameter. After the
quench, these fluctuations grow and at sufficiently long times
the system evolves to a homogeneous superconducting state.
The system of main interest here is one dimensional, with
periodic boundary conditions for numerical convenience. This
system has the topology of a ring and an applied vector poten-
tial corresponds to a flux � = LA threading the ring. It is con-
venient to measure the vector potential in units of the supercon-
ducting flux quantum �0 = hc/2e = π (with the last equality
following from the convention h̄ = c = e = 1), writing A =
�/L and the gauge-invariant gradient as �∇ − 2πi�/(L�0).

The possible homogeneous superconducting states are
characterized by a phase winding number n = ∮ ∇φ/(2π )
implying a nonzero phase gradient dφ/dx = 2πn/L. The
magnitude of the order parameter is [17,20] |�(n)| =√

r
β

− ( 2πξ

L
)
2
(n − �

�0
)
2
. The corresponding free energy gain is

−β|�(n)|4 so the true ground state will have winding number
n given by 2π times the nearest integer to �/�0 but depending
on initial conditions and subsequent dynamics the actual state
reached may be a metastable state with different winding num-
ber. From Eq. (3) we find that in the equilibrium state at wind-
ing number n the supercurrent circulating around the ring is

�jn = 2πστs

L

(
n − �

�0

)
|�(n)|2. (6)

Changes in the winding number occur via phase slip
processes at which the amplitude of the order parameter is
driven locally to zero and the phase difference across the region
with locally zeroth-order parameter changes by a multiple of
2π [21–26]. In the deterministic dynamics studied here, phase
slips occur when the local amplitude of the current is greater
than an energy barrier determined by the local magnitude of
the order parameter. (Note that the random initial conditions
mean that this magnitude will be different on different sites and
that the random currents implied by the random phases will
lead to different order parameter magnitudes at intermediate
times even if the initial condition is a space-independent order
parameter magnitude.) Phase slips may occur as the system
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FIG. 1. Time evolution of order parameter magnitude [panels (a) and (b)], current [panels (c) and (d)], and order parameter phase [panels
(e) and (f)] computed for a ring of size L = 100ξ by time evolving an initial configuration specified by random phases on each site and a
constant magnitude of the order parameter |�ini| = 10−3. We show each of the 100 different values of magnitude, current, and phase at the
different sites as lines of different colors. The top row [panels (a), (c), and (e)] shows results obtained from an initial condition that happens
to lead to a long time state with zero current; the bottom row [panels (b), (d), and (f)] shows results obtained from an initial condition that
happens to lead to a long time state with nonzero phase winding (in this example, ∇φ = 2π/L). In panels (e) and (f), the phase is represented
in a polar coordinate system with the value of the phase as the angular coordinate and time as the radial coordinate. The insets show the free
energies as a function of the flux threading the ring. Different parabolas correspond to different integer values of the phase twist. The dots in
the insets show the respective state found at large times for the respective initial conditions. In the lower panel, the actual long time state is
characterized by n = 1 so it on the parabola displaced from the n = 0 parabola.

equilibrates and will be more common soon after the quench
when the order parameter is small and the energy barrier to
phase slips is less. In model A, stochastic dynamics there will
be a small amplitude for phase slips even if the drive is not large
enough to overcome the energy barrier; for small noise the
resulting corrections are exponentially small in the reciprocal
of the noise amplitude and will not be considered here.

Figure 1 shows two examples of the evolution of the system
following a quench with A = 0. The left column shows the
time evolution of the order parameter magnitude on the 100
different sites in the system (for L = 100ξ ), computed from
two different randomly chosen initial conditions. The initial
stages of the growth are exponential with the differences
between different sites arising from the randomness in the
initial conditions. The middle panels show the current on
the 100 sites. The currents are almost identical on every
site because the charge fluctuations decay away almost
instantaneously, leading to a state with �∇ · �j = 0.

From Fig. 1(c), we see that at early times the current is very
small because the magnitude of the order parameter is very
small; at intermediate times we see a current pulse associated
with the equilibration of the phase degrees of freedom while the
current vanishes at long times because the long time limit of the
winding number n = 0. Figure 1(e) shows that after an initially
complicated evolution the phase locks into a common value
at all sites, corresponding to the zero current state shown in
Fig. 1(c). Figure 1(d) shows that for a different choice of initial
conditions, the long time limit corresponds to a nonvanishing
current. In this case, at large times the phase is stiff and the
magnitude of the order parameter is sufficiently large that
the induced supercurrent is not large enough to drive a phase

slip. Figure 1(f) shows the phase in the polar plot described
above. The nonvanishing phase gradient is revealed as a phase
monotonically increasing as one moves around the ring.

A quench in the presence of a static vector potential (flux)
may be understood in a very similar way. The minimum energy
state has a phase winding n given by the nearest integer to
�/�0 and particular initial conditions may lead to long time
states characterized by a winding number n which differs from
this value. If �/�0 is not an integer, the ground state will have
some residual supercurrent.

The generalization of this picture to higher dimensions
involves additional considerations. Random initial conditions
may lead to states with vortices and antivortices (in dimension
d = 2) or vortex loops (d = 3), whose long time evolution
involves interesting coarsening dynamics. These issues were
recently discussed [18,19]. Here we focus on response to
applied fields. Figure 2 compares one- and two-dimensional
cases, showing that despite the issues of vortex-antivortex
pairs the basic evolution of the gap amplitude [Figs. 2(a) and
2(b)] and supercurrent [Figs. 2(c) and 2(d)] are very similar
in the two cases. We therefore believe that for the purposes of
understanding the response to probe fields, consideration of
the one-dimensional model suffices.

IV. RESPONSE TO SHORT ELECTRIC FIELD PULSE

We now turn to the application of an electric field pulse
along the wire, which we describe as

�E(t) = �A 1

T0 cosh
( t−tp

T0

)2 , (7)
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FIG. 2. Time evolution of order parameter magnitude [panels (a)
and (b)] and x component of current [panels (c) and (d)] computed for
a one-dimensional ring (upper row, L = 100ξ ) and a two-dimensional
geometry (lower row, L = 50ξ ) for initial configurations given by
random phases and a constant magnitude of the order parameter
�ini = 10−3. At time Dtp = 1000, a small electric field pulse with
strength Aξ = 0.05 and narrow width DT0 = 3 is applied along the
ring (upper row) or along the x coordinate for the two-dimensional
case. At the time of the electric field pulse, the phase stiffness is large
enough that the order parameter phase is not affected by the probe
field. After a brief transient, the system settles down to a state of
nonzero supercurrent specified by the applied vector potential. The
dashed lines in panels (a) and (b) indicate the equilibrium value of the
magnitude of the order parameter as well as its value in the presence
of the current induced by the electric field pulse.

where A/T0 is the maximal field strength, tp is the center
time, and T0 is the width of the pulse. This electric field pulse
is difficult to apply experimentally, ut provides substantial
physical insight (note Refs. [27–29]). We will consider exper-
imentally relevant probe pulses profiles in the next section. For
simplicity, we concentrate the discussion on the case where the
phase winding is zero before the pulse is applied.

The relation �E = −∂t
�A means that the E-field pulse of

Eq. (7) leads to a long time increase in the vector potential
� �A = �A(t → ∞) − �A(t → −∞). Integrating Eq. (7) gives

� �A(t) = − �A
1 + tanh

( t−tp
T0

)
2

. (8)

The presence of a vector potential will lead to a supercur-
rent; if the current is sufficiently large, phase slips will occur,
allowing the phase gradient to adapt to the vector potential
and the current to relax. The phase slip dynamics depend
crucially on the magnitude of the applied field and on the
timing of the pulse relative to the development of the phase
stiffness of the superconducting state. If the pulse is applied
at very early times, the small value of the order parameter
means that phase slips are easy to drive and the phase will
adapt to the vector potential, leading to minimal current at
long times. On the other hand, if the pulse is applied at later
times, the phase stiffness will be fully established and phase
slips will only be generated if the supercurrent is sufficiently
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FIG. 3. Time evolution of order parameter magnitude [panels
(a) and (b)] and current [panels (c) and (d)] computed for a
one-dimensional ring of size L = 100ξ subject to a quench at t = 0
followed by an electric field pulse of magnitude ξA = 0.1 applied
at time Dtp = 10 (upper panels) and Dtp = 600 (lower panels). The
dashed line in panel (b) indicates the magnitude of the order parameter
in the state ∇φ = 0 for the given A. The dashed lines in panels (c)
and (d) indicate the value of the current in the state of minimal energy
corresponding to the long time limit of the vector potential.

large. Figure 3 shows the results of applying an E-field pulse
at a time Dtp = 1000 long after the superconducting state is
established. We see that in both the one- and two-dimensional
cases a supercurrent is rapidly established after the pulse and
persists. The concomitant decrease of � is also visible. No
phase slips occur.

For E-field pulses that are stronger, or applied earlier,
phase slips may occur. The stability analysis performed in
Refs. [17,21,23,24] reveals that within the deterministic TDGL
dynamics for fully established phase stiffness the critical
value for the vector potential is Ac = �0/(2

√
3ξ ) ≈ 0.091/ξ .

In Fig. 3, we present the order parameter evolution after a
quench at t = 0 followed by the application of a stronger
electric field pulse A = 0.1/ξ > Ac. The upper panels shows
the results when the pulse is applied the early time, Dtp = 10.
Comparison of Fig. 3(a) to the corresponding panel of Fig. 2
shows that the time evolution of the magnitude is almost
unaffected by the change in the vector potential: The phase
simply rearranges to compensate the external vector potential
to the extent possible given the quantization of the phase
winding. The evolution of the current reveals similar physics:
We see that after an initial current pulse visible as the vertical
region adjacent to the t = 0 axis, the current is very small
(corresponding to the very small order parameter amplitude)
and then increases as the order parameter increases, eventually
saturating at the value given by optimal winding number.

The lower panels of Fig. 3 show results when the pulse is
applied at a late time, Dtp = 600, after the superconducting
state is almost fully established. In this case, the initial response
of the system is to keep the phase fixed (∇φ = 0), to reduce
the order parameter to the value (dashed line) corresponding
to ∇φ = 0 and the given A, and to build up a supercurrent
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FIG. 4. Characterization of long time (Dt = 2000) limit of states
produced for a system of length L = 100ξ by time evolution of
100 random initial conditions (random initial phases and constant
magnitude of the order parameter �ini = 10−3) subject to an electric
field pulse of the form of Eq. (7) (strength ξA = 0.05, width DT0 = 3,
and center time tp). Filled diamonds connected by line (green online):
long time limit of current averaged over all 100 initial conditions
(right axis). Squares, circles, and up and down triangles indicate
percentage of initial conditions that produce winding numbers of
n = −2,−1,0,1, respectively.

∼�2A. We see, however, that this large-current state is only
an intermediate time regime: At a longer time, phase slip events
occur that relax the system back to the minimum energy state,
with minimal current and maximal order parameter amplitude.

To understand the degree to which phase slips occur, we
computed the long time limit of the winding number and
current following from 100 randomly chosen initial conditions,
for electric field pulses applied at a series of times ranging from
very early, when the magnitude of the superconducting order
parameter is negligibly small, to late, when the superfluidity is
well established. We chose a pulse strength ξA = 0.05 and a
system of length L = 100ξ , so the flux � = 5

π
�0. This choice

of flux puts the system very close to the crossing point of the
parabolas (as indicated in the inset of Fig. 4). For each initial
condition, we computed the long time limit of the winding
number and the current. The diamonds connected by a solid
line in Fig. 4 (green online, numerical values given on the right
axis) show the long time limit of the current j̄ , averaged over
all 100 initial conditions and plotted as a function of the time
the E-field pulse was applied. A pulse applied at an early time
leads to a small current; a pulse applied at late times leads to
a large current.

We have also analyzed the statistics of phase slip events.
The squares, circles, down triangles, and up triangles show the
percentage of initial conditions (left axis) leading to states with
winding numbers n = −1,0,1,2, respectively, for a probe field
applied at the given time. If the electric field pulse is applied
early, we find that the phase conforms to the vector potential,
whose long time limit corresponds to a flux � = 5

π
�0 ≈

1.59�0, yielding a high percentage of states with n = 2 and
n = 1 phase winding. As the time of application of the electric
field pulse is increased, the phase stiffness increases and the
likelihood of phase slips (needed to reach the n �= 0 states) goes

down. We see that the probability of finding a long time state
with winding number n = 2 rapidly decreases; and as the time
of application of the pulse further increases the vast majority
of the states have n = 0 with a small probability of n = ±1.

Finally, we turn our attention to the lifetime of the
supercurrent plateau obtained for stronger electric field pulses.
If A > Ac, dynamic phase slips become activated leading to
transitions to lower current, energetically favored states. For
A > Ac, the typical situation is shown in Fig. 3(d): We have
a supercurrent plateau that lasts for a time τ before a set of
phase slip events occur that causes the system to transition back
to a state of zero winding number and vanishing current. We
calculated τ of the supercurrent (as defined in Fig. 3) for a total
of 100 initial conditions A and different center times Dtp of
the electric field pulse. Figure 5 shows that τ has a systematic
dependence on the strength of the applied field. Stronger
E-field pulses leave larger vector potentials, which more easily
drive phase slips. We also see that if the pulse is applied at
relatively early times Dtp � 400 then the waiting time for a
phase slip is relatively short Dτ � 700 and the systematics are
less clear. In this regime, the phase stiffness is small enough
that phase slips occur relatively easily. For pulses applied at late
times, we also see a systematic dependence on the magnitude
of the order parameter fluctuations. These fluctuations are
parametrized by σ�, the root mean square order parameter
fluctuation, computed at the time at which the pulse is applied.
The dependence on σ� is logarithmic. The outliers to this
logarithmic dependency are cases either where phase stiffness
is not yet established at the time of the electric field pulse
(approximately Dtp < 500) or if the winding number before
the application of the electric field pulse happens to be n > 0.

V. RESPONSE TO PHYSICAL ELECTRIC FIELD PULSE

Many time-domain experiments [30–32] utilize an electric
field probe pulse of approximately the form (we also give the
corresponding vector potential)

Eprobe,1(t) = A0

(
1 − 2

(t − tp)2

T 2
0

)
e−(t−tp)2/T 2

0 , (9)

Aprobe,1(t) = −A0
t − tp

T0
e−(t−tp)2/T 2

0 , (10)

with the peak electric field E0 = A0/T0.

In Ref. [14], we proposed a second form of the probe field

Eprobe,2(t) = 2A0
(t − tp)

T0
e−(t−tp)2/T 2

0 , (11)

Aprobe,2(t) = A0e
−(t−tp)2/T 2

0 . (12)

These functional forms are depicted in Fig. 6. In the following,
we will denote them as type-I and type-II probe pulses,
respectively. The form E1 is more convenient experimentally,
but E2 allows for the reconstruction of the time-dependent
superfluid stiffness via a time integral of the induced current.
The parameter a tunes the width of the probe pulses.

Figures 7 and 8 summarize the current response to type-I
and type-II electric field probe pulses, respectively. If the phase
is not stiff, the current response to an electric field probe is
very weak. As the phase stiffens, the response’s line shape
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FIG. 5. Width τ of the current plateau (time scale on which the phase winding rearranges due to phase slips) as defined in the lower row
of Fig. 3 found following an electric field pulse with DT0 = 3 and different field strengths, applied at different times (see legends) and plotted
against the standard deviation in the magnitude of the order parameter σ� computed at the time of the pulse.

increasingly starts to corresponds to the input vector potential
until at large probe times tp the current perfectly follows
the potential change as expected from j ∼ A(t) at ∇φ = 0.
In Ref. [14], we argue that, assuming the phase is stiff, the
integrated current

I (t) =
∫ t

tl

dτj (τ ) (13)

resulting from a type-II probe pulse can be linked to the
superfluid stiffness. Here we introduce a lower cutoff tl such
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FIG. 6. Top panel: Electric field profile for probe functions given
by the functional form of the vector potentials Aprobe,1(t) or Aprobe,2(t)
with A(t) = −∂tE(t). Bottom panel: corresponding vector potential.

that we do not integrate over the current resulting from
the quench dynamics. Thus tl must be larger then the time
needed to build up the phase stiffness (for the paramter
used here Dtl ≈ 500) to relate the integrated current to
the superfluid stiffness. At large times where the phase is
indeed stiff, the integrated current should reach the asymptotic
value

I (∞) = −2στsξA
√

πT0

[
�2

0 − 4√
3

(ξA)2

]
. (14)
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FIG. 7. Typical response of the current (lines) to a type-I electric
field pulse with width DT0 = 100 applied at different center times
tp . The other parameters are L = 100, ξA0 = 0.05, and σini = 10−3.
The other parameters are L = 100, ξA0 = 0.05, and σini = 10−3.
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FIG. 8. Main panel: Typical response of the current (lines) to a
type-II electric field pulse with width DT0 = 100 applied at different
center times tp . The other parameters are L = 100, ξA0 = 0.05, and
σini = 10−3. Inset: integrated current I (t), Eq. (13), from times tl =
1000 for a very late probe pulse tp = 1500. Dashed lines are the full
Eq. (14) (upper dashed line) and keeping only the linear order in (14)
(lower dashed line).

We include here the A3 correction resulting from the �

dependence on the supercurrent, which was neglected in
Ref. [14].

The integrated current I (t) for a type-II probe field applied
at large times Dtp = 1500 is shown in the inset of Fig. 8.
We choose Dtl = 1000 to cut off the small contribution to
the current arising due to the quench dynamics. As the upper
dashed line we give the value predicted from Eq. (14) and as
the lower dashed line the same but keeping only the linear
order in A. The former agrees perfectly, while the latter shows
small deviations as expected for the shown small value of
ξA0 = 0.05.

We note an interesting feature in the current response.
While for both pulse types, the time integral of the electric
field vanishes at long times (so no long time vector potential
is induced), the time dependence of the superconductivity
means that the integral of the product of the electric field
and the superfluid response need not vanish. In physical
terms, in a nonequilibrium situation the supercurrent created
during the second part of the electric field cycle need not
cancel supercurrent created in the first part, leaving a net
supercurrent even for a type-I or type-II pulse. The effect is
most pronounced for a relatively wide type-II pulse with center
time corresponding to the time over which the phase stiffness
is becoming established. In this case, the negative half of the
electric field pulse might be in the regime where the phase
is not stiff and a negligible supercurrent is induced while for
the positive half of the electric field pulse the phase is stiff
and a current is induced. To analyze this in more depth, we
present in Fig. 9 the long time current j̄ averaged over 100
initial conditions for the same parameters as in Fig. 8 and two
widths of the type-II electric field probe pulse T0 = 100 and
T0 = 300. As the center time tp crosses through the buildup
time of the superconductor (Dt ≈ 500), the current first rises

0 500 1000 1500
Dtp

0.0

0.2

0.4

0.6

0.8

1.0

j̄/
j 1

DT0 = 300
DT0 = 100

FIG. 9. Average current response j̄ (symbols) sampled over 100
initial conditions to a type-II electric probe field. The other paraemters
are the same as in Fig. 8. Lines are guides to the eyes only.

up and then returns to zero, in accordance to the picture drawn
above.

VI. CONCLUSION

In this paper, we have used the time-dependent Ginzburg-
Landau equations to address the response to a probe field of a
system quenched into a superconducting state. The key issue
is that a superfluid response requires a non-negligible phase
stiffness, which has to build up dynamically after a quench.
The value of the phase stiffness controls the likelihood of
phase slips and the magnitude of the electromagnetic response.
An important related issue is that the quench dynamics
correspond to evolution in time from random initial conditions;
these lead to a distribution of states, some of which are
metastable states carrying a supercurrent even in the absence
of externally applied fields. Such states have a different
electromagnetic response than do non-current-carrying states.
A third important point is whether the probe is strong enough
to activate phase slip processes. If the probe is applied before
the superconducting order is established, phase slips occur
so that the vector potential is compensated and no long-term
supercurrent is induced, whereas for a weaker probe pulse a
state with a long-lived supercurrent is established. We find
that the lifetime of a state with a long-lived supercurrent
scales logarithmically with the amplitude of fluctuations in
the magnitude of the order parameter.

We considered the response to two types of probe line
shapes. One is the electric field pulse, in which the time integral
of the field is nonzero so the vector potential is different at long
times after the pulse than it was before the pulse. In the other (of
which we considered two variants) the time integral of the elec-
tric field vanishes, so no vector potential is left at long times.
The response to an electric field pulse provides useful physical
insights, but pulses in which the time integral of the electric
field vanishes are more easily achievable in experiments.

We studied the changes in system response as the time of
probe application is varied relative to the time of the onset
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of superconducting phase stiffness. For the case where the
probe is applied before the superconducting order builds up,
we find that the phase of the superconducting order parameter
adopts to the vector potential change and there is no clear
superconducting response. In the opposite case where the
probe is applied after phase stiffness is established, we find
a canonical superconducting response. In the intermediate
regime where the center time of the probe pulse aligns with the
buildup time of the superconducting phase stiffness, we report
that an asymptotic supercurrent can be induced at large times
although the total vector potential does not change overall. This
is because the one cycle of the electric field pulse applied at
times where the phase is not stiff and can thus be compensated
by the phase, while during the times of the second cycle the
phase is stiff and thus the system will respond with the buildup
of a supercurrent. If that current is too small to activate the
phase slip process, it will have infinite lifetime.

Several generalizations of our work would be of interest.
Extending our analysis, which is based on simple theoretical
models, to more realistic situations such as one-dimensional
wires with a finite transverse dimension is important because
the wire thickness will affect the energetics and dynamics of
phase slips. Further consideration of experiments that might
reveal the phase slip dynamics is important. The mesoscopic
considerations of disorder and sample-to-sample fluctuations
are also of interest. Further, our analysis of higher dimensional
situations was limited. Our work indicates that the basic issues
relating to the timing of the probe field relative to the onset of
phase stiffness are not strongly dimensionally dependent, but
the interplay of the timing of probe fields with other aspects
of the quench physics including structure of vortex-antivortex
pairs or vortex loops requires further analysis. Additionally,
treating thermal fluctuations and the pinning of phase slip
center by impurities is a fascinating and important avenue of
future research.
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FIG. 10. Representation of initial values (filled circles, blue
online) of magnitude and phase of superconducting order parameter
on each of the 100 sites of a L = 100 site computational lattice for
the two cases considered in this paper. Left panel: one particular
set of initial conditions for the case in which the magnitude of the
order parameter on each site is chosen randomly from a uniform
distribution extending from |�| ∈ [0,�ini) while the phase of the
order parameter is chosen randomly from a distribution uniform over
the interval 0 − 2π . Right panel: one particular set of initial conditions
for the case in which the magnitude of the order parameter is taken
to be constant (|�| = �ini), but the phase is chosen randomly from
a distribution uniform over the interval 0 − 2π . The solid line (red
online) shows the case |�| = �ini.
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FIG. 11. Time evolution of the order parameter magnitude for
a ring of size L = 100ξ obtained by time evolving an initial
configuration specified by random phases and a random magnitude of
the order |�| ∈ [0,�ini) on each site (left panel) and by time evolving
an initial configuration specified by random phases on each site and
constant magnitude of the order parameter |�| = �ini (right panel)
with |�ini| = 10−3. The two initial conditions give equivalent results.
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APPENDIX : NUMERICAL PROCEDURE

In this Appendix, we present some details of our numerical
procedures.

A quench involves an evolution forward in time from
initial conditions that are determined by the fluctuations in
the prequench state. In the superconducting case of interest
here, one has a two-component order parameter, which may
be characterized by a magnitude and a phase or by the
amplitudes of the real and imaginary parts. The actual initial
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FIG. 12. Time dependence of the magnitude of the order pa-
rameter at one site for different �x and mutually the same initial
conditions. The parameters are the same as in Fig. 1.

064507-8



ELECTROMAGNETIC RESPONSE DURING QUENCH . . . PHYSICAL REVIEW B 96, 064507 (2017)

conditions involve a distribution of both magnitude and phase
(or equivalently of real and imaginary parts) which is random
in space and time but correlated over length scales of the
order of a bare coherence length ξ . Since the basic length
scale in our theory and in our numerics is ξ we simply take
the order parameter to be random from site to site of our
computational lattice. One may also as a simplification in the
numerical consider initial conditions in which the magnitude
of the order parameter is fixed and only the phase varies from
site to site. The two choices of initial condition are represented
in Fig. 10. We have found that the two initial conditions lead
to equivalent results, which is shown in Fig. 11.

We solve the TDGL equations by integrating forward in
time using a first-order Euler method. The algorithm requires
a step size �x in space and �t in time. We have found that
choosing �x = ξ suffices. To verify this, we consider how

the results shown in Fig. 1 change as the step size is reduced.
We compare numerically three values of �x/ξ = 1,0.5,0.25,
keeping L/ξ = 100 constant. This means that we define
lattices of different number of lattice sites 100, 200, and 400,
respectively. To address the numerical convergence, we need
to choose the same initial conditions for all three values of �x.
To do so, we draw a random initial condition for our largest
value of �x/ξ = 1 and then for the smaller values of �x copy
the each value of the initial condition onto a pair of sites, for
�x/ξ = 0.5, or a quadruple of sites, for �x/ξ = 0.25. The
results are summarized in Fig. 12, showing the magnitude of
the order parameter for a typical initial condition at one of the
lattice sites. We see that decreasing the step size has no effect
on the results.

Similarly we find that comparing D�t = 0.01 to D�t =
0.001 gives converged results and we choose the latter.
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