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Electronic decoherence of two-level systems in a Josephson junction
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The sensitivity of superconducting qubits allows for spectroscopy and coherence measurements on individual
two-level systems present in the disordered tunnel barrier of an Al/AlOx /Al Josephson junction. We report
experimental evidence for the decoherence of two-level systems by Bogoliubov quasiparticles leaking into the
insulating AlOx barrier. We control the density of quasiparticles in the junction electrodes either by the sample
temperature or by injecting them using an on-chip dc superconducting quantum interference device driven to its
resistive state. The decoherence rates were measured by observing the two-level system’s quantum state evolving
under application of resonant microwave pulses and were found to increase linearly with quasiparticle density,
in agreement with theory. This interaction with electronic states provides a noise and decoherence mechanism
that is relevant for various microfabricated devices such as qubits, single-electron transistors, and field-effect
transistors. The presented experiments also offer a possibility to determine the location of the probed two-level
systems across the tunnel barrier, providing clues about the fabrication step in which they emerge.
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I. INTRODUCTION

While superconducting circuits based on Josephson junc-
tions (JJs) rapidly mature towards favorable and applicable
qubits for quantum computers [1–3], a major source of their
decoherence traces back to spurious material defects that give
rise to the formation of low-energy two-level systems (TLSs).
On the other hand, sensitivity to tiny perturbations turns JJ
qubits into ideal tools to study the properties of TLSs. For
example, microwave spectroscopy of JJ phase qubits shows
avoided level crossings revealing the TLSs’ quantum character
as well as their coherent interaction with the qubit [4]. Various
microscopic models including dangling bonds, Andreev bound
states [5], and Kondo fluctuators [6] have been suggested to
explain the origin of TLSs. There is growing evidence [7,8],
however, that they are formed by small groups of atoms that
are able to tunnel between two energetically almost equivalent
configurations. This is most strongly supported by recent
experiments where the TLSs’ energy splittings were tuned
by applying external static strain [9]. TLSs are the source
of low-energy excitations, which are also responsible for
the thermal, acoustic, and dielectric properties of glasses at
temperatures below 1 K [10,11], which are well studied in
bulk materials. Inherent to disordered solids, they are present
in surface oxides and insulating layers of any microfabricated
device as well as in the tunnel barriers of Josephson junctions.

In contrast to traditional measurements performed on
glasses that probe huge ensembles of TLSs, the sensitivity
of JJ-based qubits allows one to address single TLSs and de-
termine their individual properties. Strain-tuning experiments,
e.g., measure a TLS’s deformation potential [9] and allow for
a detailed analysis of the coherent interaction between two
TLSs brought into resonance [12]. In another experiment, the
temperature dependence of energy-relaxation and dephasing
rates of individual TLSs were measured [13]—with an
unexpected and yet unexplained result: The energy-relaxation
rate �1 increased much more rapidly with temperature than

predicted by the one-phonon scattering process dominating in
dielectric solids [14].

Earlier work showed that in metallic hosts, inelastic scat-
tering of conduction electrons [15] may outweigh the phonon-
induced �1 at sufficiently low temperatures. This process was
verified in ultrasonic absorption and phonon echo experiments
for TLSs in superconducting metallic glasses [16,17] as well
as for hydrogen TLSs in niobium [18]. In the superconducting
state, an energy gap opens and the electronic excitations are
Bogoliubov quasiparticles (QPs). In ideal BCS systems, their
density decreases below the superconducting transition Tc and
accordingly the electron-induced TLS relaxation falls off by
several orders of magnitude. On the other hand, thermally
excited QPs as well as so-called excess QPs, which may stem
from stray infrared photons [19] or other unknown sources,
may still lead to TLS relaxation below Tc.

In this paper, we report on experimental studies of the
dynamics of TLSs residing in the amorphous insulating barrier
of a JJ (i.e., junction TLS) and present evidence for their
interaction with QPs whose evanescent wave functions leak
from the superconducting Al film into the insulator. The
density of QPs is controlled by two complementary methods:
either by injecting QPs with an on-chip dc superconducting
quantum interference device (SQUID) [20] at a constant
mixing-chamber temperature of 30 mK or by variation of
temperature up to 330 mK. In this temperature range, the
contribution of phonons to the decoherence of the TLS with
energy splitting comparable to kBT can be regarded as almost
constant [13,14]. To observe the TLS’ quantum state evolution,
we drive them directly using protocols of resonant microwave
pulses, while the qubit is only operated for TLS readout [13].
Further, a piezoactuator transfers mechanical strain to the
sample and controls the TLS asymmetry energy ε via its elastic
dipole moment (see Appendix A for technical details). This
strain tuning [9] enables us to explore the TLS response to
QPs for varying ε.
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FIG. 1. (a) The double-well potential of a TLS, where E is the
TLS transition energy composed by the TLS’ tunneling energy �

and its asymmetry energy ε. (b) Right: Schematic of the phase qubit
circuit. The green arrow indicates the diffusion of quasiparticles
from the injector SQUID to the qubit junction. Left: Sketch of a
JJ depicting a TLS. The red arrows show scattering of QPs on a TLS:
backscattering into the initial electrode or scattering into the opposite
electrode.

II. MODEL

Within the standard tunneling model [10,11], TLSs are
described as virtual particles bound in a double-well potential,
as illustrated in Fig. 1(a), where the left and right wells corre-
spond to one or another metastable TLS atomic configuration.
The TLS’ energy scale is given by the tunneling energy � and
the asymmetry energy ε. The unperturbed TLS Hamiltonian
reads

H = 1
2�σx + 1

2εσz ≡ 1
2Eτz, (1)

where σx and σz are Pauli matrices. The transition energy is
E = √

�2 + ε2 and τz is the Pauli matrix in the diagonalized
or energy basis.

TLSs couple to elastic and electric fields by respective
dipole moments, predominantly varying the asymmetry energy
ε. In the energy basis, this coupling gives rise to longitudinal
(∝ τz) and transversal (∝ τx) perturbation terms. The latter
describes transitions between the energy eigenstates and
explains, e.g., the one-phonon relaxation and, in particular,
the resonant coupling of the junction TLS to the JJ qubit via
the electric field within the junction, which enables readout
and coherent manipulation of TLS quantum states [4]. The
TLS interaction with electrons of a metallic environment arises
from inelastic scattering of the electrons and is expressed as

Hel = σz

∑
k,k′,σ

gk,k′c
†
k,σ ck′,σ , (2)

where the summation runs over the spin degree of freedom
σ and the electronic eigenstates k, k′ that are not necessarily
plane waves. The scattering matrix elements are designated
by gk,k′ . The presence of σz in Hel indicates that electrons
experience a change in the scattering potential depending on
the two configurations of the TLS [15]. Rewriting σz in the
energy basis and introducing the averaged scattering matrix g,
we obtain

Hel = g

(
�

E
τx + ε

E
τz

) ∑
k,k′,σ

c
†
k,σ ck′,σ . (3)

In Ref. [15], the averaged transversal and longitudinal scat-
tering matrix elements, V⊥ ≡ gN�/E and V‖ ≡ gNε/E,
are reported to have a magnitude up to 0.1 eV, where N

is the number of atoms in the system. The probed TLSs
reside in the insulating barrier of a JJ; thus we estimate
N ≈ 109 from the volume of the tunnel barrier (1 μm2 ×
2 nm) and a typical atomic volume (10−30 m3). Thus, g

scales as V⊥/N = 10−10 eV. In the superconducting state,
the electronic excitations are obtained after a Bogoliubov
transformation. Hence, Hel turns into

Hqp = g

(
�

E
τx + ε

E
τz

)

×
∑

k,k′,σ,l

sl(u
(l)
k u

(l)
k′ − v

(l)
k′ v

(l)
k )α(l)†

k,σ α
(l)
k′,σ , (4)

where u and v are BCS real-number coherence factors. Further,
l = B,T indicates the bottom and top electrodes of the JJ.
The probed TLSs reside in the insulating barrier of a JJ;
accordingly, only the leaky portions of the QPs’ wave functions
from the electrodes are to be taken into account. We thus
have introduced in Eq. (4) the averaged probability sl for
a QP to interact with a TLS and to return into the initial
electrode. It decays exponentially with the distance between
the electrode and the TLS. Processes where a QP is scattered to
the opposite electrode only weakly contribute to the QP-TLS
interaction and are neglected in Hqp (see the full Hamiltonian
in Appendix G).

The QP-induced energy-relaxation rate of the TLS is
calculated from Eq. (4) using Fermi’s golden rule [21]:

�1 = s2
B�

(B)
1 + s2

T�
(T)
1 , (5)

�
(l)
1 = 4π

h̄

(
N0Vg

�

E

)2

�s

∫ ∞

1
dε

[
1 − 1

ε(ε + E/�s)

]

× ρ(ε)ρ

(
ε + E

�s

)
f

(l)
0 (ε)

[
1 − f

(l)
0

(
ε + E

�s

)]
. (6)

The electronic density of states at the Fermi edge including the
spin degeneracy is given by 2N0 and the reduced QP density
of states is ρ(ε) = ε/

√
ε2 − 1, where ε is the QP energy in

units of the BCS gap �s in Al. The integral in Eq. (6) takes
into account all possible absorption processes where a QP
scatters from a state of energy ε into that of energy ε + E. We
approximate the QP distribution function on each electrode
by the Fermi function f

(l)
0 [see explanations of Eq. (B2) in

Appendix B]. The probe volume V is estimated to be of the
order of the cubic electron coherence length in aluminum of
1 μm3. Another relevant rate is �R, the decay rate of Rabi
oscillations in situations when the TLS is continuously driven.
�R follows from Eq. (5) after the substitution E → � in the
integrand of Eq. (6), where � ≈ h × 10 MHz is the typical
coupling strength of the driving microwave to the probed TLS.
The pure dephasing rate �∗

2 is derived from Eq. (5) by replacing
in the prefactor �/E → ε/E and by setting E → 0 in the
integrand.

III. EXPERIMENTAL RESULTS

The normalized QP density is defined as

xqp ≡ nqp

2�sN0
=

∫ ∞

1
dερ(ε)f0(ε,T ,μ), (7)
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FIG. 2. Quasiparticle-induced energy-relaxation rate of the qubit
γ

qub
1 (left axis) recorded in two complementary experiments: increas-

ing the mixing-chamber temperature Tmch (top axis) and applying
current Iinj to the injector dc SQUID (bottom axis). The thermally
generated quasiparticle density significantly increases for Tmch >

200 mK, while the injection of quasiparticles starts when Iinj exceeds
the SQUID’s switching current of 1.5 μA. The quasiparticle density
xqp (right axis) is numerically deduced from γ

qub
1 (see Appendix B).

Both the linear fit (red line) and the exponential fit (black line) are
used for calibration of xqp vs Iinj and Tmch, respectively.

where nqp is the total QP density and 2�sN0 is the Cooper
pair density at zero temperature. The QP partition function
f0(ε,T ,μ) depends on the QP temperature T and the chemical
potential μ. As mentioned before, we control the QP density
either via the mixing-chamber temperature Tmch or by QP
injection that shifts μ. In the latter method, we use an injector
dc SQUID that is galvanically coupled to the JJ via a common
thin-film Al ground plane [see Fig. 1(b)]. Following Ref. [20],
we apply bias current pulses (of amplitude Iinj) to the injector
dc SQUID exceeding its switching current to produce QPs
from Cooper pair breaking processes, which then diffuse over
a distance of 1 mm through the ground plane towards the
JJ. We performed measurements of xqp for varying delays
after the start of QP injection and found good agreement with
results from simulations of QP diffusion in a simplified two-
dimensional geometry (see Appendices B and E). Further,
we show in Appendix D the analysis of switching current
statistics of the readout SQUID, with which we verify that the
QP injection does not heat the sample. In both the thermal and
the injection experiments, we controlled xqp by monitoring
the QP-induced energy-relaxation rate γ

qub
1 of the qubit as

a function of the mixing-chamber temperature Tmch and Iinj,
respectively (see Fig. 2). From γ

qub
1 , we deduced the value of

xqp that is plotted on the right vertical axis [22] (see Appendix B
for details). The continuous lines are the corresponding fits,
which provide the calibration of xqp vs each Iinj and Tmch that
are used for quantitative comparison of the TLS relaxation in
the thermal and injection experiments.

TLSs are excited by resonant microwave pulses applied to
the circuit, while the qubit is detuned by about 1 GHz from the
transition frequency of the probed TLS. For TLS readout, we
tune the qubit by a short rectangular flux pulse into resonance
with the TLS in order to swap their quantum states, followed by
qubit readout. The TLS decoherence rates were obtained using
standard measurement protocols that have been established in
earlier work [13]. In Fig. 3, we present the response of two
distinct TLSs to QPs, whose tunneling energies � are listed
in Table I, while their asymmetries were strain tuned close
to zero [9] (see Appendix G for data at further ε values).
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FIG. 3. (a) Measured energy-relaxation rates �1,meas of two
distinct TLSs vs quasiparticle density xqp [23]. The legends indicate
TLS labels and whether quasiparticles were injected or thermally
generated. Below 330 mK, the temperature dependence of the
phonon-induced TLS decoherence is negligible. Thus, we fit our
data to the purely QP-induced decoherence rate Km × �

(B)
1 + const.

shown in Eq. (6) (black lines). The corresponding fit factors Km

are indexed with the type of QP generation and listed in Table I.
In Appendix G, we present these data in a double-logarithmic plot,
which is more readable at low xqp. (b) Recorded decay rates �R,meas

of TLS Rabi oscillations vs xqp and the corresponding fits.

The measured energy-relaxation rate �1,meas and Rabi decay
rate �R,meas are plotted as a function of xqp. The black lines
are fits of Km × �

(B)
1 + const. and Km × �

(B)
R + const. to the

experimental data in Figs. 3(a) and 3(b), respectively. Here,
Km ≡ s2

B is treated as a fit parameter as listed in Table I, where
m = th,inj designates whether QPs were thermally generated
or injected. The constant contribution originates from the

TABLE I. Tunneling energies � of the probed TLSs and factors
Km from the fits (see Fig. 3) to the measured TLS’ energy-relaxation
rate �1,meas and the decay rate of Rabi oscillations, �R,meas.

Energy relax. Rabi decay
� �1,meas �R,meas

(h·GHz) K th K inj K th K inj

TLS1 6.219 0.32 0.12 0.30 0.12
TLS2 6.667 0.14 0.06 0.13 0.06
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coupling to phonons and neighboring TLSs. Apparently, fits
to the theoretical prediction from Eq. (6) describe our data
very well. In particular, for a given TLS, we extract the same
values Km from fits to �1 and �R, respectively. By simplifying
the integral in Eq. (6), one finds a linear dependence of
TLS decoherence rates on QP density confirmed by the fit:
�1,�R ∝ xqp. The fit parameters have an average magnitude of
about 0.1 that traces from the exponential decay of the QP wave
function within the tunnel barrier. Accordingly, in a JJ, we state
the scattering matrix element V⊥ to be of the order of 10 meV.

The prefactor �2/E2 = �2/(�2 + ε2) in Eq. (6) includes
the dependence of QP-induced energy relaxation and Rabi
decay rates on the TLS’ asymmetry energy ε. To verify this,
we repeated the measurements after TLS1 was strain tuned to a
large asymmetry energy ε = 3.299 h × GHz, corresponding to
a reduction of �2/E2 by 12%. However, since the confidence
interval in determining Km was about ±14%, we could not
detect any significant strain dependence. On the other hand, the
QP-induced pure dephasing rate �∗

2 depends on the asymmetry
energy as ε2/E2. In fact, we found that it vanishes at the TLS
symmetry point (ε ≈ 0) and increases otherwise slightly with
xqp (in Appendix H, we show the relevant data). However, for
ε �= 0, the pure dephasing of the probed TLS is dominated by
its interactions with thermally fluctuating TLS [24].

We see in Fig. 3 that for fixed xqp, thermally generated QPs
always lead to stronger TLS’ energy relaxation than injected
QPs. The ε-averaged ratio K th/K inj for TLS1 and TLS2 is
2.5 and 1.9, respectively. This can be explained from the
fact that xqp will increase equally in both JJ electrodes with
increasing temperature, whereas injected QPs predominantly
appear in the top electrode that is connected directly to the
ground plane. We numerically solved the stationary Boltzmann
equation and found the QP imbalance α ≡ x(T)

qp /x(B)
qp between

top and bottom electrodes to be in the range of 2 to 4. Due to the
fast exponential decrease of s2

l within the tunnel barrier, one of
the two terms in Eq. (5) is dominant when the probed TLS is
closer to one or the other electrode. Thus, a TLS residing near
the bottom electrode would experience the presence of more
QPs in the thermal experiment than in the injection experiment.
Numerical and analytical calculations of the ratio K th/K inj as
a function of the TLS’ location between the electrodes suggest
that the probed TLSs are located closer to the bottom than
to the top electrode (Appendix G). Thus, it seems that in the
Al/AlOx /Al junctions used in this work [25], TLSs preferably
emerge during the thermal oxidation of the Ar-milled bottom
electrode rather than during the successive deposition of the
top electrode. This assumption could be verified by repeating
such experiments on a sample containing two identical qubits,
whose JJs are connected to the ground plane either by their
top or bottom electrodes, respectively. Alternatively, one could
selectively inject QPs from both sides of the JJ.

IV. SUMMARY

In conclusion, we have explained the rapid increase of
the energy-relaxation rates of two-level systems (TLSs) with
temperature observed in previous work [13]: TLSs that reside
in the Josephson junctions’ tunnel barrier of a qubit couple
to the evanescent wave function of quasiparticles (QPs) in the
electrodes. The TLS’ energy-relaxation rate is proportional

to the QP density and hence increases exponentially with
temperature. In our experiments, the QP density was controlled
either by varying the temperature of the sample or by injecting
QPs using an on-chip dc SQUID [20]. The superconducting
phase qubit served both as a monitor for the QP density and for
TLS readout. Simulations of injected QPs diffusing towards
the Josephson junction match the measured QP density during
and after the QP injection pulse. We found good agreement
between the theoretical prediction and the measured increase
of the TLS’ energy-relaxation and Rabi decay rates as a
function of the QP density. Moreover, we found a difference
in the strength of TLS decoherence comparing thermally
generated to injected QPs, which we explain by the particular
location of the TLS in the junction. Such measurements thus
provide a possibility to determine in which fabrication step
TLSs emerge.

These findings concern a variety of microfabricated circuits
in which TLSs reside within native oxides or grown dielectric
layers close to a conductor. The electron-TLS interaction
analyzed here provides a mechanism of decoherence and
fluctuations that may be relevant, e.g., for semiconductor
devices such as gated quantum dots and field-effect transistors.
Likewise, it can explain a reduction in mutual TLS coupling
due to enhanced TLS relaxation rates as it was found in recent
experiments where a superconducting resonator was capped
by a normal conducting platinum layer [26,27].
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APPENDIX A: STRAIN TUNING OF TLSs

At the University of California Santa Barbara, the sample
was microfabricated on a chip made of sapphire that is gripped
in a sample holder (see Fig. 4), while at the bottom side a stack-
piezoactuator [28] is mounted, whose elongation is controlled
by the applied dc voltage Vp. The transferred strain to the chip
tunes the asymmetry energy of the TLS, ε(Vp) = γ [ε(Vp) −
ε0], via its elastic dipole moment. Here, γ = ∂ε/∂ε is the
deformation potential that depends on the orientation of the
TLS’ elastic dipole moment relative to the elongation vector
on the concave side of the chip. ε(Vp) ≈ (∂ε/∂Vp)Vp is the
effective strain field, while the coefficient ∂ε/∂Vp is estimated
to ≈ 10−7/V based on a measurement of the piezoelongation
at a temperature of 4.2 K and finite element simulation of the
resulting chip deformation [29].
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FIG. 4. Left: Sketch of the sample holder that enables us to change
the TLS’ asymmetry energy ε using a piezoactuator that transfers
elastic strain onto the chip with the qubit. The zircon sphere provides
a one-point contact of the piezocrystal and the chip, while the Copper
foil screens the electromagnetic crosstalk. Right: Cross section of the
piezoholder that consists of the main frame (brown, Cu-Be) and the
slide (yellow, Cu-Be) that is held by two springs (Cu-Be). A brass
screw that fits through the middle tapped whole adjusts the vertical
position of the slide, while the piezocrystal (gray) is glued onto the
slide.

APPENDIX B: INJECTION OF QUASIPARTICLES

Figure 5 shows a photograph of the sample containing the
qubit circuit and the injector dc SQUID, which is galvanically
coupled to the JJ via a common thin-film Al ground plane.
Similar to the work in Ref. [20], we apply bias current pulses
(of amplitude Iinj) to the injector dc SQUID exceeding its
switching current IS ≈ 1.5 μA to produce in situ QPs from
Cooper pair breaking processes, which then diffuse over a
distance of 1 mm through the ground plane towards the JJ.
To ensure that xqp reaches a stationary value during the QP
injection, we performed measurements in the time domain. We
observed the shift of the qubit resonance frequency −�f that
depends linearly on xqp [20] in dependence of varying injection

simulation
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(a)
Iinj

τinj = 50 − 300μs

τtot ≈ 200 ns

qubit manip.

FIG. 6. (a) The pulse arrangement for QP injection. The contin-
uous line indicates the control of the phase qubit and the dashed line
indicates the current pulse applied to the injector SQUID. (b) The
shift of the qubit transition frequency −�f , which linearly scales
with the QP density at the JJ [20], measured as a function of τinj and
for Iinj which exceeds the switching current IS = 1.5 μA by a factor
of 6. The black data points indicate the error bars for characteristic
regions. The continuous lines are the results of simulations, where
the faster decay of −�f for τtot > τinj is due to the rise time of the
injector current pulse. Our measurements on TLS are performed in a
regime of stable QP density for τtot ≈ τinj − 50 μs.

pulse timing. Figure 6(a) illustrates the pulse arrangement
used for QP injection, where the continuous line is the flux
and microwave control of the phase qubit and the dashed line
shows Iinj. In Fig. 6(b), −�f is plotted for several injection

FIG. 5. Photograph of the sample containing two qubits. The QPs are injected by the readout SQUID (“injector SQUID”) of the inactive
qubit and they diffuse through the ground plane (square perforated gray area) and through the galvanic bridges across the microwave line
(“bottleneck”) to flow onto the top electrode of the qubit’s Josephson junction, which is depicted in the upper inset. The role of the bottleneck
is discussed in Appendix E.
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FIG. 7. (a) Pulse sequence to record the switching-current statis-
tics vs the QP injector current Iinj. (b) �σ vs Iinj. �σ is the increase of
the standard deviation in the measurement of the SQUID’s switching
current. Here, τinj ≈ 200 μs and τtot ≈ 225 μs. (c) �σ in dependence
of the mixing chamber temperature. The linear increase is clear. By
comparing the maximum �σ in (b) and (c), we conclude that during
QP injection, heating is negligible.

pulse widths τinj vs the time delay τtot between the start of
an injector current pulse of constant amplitude Iinj = 6.4 IS

and qubit measurement. We see that a stationary QP density is
reached for 100 μs < τtot < τinj, i.e., when the injection pulse
is sufficiently long and overlaps with the qubit manipulation
sequence. In the experiments on TLSs, we therefore inject QPs
at τinj = 200 μs and τtot = 150 μs. We have verified the QP
diffusion towards the JJ by comparing the data from Fig. 6(b)
to a simulation of the QP diffusion process in a simplified
two-dimensional (2D) chip geometry (Fig. 8). We see a good
agreement of simulation data and the measurements, whereas
the measured QP density seems to decay slower than predicted
by the simulation. This is due to the rise time of the injection
pulse.

In both independent experiments (the thermal and the
injection experiment), we calibrated xqp by monitoring the
response of the qubit as a function of the mixing-chamber
temperature Tmch and of the injector current Iinj, respectively.
We found that it is favorable to track the qubit’s energy-
relaxation rate rather than its resonance frequency that is
sensitive to quasistatic drifts. QPs that tunnel through the JJ
can absorb energy from the qubit and lead to qubit decay. We
calculate xqp from the purely QP-induced energy-relaxation
rate of the qubit:

γ
qub
1 = γ

qub,(TB)
1 + γ

qub,(BT)
1 , (B1)

γ
qub,(lm)
1 = 2

e2RT
t2�s

∫ ∞

1
dε

[
1 − cos ϕ0

ε(ε + Eq/�s)

]

× ρ(ε)ρ

(
ε + Eq

�s

)
f

(l)
0 (ε)

[
1 − f

(m)
0

(
ε + Eq

�s

)]
,

(B2)

using the theory by Catelani et al. [22]. Here, �s is the
superconducting gap of Al, t is the tunnel element, RT ≈
250 � is the JJ tunnel resistance, and e is the elementary charge.
Both terms in Eq. (B1) result from QP tunneling through
the JJ’s tunnel barrier from the top electrode to the bottom
electrode (“TB”) and vice versa (“BT”), respectively. The

(a)

xqp

Vinj = 1V
τinj = 400μs
τtot = 14μs

bottleneck

200μm

(b)

xqp

Vinj = 1V
τinj = 400μs
τtot = 300μs

bottleneck

200μm

FIG. 8. Simulated quasiparticle density xqp in the simplified 2D geometry for Iinj = 9.8 μA and τinj = 400 μs. The dashed rectangle
indicates the size of the chip photograph in Fig. 5. The tiny rectangle denotes the effective QP injection point and the cross denotes the QP
destination site, i.e., the qubit’s JJ. The twenty 10 × 2 μm bridges reconstruct the bottleneck in the real geometry. (a) xqp in the nonstationary
injection regime for τtot = 14 μs, which is the delay between the start of the injection and measurement [see Fig. 6(a)]. (b) The stationary
regime for τtot = 300 μs. Here, we clearly recognize the bottleneck reducing the stationary maximum QP density by about 12%.
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qubit was tuned to have the eigenenergy Eq = h × 8.8 GHz
and the mean phase drop across the JJ was ϕ0 ≈ 0.4 π . We
approximate the distribution function that depends on the QP
temperature T and the chemical potential μ by the Fermi
function f0(ε,T ,μ) due to the following reasoning: at the
injection point, the injected nonequilibrium QPs are expected
to show a strong charge imbalance. This so-called charge
mode relaxes due to elastic scattering on a time scale of
the electron-electron interaction time (50 ns), which is much
smaller than the diffusion time (100 μs) from the injection
point to the qubit junction, and by three orders of magnitude
smaller than the recombination time of QPs [30]. After the long
diffusion path, nonequilibrium QPs have thus relaxed into a
symmetric distribution very close to �s . Therefore, we use
the approximation f0(ε,T ,μ) to describe the QP distribution
in a local equilibrium at the JJ. In the thermal experiment,
μ = 0 and T is the parameter in Eq. (B2), which we adjust via
Tmch. In contrast, during the injection experiment, we control
μ via Iinj, whereas T equals the residual QP temperature
T0 exceeding the sample temperature, to be discussed in the
following paragraph. Due to the fast decay of the charge mode,
the polarity of Iinj does not affect any of the results presented
in this work.

Without applied injection pulses, we expect to observe
an excess QP density xqp,0 that is higher than its value
corresponding to the sample temperature due to QP excitations
by infrared photons and from further unknown sources. Shaw
et al. [19] report about analysis of QP tunneling statistics in
charge qubits, from which they deduce xqp,0 ≈ 1.6 × 10−6 at
a base temperature of 18 mK. In another experiment by de
Visser et al. [31], similar QP densities at temperatures below
160 mK were observed from QP number fluctuations in a
superconducting thin-film resonator. We deduce numerically
from the common expression for the QP density [Eq. (7)] that
the quoted value of xqp,0 corresponds to a QP temperature
T0 ≈ 200 mK.

Now we explain how we calibrate the QP density in our
experiments. At the base temperature of 30 mK and without
injected QPs, the phase qubit relaxes to its ground state at
a rate of γ

qub
1,0 ≈ 15 (μs)−1 owing to interactions with excess

QPs and the TLS bath. We obtain the qubit relaxation rate
γ

qub
1 that is solely QP induced by extracting the TLS-induced

relaxation rate from the measured qubit’s relaxation rate
γ

qub
1,meas: γ

qub
1 ≡ γ

qub
1,meas − γ

qub
1,0 + γ

qub
1 (T0), where γ

qub
1 (T0) is

deduced from Eq. (B2) and is the small offset in Fig. 2.
There, the resulting γ

qub
1 as a function of both Tmch and Iinj

is shown, respectively, while γ
qub
1,meas was recorded at timing

parameters τtot = 150 μs and τinj = 200 μs. We numerically
deduce T or μ from γ

qub
1 in the thermal or injection experiment,

respectively. Then we calculate xqp (see right vertical axis). The
corresponding fits (continuous lines) provide the calibration of
xqp vs Iinj and Tmch, respectively.

APPENDIX C: IMBALANCE OF QP DENSITIES IN THE
INJECTION EXPERIMENT

In Fig. 5, we show that the injected QPs appear in the top
electrode of the qubit’s JJ (see top inset of the photograph).
From that point, QPs diffuse either through the qubit’s coil

that is about 750 μm long or they tunnel through the JJ onto
the bottom electrode. Due to this detour and due to relatively
low tunnel rates through the JJ, it is possible that the stationary
QP densities on both electrodes may show an imbalance. We
have solved the stationary Boltzmann equation and found the
imbalance α = x(T)

qp /x(B)
qp to be around 4 when assuming no

tunneling and 2 for typical tunneling rates of ≈ 6 (μs)−1. The
measured QP density xqp is deduced numerically from the
detected qubit’s energy-relaxation rate shown in Eq. (B1). By
simplifying the integral in Eq. (B2), one finds an analytical
solution that gives satisfying results:

γ
qub
1 ∝ 1

2

(
x(B)

qp + x(T)
qp

)
. (C1)

Thus, xqp is the average of the QP densities on both electrodes:

xqp = 1
2

(
x(B)

qp + x(T)
qp

)
. (C2)

When we generate QPs by increasing the sample temperature,
QPs appear evenly on both sides of the JJ and, accord-
ingly, xqp = x(T)

qp = x(B)
qp . In contrast, when injecting QPs, the

measured QP density is xqp = (x(B)
qp + αx(B)

qp )/2. We thus can
deduce from the measured value of xqp and an assumed value
for α the corresponding QP densities in the electrodes:

x(B)
qp = xqp

2

(1 + α)
,

x(T)
qp = xqp

2α

(1 + α)
. (C3)

To cross check this calculation, we set α = 1 and get the same
results as for the thermal experiment.

APPENDIX D: HEATING OF THE SAMPLE BY
QUASIPARTICLE INJECTION?

We inject QPs by driving the Josephson junctions (JJs)
of the injector SQUID into their resistive state where heating
may occur. Moreover, the injected QPs relax by recombination
and by inelastic scattering on phonons and impurities. Those
processes result in phonon creation which can lead to heating.
To inspect the sample temperature, we have used the readout dc
SQUID as a sensitive thermometer, which is placed close to the
qubit coil (see Fig. 5, top right corner) and at a linear distance of
about 500 μm from the injector SQUID. The switching current
of a JJ decreases linearly with increasing sample temperature
once the thermal activation rate exceeds the tunneling rate.
The associated threshold temperature is called the crossover
temperature [32]. Also, the standard deviation σ of the
ensemble of switching currents acquired in the current-ramp
measurement increases linearly with temperature above the
crossover temperature [33]. Properties of the phase qubit used
in this work such as its energy-relaxation rate γ

qub
1 change

significantly for sample temperatures exceeding 200 mK,
whereas the crossover temperature of the readout SQUID is
less than 30 mK, making it a much more sensitive detector
for the sample temperature than the qubit. We have measured
the increase �σ of the switching-current standard deviation
as a function of the cryostat’s mixing-chamber temperature
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Tmch and as function of QP injector current Iinj, respectively,
to compare both behaviors.

Figure 7(a) shows the pulse arrangement to measure �σ

vs Iinj. In Fig. 7(b), we see the acquired data of �σ when
injecting QPs. The injection pulse width was τinj ≈ 200 μs and
τtot ≈ 225 μs, which in this experiment is the delay between
the beginning of the injection pulse and the middle of the
current ramp (the ramp is ca. 200 μs wide). The qubit is not
operated in this experiment, and accordingly no microwave
tones are applied. We read an average broadening from zero
to maximal injection of about �σ ≈ 0.4 nA.

The temperature-related �σ was also measured when Iinj

was zero. In Fig. 7(c), we present �σ vs Tmch that was
varied from 30 to 250 mK. An immediate increase of �σ

confirms that the SQUID’s crossover temperature is below
30 mK. The increase of �σ is about 25 nA/K, whereas
during QP injection, �σ remains below 0.4 nA, corresponding
to a temperature of 45 mK. This temperature is negligible
as compared to 200 mK, beyond which the qubit’s energy
relaxation increases significantly (see Fig. 2). Hence, the
SQUID-mediated injection of QPs works reliably, control-
lably, and mostly free of undesired heating. This is an important
finding for our experiments on QP-induced decoherence of
TLSs because, at low temperatures, the simplest explanation
of any coherence-breaking effect, when ohmic currents are
applied, would be heating.

APPENDIX E: SIMULATION OF THE DIFFUSION
OF QUASIPARTICLES

Here we discuss the simulations we performed to under-
stand the diffusion process of injected QPs towards the qubit’s
Josephson junction (JJ). Rothwarf and Taylor [34] showed
that during the thermalization of QPs in thin superconducting
films, the phonons created from a QP recombination event
have a high probability to be involved in a new Cooper pair
breaking process before they relax to the thermal level. This
so-called phonon trapping motivates one to consider the QPs
and the nonthermal phonons as two coupled fluids. Here we
introduce the Rothwarf-Taylor equations (RT equations), add
diffusive terms, and discuss why we may uncouple the RT
equations and uniquely regard the QP diffusion equation in
our simulations.

The detailed derivation of the RT equations is shown
in Ref. [35]. Due to phonon trapping, we have to con-
sider both the QP density nqp and the phonon density
Nph whose time dependencies are coupled. The phonons
contributing to QP generation have an energy surpassing
2�s , which we now call “hot” phonons with a given
density,

Nph = �s

∫ ∞

2
d�Dph(�)g(�), (E1)

where � is the phonon energy divided by �s and Dph(�)
and g(�) are the phonon density of states and distribution
function, respectively. Now both quantities can be related by

the RT equations [34]:

ṅqp = − 2Rn2
qp + 2BNph + Iqp, (E2)

Ṅph = + Rn2
qp − BNph − Nph − N0

τesc
. (E3)

Here, R denotes the QP recombination constant in units of
m3/s and B is the QP recreation rate from phonon trapping.
The factor 2 in the exchange terms in Eq. (E2) designates that
the QP recombination and creation process always involves
two QPs and one phonon. Iqp is the injection current density
of QPs. The last term in Eq. (E3) accounts for phonon escape
into the substrate, −Nph/τesc, and the return of phonons from
the substrate, +N0/τesc, where τesc represents the escape time.
The substrate is supposed to be in thermal equilibrium due
to its much larger volume compared to the thin film, thus
the return term is constant and can even be neglected, as
the thermal contribution of the substrate to “hot” phonons
is negligible at our sample temperature of 30 mK. Further,
at such low temperature, the phonon-phonon scattering that
scales with T 4 can be neglected so that phonons of energies
� � 2�s can be assumed to move nearly ballistically in
the superconducting film. The (slower) transversal phonons
propagate at a velocity of v = 3050 m/s in Al. Considering
that we inject QPs at a maximal energy of 6.4�s , we estimate
the mean diffusion constant of QPs to be D ≈ 22.5 cm2/s
[36]. Now, the propagation time scales of the phonons and QPs
can be compared. The rule of thumb for diffusion states: the
diffusing particle covers a distance of

√
Dτ in time τ , whereas

a phonon would need the time
√

Dτ/v for the same distance.
Thus, for a distance of, e.g., 100 μm, the QP would need
approximately 4 μs and a phonon 0.03 μs. Hence, phonons
move much faster in the superconducting film than QPs;
consequently they react almost instantaneously to any change
in the QP ensemble and they can be considered in the stationary
regime. We thus may set Eq. (E3) to zero and get

Nph = Rn2
qp

B + 1/τesc
,

ṅqp = − n2
qp2R

(
1 − B

B + 1/τesc

)
+ Iqp

≡ − R̃n2
qp + Iqp. (E4)

Here we decoupled the RT equations and reduced them to the
single QP decay equation [Eq. (E4)] with constant injection,
where we have defined the effective recombination constant
R̃. Further, we have to adapt the decay equation (E4) to
our experiment, where the injection point is distant from the
measuring point. We thus add a diffusion term including the
second spatial derivative of the QP density ∇2nqp weighted
with the homogeneous diffusion constant D:

ṅqp − D∇2nqp = − R̃n2
qp + Iqp. (E5)

Equation (E5) is the final diffusion equation which was used
to simulate the space- and time-dependent QP density xqp ≡
nqp/ncp with the COMSOL software package [37], where ncp

is the constant density of Cooper pairs. In Fig. 5, we see the
photograph of the chip, where the bold green arrows show
the shortest path (≈ 1 mm) for the QPs to diffuse from the
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TABLE II. Parameters used to simulate the diffusion of quasi-
particles from the injection point to the Josephson junction.

Simulation Literature

Diffusion constant D (cm2/s) 22.5 22.5 [36]
Recombination const. R̃ (m3/s) 1.5 × 10−17 1.5 × 10−17 [30]
Injection current dens. Ĩ (1/m3s) 8.5 × 1030

injection point (injector SQUID) to the qubit’s JJ. The most
important feature of the thin-film layout is the conducting
bridges spanning the microwave line that pose a bottleneck
for the diffusing QPs. They are reconstructed in the simplified
2D simulation geometry by twenty 10 μm × 2 μm strips that
connect both parts of the ground plane (see Fig. 8). The squared
holes all over the aluminium film contribute to an effective
QP constant of diffusion; thus they are not considered in the
simulation geometry. Another detail is the ca. 140 μm × 2 μm
large strip leading from the Josephson junctions of the injector
SQUID to the ground plane. Here QPs are more confined
and are expected to recombine faster, but as this constriction
applies at the very beginning of the diffusion path, this gives
only an effective, reduced injection current density Ĩqp. For
this reason, in the simulation, the effective injection point has
been chosen to be the contact point of the strip to the ground
plane (white dashed square in Fig. 5).

In Fig. 8, we see the simulation data for Iinj = 6.4 IS, while
the parameters used in the simulation are shown in Table II. The
color of the surface plots denotes the normalized QP density
xqp within the simulation geometry. The dashed rectangle
shows the size of the sample photograph in Fig. 5, the cross is
the qubit’s JJ, and the tiny black square indicates the effective
injection point. There we recognize the bottleneck connecting
both sides of the aluminium ground plane, which reduces the
stationary maximum QP density by about 12% on the side of
the ground plane connected to the JJ. Figure 8(a) shows the QP
distribution shortly after the start of the injection (τtot = 14 μs,
τinj = 400 μs; see Fig. 2 in the main text). In Fig. 8(b), the
stationary case for τtot = 300 μs (τinj = 400 μs) is shown.
In the area between the simulation geometry border and the
inner rectangle (continuous black line), additional linear QP
relaxation was added to avoid boundary effects such as QP
reflection. This area shall effectively enlarge the simulation
geometry in order to minimize the meshing grid and the
calculation time. xqp has been simulated as a function of τtot for
various τinj and for some injection amplitudes. Subsequently,
xqp has been transferred into the frequency shift of the qubit
�f (�f is proportional to xqp [22]) to compare it with the
measured �f in a QP injection experiment, as shown in Fig. 6.

APPENDIX F: QP TUNNELING THROUGH A
JOSEPHSON JUNCTION

In this section, we estimate the penetration depth of the
evanescent QP wave function in the AlOx tunnel barrier of the
JJ. We need this quantity to discuss the coupling strength of
QPs to TLSs in dependence of the TLS’ position across the JJ.

We model the QP tunneling through the JJ by a plane wave
of energy ≈ EF that tunnels through a 1D rectangular potential

wall of an unknown height, V0 > EF . The spatial coordinate
x is taken along the normal vector to the surface of the JJ
electrode, whereas the wall spans the distance from x = 0 to
x = d ≈ 2 nm (d is the thickness of the tunnel barrier). The
solution within the wall decays exponentially on a spatial scale
of ρ−1 = [2m(V0 − EF )/h̄]−1/2. The transmission coefficient
T for the incident wave through the potential wall is given by

T = 4EF (V0 − EF )

4EF (V0 − EF ) − V 2
0 sinh2(ρd)

. (F1)

The typical QP tunneling rate through the JJ is ≈ 6 (μs)−1,
which is the product of its attempt rate EF /h = 3 ×
109 (μs)−1 and the transmission coefficient T . From this, we
get T ≈ 2 × 10−9 and we deduce numerically from Eq. (F1)
V0 ≈ 13.3 eV, whereas EF = 11.7 eV for aluminum. The
effective electron mass in aluminum is 1.1 times the electron
mass me so that the penetration depth of QPs within the tunnel
barrier turns out to be ρ−1 ≈ 0.15 nm.

APPENDIX G: INTERACTION OF TLS WITH QP AND
ESTIMATED TLS POSITION ACROSS THE

TUNNEL BARRIER

In this section, we offer an explanation for our observation
on the TLS’ response to quasiparticles: when thermally
generating quasiparticles, the TLS’ decoherence rate is about
twice as high as in the case of injected quasiparticles. In Fig. 3
of the main text and in Fig. 9 (which is more readable for small
values of xqp), one can see this discrepancy when comparing
the decoherence rates at any given value of xqp.

As mentioned in the main text, at temperatures T <

E/kB, the TLS’ energy-relaxation rate �1 increases with the
QP density, whereas the contribution by phonons remains
constant. The scattering Hamiltonian in Eq. (4) takes into
account only QPs that return into the initial electrode after
scattering on a TLS. The full Hamiltonian has the form

H̃qp = 2g

(
�

E
τx + ε

E
τz

)

×
∑

k,k′,l,m

(
eiϕεlm3/2u

(l)
k u

(m)
k′ − e−iϕεlm3/2v

(m)
k′ v

(l)
k

)
× √

slα
(l)†
k

√
smα

(m)
k′ , (G1)

where we sum over the top and the bottom electrodes
(l,m ∈ {B,T }). The epsilon tensor εl,m,3 (for which,without
loss of generality, {B,T } ≡ {1,2}) implies that when a QP is
backscattered into the initial electrode of the JJ (l=m), it does
not couple to the phase drop ϕ across the JJ. The position
x ∈ [0 . . . d] of the probed TLS across the tunnel barrier is
contained in the prefactors (s(l))1/2 of the QP wave functions
that implicate their exponential decay,

sB(x) = e−2ρx, sT(x) = e−2ρ(d−x), (G2)

where d = 2 nm is the tunnel barrier’s thickness and the
position x = 0 is at the bottom electrode. The penetration
depth of QPs into the tunnel barrier, ρ−1 ≈ 0.15 nm, has
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FIG. 9. These measurement data and fits are presented in the main
text in Fig. 3. However, this double-logarithmic plot is more readable
for low xqp, whereas the linear fits are not obvious like in Fig. 3.
(a) Measured energy-relaxation rates �1,meas of TLS1 and TLS2. The
legends indicate the asymmetry energy ε and whether quasiparticles
were injected or thermally generated. Black lines are theoretical fits
to Eq. (6). (b) Recorded decay rates �R,meas of TLS Rabi oscillations
vs xqp and the corresponding fits.

been estimated in Appendix F. Using Fermi’s golden rule,
the energy-relaxation rate of the probed TLS reads

�1(x) = s2
B�

(B)
1 + s2

T�
(T)
1 + sBsT

(
�

(BT)
1 + �

(TB)
1

)
, (G3)

�
(lm)
1 = 4π

h̄

(
N0Vg

�

E

)2

�s

∫ ∞

1
dε

[
1 − cos(ϕ0)

ε(ε + E/�s)

]

× ρ(ε)ρ

(
ε + E

�s

)
f

(l)
0 (ε)

[
1 − f

(m)
0

(
ε + E

�s

)]
,

(G4)

where the position dependence is contained in s(l)(x). The first
two terms in Eq. (G3) stand for backscattered QPs into the
initial electrode and the right term represents the scattering
from the bottom into the top electrode, and vice versa. sBsT =
exp{−2ρd} is a small value; for this reason, it was neglected
in the main text for better readability. �

(l)
1 is defined in Eq. (6)

and ϕ0 ≈ 0.4 π is the mean phase drop across the JJ. Both
�

(l)
1 and �

(lm)
1 are approximately proportional to x(l)

qp ; thus we

0 0.5 1 1.5 2

x [nm]
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Γ
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/Γ
1in
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)
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FIG. 10. The ratio �th
1 /�

inj
1 (x) as a function of the TLS position

across the 2-nm-thick tunnel barrier, where x equals zero at the
bottom electrode. �th

1 (x) is the theoretical prediction for the TLS’
energy-relaxation rate when QPs are thermally generated and �

inj
1 (x)

is valid when injecting QPs. The QP imbalance α is indicated in the
legend. “num.” designates that the ratio was numerically calculated
from Eq. (G3), whereas the graph labeled as “analyt.” shows the
approximation from Eqs. (G6) and (G7). The ratio �th

1 /�
inj
1 equals

the ratio K th/K inj (see red horizontal lines labeled by TLS1 or TLS2)
of the fit factors presented in the main text, from which one can
estimate the positions of TLS1 and TLS2 to be roughly in the middle
but closer to the bottom electrode, and α to be approximately 4.

simplify:

�1(x) ∝ s2
Bx(B)

qp + s2
Tx(T)

qp + sBsT

(
x(B)

qp + x(T)
qp

)
. (G5)

In the thermal experiment, when increasing the temperature
Tmch, we thermally generate the same QP density on both
electrodes. Thus, xqp = x(B)

qp = x(T)
qp and the TLS’ energy

relaxation rate induced by thermally generated QPs reads

�th
1 (x) ∝ xqp

(
s2

B + s2
T + 2sTsB

)
. (G6)

However, in the injection experiment, when injecting QPs, the
imbalance α has to be taken into account (see Appendix C):

�
inj
1 (x) ∝ xqp

(
s2

B
2

1 + α
+ s2

T
2α

1 + α
+ 2sTsB

)
. (G7)

In Fig. 10, we present the ratio �th
1 /�

inj
1 as a function of x.

The legend designates the α value and whether a numerical
calculation using Eq. (G3) was performed (“num.”) or the
approximation from Eqs. (G6) and (G7) was used (“analyt.”).
The ratio K th/K inj of the fit factors presented in the main
text (Fig. 3) corresponds to the ratio �th

1 /�
inj
1 . In Fig. 11, the

K th/K inj ratios for TLS1 [Fig. 11(a)] and TLS2 [Fig. 11(b)]
are plotted vs the voltage Vp applied to the piezoactuator
that changes the TLS asymmetry energy ε of the TLS (see
Appendix A), whereas TLS1 gets symmetric at 39 V and TLS2
at around −10.8 V. The top axes designate the corresponding
value of ε. In Fig. 11(b), we see an outlier value at 42 V, which
can be caused by a neighboring TLS that becomes resonant
with the probed TLS at the chosen strain. The mean of the
K-factor ratios is 2.5 for TLS1 and 1.9 for TLS2. Thus, we can
estimate from Fig. 10 that both TLS1 and TLS2 are positioned
closer to the bottom electrode than to the top electrode (see
both red horizontal lines labeled with TLS1 or TLS2). More
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FIG. 11. The fit factor ratio K th/K inj for varying values of the
voltage Vp applied to the piezoactuator (bottom axes) (Appendix A)
and for two probed TLSs: (a) TLS1 and (b) TLS2. The corresponding
asymmetry energies ε are indicated on the nonlinear top axes. K th

and K inj are the fit factors explained in the main text. The continuous
red line is the mean value, the dot-dashed line designates the one σ

interval around the mean value, and the dashed line indicates the 5%
confidence interval.

precise elaboration of the QP penetration depth in the tunnel
barrier (Appendix F), as well as better estimation of the QP
tunnel rate, would give a more concrete estimation of the TLS
positions.
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FIG. 12. Measured pure dephasing rate �∗
2,meas of TLS2 vs density

of injected quasiparticles xqp at various values of the asymmetry ε

(see legend). The data is fitted to the purely QP-induced dephasing
rate shown in Eq. (H1) (black lines). We clearly see that quasiparticle-
induced pure dephasing of a TLS is enhanced when it is strain tuned
away from the symmetry.

APPENDIX H: QP-INDUCED PURE DEPHASING
RATE OF TLS

As shown in the previous section, the processes that allow
QPs to be scattered into the opposite electrode contribute
weakly to the TLS’ decoherence. Hence, we use the simplified
expression for QP-induced decoherence of the TLS shown
in Eq. (5) in the main text to deduce the QP-induced pure
dephasing rate �∗

2 by substituting the prefactor �/E by ε/E

and by setting E → 0 in the integrand:

�∗
2 = s2

B�
∗(B)
2 + s2

T�
∗(T)
2 , (H1)

�
∗(l)
2 = 4π

h̄

(
N0Vg

ε

E

)2
�s

∫ ∞

1
dε

(
1 − 1

ε2

)

× ρ(ε)2f
(l)
0 (ε)

[
1 − f

(l)
0 (ε)

]
. (H2)

In Fig. 12, we show the measured pure dephasing �∗
2,meas of

TLS2 in dependence of the injected QP density while it was
strain tuned to various asymmetries ε (see legend). The black
lines are fits to the experimental data. As mentioned in the
main text, the QP-induced dephasing increases with xqp when
the TLS is strain tuned away from the symmetry, whereas
it remains minimal for ε ≈ 0. Further, we recognize that the
constant offset of the pure dephasing increases with ε as it is
dominated by interactions of the probed TLS with thermally
fluctuating TLS [24].
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