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Universal upper bounds on the Bose-Einstein condensate and the Hubbard star
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For N hard-core bosons on an arbitrary lattice with d sites and independent of additional interaction terms
we prove that the hard-core constraint itself already enforces a universal upper bound on the Bose-Einstein
condensate given by Nmax = (N/d)(d − N + 1). This bound can only be attained for one-particle states |ϕ〉
with equal amplitudes with respect to the hard-core basis (sites) and when the corresponding N -particle state
|�〉 is maximally delocalized. This result is generalized to the maximum condensate possible within a given
sublattice. We observe that such maximal local condensation is only possible if the mode entanglement between
the sublattice and its complement is minimal. We also show that the maximizing state |�〉 is related to the ground
state of a bosonic “Hubbard star” showing Bose-Einstein condensation.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is one of the most
fascinating quantum phenomena. It was predicted almost one
century ago following from the work by Bose [1] and Einstein
[2,3] on the quantum gas of noninteracting bosons. A lot of
effort has been devoted ever since to investigate and understand
the role of particle-particle interactions on the occurrence of
BEC. In particular, since the concept of one-particle energy
states does not make sense anymore a more general criterion
for BEC was provided by Penrose and Onsager [4] for the
case of interacting bosons: A system of N bosons exhibits
BEC whenever its largest eigenvalue of the corresponding
one-particle reduced density matrix ρ(�x,�x ′) is proportional
to N . Such a macroscopic occupancy is closely related to
long-range order of the “off-diagonal” elements of ρ(�x,�x ′) [5].
Application of those two criteria to homogeneous gases has
shown that BEC can also exist in the presence of interactions in
three and more spatial dimensions (see, e.g., the reviews [6,7]).
The experimental discovery of BEC for trapped ultracold
gases [8,9] has strongly revived the study of BEC for both
translationally invariant and trapped systems [10]. In this
context hard-core bosons (HCB), originally introduced as a
lattice model for liquid helium II to investigate superfluidity
[11,12], gained tremendous relevance: They can be realized
experimentally, as demonstrated the first time in Ref. [13], by
tuning the interaction between ultracold atoms at the Feshbach
resonance to a repulsive contact potential [14–17].

An interesting observation was made by Girardeau [18]
for one-dimensional systems. The energy spectrum and other
phase-independent quantities like density correlation functions
always coincide for spinless HCB and the analogous system of
spinless fermions. Yet, since the one-particle reduced density
matrix ρ(x,x ′) is phase sensitive, the question of whether
occupation numbers can exceed the value 1 or may even
describe BEC is a priori nontrivial for HCB in contrast to
fermions. In Refs. [19,20] the largest occupation number for N

HCB (without further interactions besides the impenetrability)
in one dimension was shown to be proportional to

√
N
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implying the absence of BEC. The same results hold for the
case of HCB in an external harmonic trap [21,22] and for the
corresponding lattice analogs [23].

These specific results on the absence of BEC for hard-core
bosons even at zero temperature motivate a couple of ques-
tions: Is the hard-core constraint itself already so restrictive
that no (or no complete) BEC is possible independent of the
external potential and the type of particle-particle interaction?
In particular for the case of lattice HCB, what is the maximal
possible occupation number Nmax as a function of the particle
number N and the number d of available sites? How do
the one-particle quantum states |ϕmax〉 allowing for such a
maximal occupation number look and what is the form of the
corresponding N -HCB state |�max〉 attaining this occupancy
Nmax of |ϕmax〉? In this paper we are going to answer all those
questions. In addition, in Sec. IV, we will propose a physical
model for HCB which allows the realization of a state with
a macroscopically large occupation number saturating our
universal upper bound. Let us first introduce some elementary
concepts relevant for our paper.

II. HARD-CORE BOSONS: CONCEPTS

We consider N HCB on d lattice sites. The form and dimen-
sionality of the lattice are for the following considerations not
relevant. Let H(d)

1 denote the underlying d-dimensional one-
particle Hilbert space with an orthonormal basisB1 ≡ {|j 〉}dj=1
given by the lattice site states |j 〉. Although the “hard-core
basis” B1 might be any basis of one-particle states which, due
to some physical constraints, cannot be multiply occupied, we
refer in the following to |j 〉 as “sites”. In case of bosons without
hard-core constraint the corresponding N -boson Hilbert space
H(B)

N is given by the symmetrized N -particle states, namely,

H(B)
N ≡ SN (H(d)

1 )
⊗N

. Imposing the hard-core constraint then
means to restrict this Hilbert space to the subspace H(HCB)

N of
H(B)

N by excluding configurations with multiply occupied sites.
Accordingly, any N -HCB state can be expanded as

|�〉 =
∑

i

Ai |i〉, (1)
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where i ≡ {i1, . . . ,iN }, i1, . . . ,iN = 1, . . . ,d, |i〉 ≡ SN (|i1〉 ⊗
. . . ⊗ |iN 〉) is the symmetrization of the N -fold tensor product
and sums

∑
i are restricted here and in the following to

configurations i without multiple occupancies. It is technically
convenient to consider configurations i just as unordered
sets of N (different) indices. Furthermore, we introduce the
corresponding HCB creation, b

†
i , and annihilation operators,

bj , with respect to the lattice sites. They fulfill mixed
commutation relations, i.e., they commute for different sites
and anticommute at the same site [11].

In contrast to the Hilbert space of N identical fermions or
bosons, the N -HCB Hilbert space is not invariant under simul-
taneous one-particle unitary transformations, (U1)⊗

NH(HCB)
N �=

H(HCB)
N . The same of course also holds for the algebra of

observables: A change of the basis leads to rather odd, namely,
mixed anticommutation/commutation relations between the
new creation, b†α , and annihilation operators bβ . As a conse-
quence, a possible upper bound on the occupancy N (ϕ) of a
given one-particle state |ϕ〉 ∈ H(d)

1 (which can be written as a
linear combination of the states {|j 〉}) depends highly on |ϕ〉
itself. Therefore, one-particle states |ϕ〉 allowing for multiple
occupancies may exist, but they need to differ from the lattice
site states {|j 〉}.

III. MAXIMUM OCCUPATION NUMBER

To determine the optimal universal upper bound on occu-
pation numbers for N HCB on d sites we need to determine

Nmax = max
|ϕ〉 ∈ H(d)

1〈ϕ|ϕ〉 = 1

max
|�〉 ∈ H(HCB)

N〈�|�〉 = 1

[N (ϕ)(|�〉)]. (2)

where N (ϕ)(|�〉) ≡ 〈�|b†ϕbϕ|�〉 with b†ϕ and bϕ the creation
and annihilation operator of particles in the state |ϕ〉. We first
present the final result for Nmax in the form of a theorem and
provide its derivation afterwards.

Theorem 1. For N hard-core bosons on d lattice sites the
maximum possible occupation number is given by

N (N,d)
max ≡ N

d
(d − N + 1). (3)

Only one-particle states |ϕmax〉 unbiased with respect to the
lattice basis {|j 〉}dj=1, i.e., |〈j |ϕmax〉|2 = 1

d
, ∀j = 1, . . . ,d,

allow for such an occupancy, where the corresponding unique
and pure maximizer state |�max〉 follows as

|�max〉 = N
∑

j

eiφ j | j〉, (4)

with φ j = ∑N
m=1 arg(〈jm|ϕmax〉) and N = 1/

√
( d

N
).

Theorem 1 provides a universal upper bound for the
Bose-Einstein condensate concentration for HCB on a lattice.
It is worth noting that these results are independent of both
the spatial dimension and the form of the underlying lattice,
and of any microscopic details. Whether the ground state of
a given hard-core Hamiltonian will exhibit such macroscopic
population of a specific state |ϕ〉 will depend on its concrete
form. In addition, the possible maximum occupation number
Nmax exhibits a particle-hole symmetry, i.e., it takes the same

value for N and [d − (N − 1)] particles, where the latter
corresponds to (N − 1) holes. In the thermodynamic limit
N,d → ∞ at fixed number density n ≡ N/d, the maximal
possible degree nmax ≡ Nmax/N of condensation follows as
(this has already been found in [24], yet by assuming in
advance that |ϕmax〉 is given by the zero-momentum state)

nmax(n) = 1 − n. (5)

To prove Theorem 1 we express |ϕ〉 with respect to the
hard-core basis,

|ϕ〉 =
d∑

k=1

ck|k〉, (6)

where we assume ck real and non-negative for all k (possible
phases of the ck could be absorbed by the lattice states |k〉)
and we can assume the N -HCB state to be pure. Equation
(6) together with the expansion (1) of |�〉 yields (see
Appendix A for technical details)

N (ϕ)(|�〉) =
∑

i ′

d∑
k,l=1

A∗
i ′∪{k}Ai ′∪{l}ckc

∗
l

=
∑

i ′
|〈 �A(i ′),�c 〉|2. (7)

Here, the prime should indicate that i ′ is a configuration
of (N − 1) HCB. The union i ′ ∪ {k} then means to add a
boson in the state |k〉 to the configuration i ′. For k ∈ i ′
we have i ′ ∪ {k} = i ′ (not allowing for double occupancies)
and we therefore define Ai ′∪{k} = 0 whenever k ∈ i ′. In the
last line we introduced the compact notation �c ≡ (ck)dk=1,
�A(i ′) ≡ (Ai ′∪{k})dk=1, with ( �A(i ′))k ≡ 0 whenever k ∈ i ′, and
〈·,·〉 denotes the standard inner product on the d-dimensional
complex space. Hence, the expression (7) for the one-particle
quantity N (ϕ)(|�〉) is the squared projection of the vector �c
(which characterizes the one-particle state |ϕ〉) onto the vector
�A(i ′), summed over all configurations i ′ of (N − 1) HCB on d

sites.
To prove Theorem 1 we would need to variationally

maximize the occupation number (7) with respect to both
the N -HCB state |�〉 and the one-particle state |ϕ〉. Since
N (ϕ)(|�〉) is a polynomial of degree 4 in {Ai }, {ck} the corre-
sponding Euler-Lagrange equations are cubic and therefore
possibly too difficult to be solved analytically. Even if an
analytical solution could be found it would be difficult to verify
that the corresponding Hessian is negative definite. Instead, we
choose an elegant approach avoiding any variational equation.
This will be achieved by expressing the inner product in the
last line of Eq. (7) in two different ways:

〈 �A(i ′),�c 〉 = 〈
(Ai ′∪{k})dk=1,(χk �∈i ′ck)dk=1

〉
= 〈

(Ai ′∪{k}ck)dk=1,(χk �∈i ′)dk=1

〉
, (8)

where χk �∈i ′ = 1 if k �∈ i ′ and zero otherwise. Application of
the Cauchy-Schwarz inequality in the spirit of the first and
second line of Eq. (8) leads to the estimate (see Appendix A)

N (ϕ)(|�〉) � 1 + (N − 1)
∑

i

|Ai |2
∑
k �∈i

|ck |2 (9)
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and

N (ϕ)(|�〉) � (d − N + 1) − (d − N + 1)

×
∑

i

|Ai |2
∑
k �∈i

|ck|2, (10)

respectively. The pleasant surprise is that the term∑
i |Ai |2

∑
k �∈i |ck |2 appears in the final result of estimates

(9) and (10) with different signs. By taking an appropriate
linear combination of both estimates it cancels out and one
eventually obtains

N (ϕ)(|�〉) � N

d
(d − N + 1). (11)

This upper bound on N (ϕ)(|�〉) can be attained only by
those N -HCB states |�〉 and one-particle states |ϕ〉 for which
the vectors �A(i ′), (χk �∈i ′ck)dk=1 and (Ai ′∪{k}ck)dk=1, (χk �∈i ′)dk=1,
respectively, are parallel for all i ′. For the case of real and
positive ck , this can be achieved only for ck ≡ 1√

d
and Ai ≡

1/

√
( d

N
). The case of arbitrary ck phases, ck = eiφk |ck|, can

be derived from the result of zero phases by redefining the
lattice site states, |k〉 → eiφk |k〉. This implies Ai → eiφi Ai

with φi ≡ ∑N
m=1 φim , which completes the proof.

Taking the hard-core condition (b†j )2 = 0 and the form
of |ϕmax〉 into account it follows that |�max〉 ∝ (b†ϕmax

)N |0〉.
As a consequence of this product structure, |�max〉 has
zero entanglement. This equivalently means that |�max〉
contains no additional information beyond that provided by
the one-particle reduced density matrix. Indeed, according to
Theorem 1 |�max〉 is uniquely determined by its one-particle
reduced density matrix. A different but even more fascinating
connection between maximal condensate concentration and
entanglement can be revealed by asking for the maximal
possible occupation number N (LA)

max for a sublattice LA of L
with dA(< d) sites. Generalizing Theorem 1 (see Appendix B)
we find that N (LA)

max = (dA + 1)2/4dA and the sublattice LA

then contains NA = (dA + 1)/2 particles. NA is the number
of particles maximizing the expression N (NA,dA)

max in Theorem
1. The corresponding N HCB quantum state |�(LA)

max 〉 is given
by (the symmetrization of) |�max〉A ⊗ |NB〉B , where |�max〉A
is the state (4) for NA HCB on LA and |NB〉B any state of
NB = N − NA HCB on LB . The structure of the maximizer
state |�(LA)

max 〉 then shows that maximal local (i.e., in LA)
occupation numbers N (LA)

max can exist if and only if the mode
entanglement between LA and LB is minimal (zero). Hence,
the entanglement entropy of the mode reduced density operator
of L \ LA is expected to be reciprocally related to the largest
occupation number within LA.

IV. PHYSICAL REALIZATION: THE “HUBBARD STAR”

Concerning the physical relevance of Theorem 1 one may
wonder whether HCB Hamiltonians exist having |�max〉 as
ground state. Since all basis states |j1,...,jN 〉 contribute equally
to |�max〉, systems with site-independent hopping of the HCB
are particulary promising. Indeed, for an infinite-range HCB
hopping model without further interactions the ground state
is given by |�max〉 [25,26] (see also Refs. [27–29]). The
experimental realization of such a model, however, seems to

FIG. 1. The (bosonic) Hubbard Star model. Only hopping be-
tween the outer sites 1 to d and the central site 0 is permitted. The
open circles represent the sites and the full (red) dots represent the
HCB (see text for more details).

be very difficult if not impossible. We therefore propose here
a model which simulates the infinite-range hopping: Consider
a ring with equally spaced sites 1 to d and a site 0 at its center
(see Fig. 1). We further assume that hopping between different
sites on the ring is negligible compared to the hopping between
the ring sites and the central site at a rate of t > 0. The resulting
hard-core Hamiltonian is given by

Ĥ = −t

d∑
i=1

b
†
0bi + H.c. (12)

Here, b
†
j and bj are the HCB creation and annihilation oper-

ators fulfilling the conventional mixed commutation relations
[11]. It is easy to see that Ĥ 2 (describing second-order
processes) contains hopping terms between all ring sites
with identical hopping parameters t2. Ĥ conserves the total
particle number which allows the restriction to a Hilbert space
with fixed particle number N . The model shall be called the
(bosonic) Hubbard star in analogy to the fermionic version
studied in Ref. [30].

The form of Eq. (12) makes explicit the connection of
HCB to spin systems with spin 1/2, as already pointed out in
Ref. [11]: According to the Holstein-Primakoff transformation
[31], the operators bk,b

†
k for every site k can be mapped to spin

operators for a spin 1/2 (with h̄ ≡ 1):

S+
k ≡

√
1 − b

†
kbk bk, S−

k ≡ (S+
k )† = b

†
k

√
1 − b

†
kbk,

(13)
Sz

k ≡ 1
2 − b

†
kbk.

Here, S±
k are the corresponding spin ladder operators and the

original bosonic vacuum state |0〉 is mapped to the completely
polarized spin state |↑〉0 ⊗ |↑ , . . . , ↑〉R . It is straightforward
to verify that the operators in Eq. (13) fulfill the commutation
relations for spin 1/2. The Holstein-Primakoff transformation
then maps the Hamiltonian (12) to the corresponding spin
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model

Ĥ ′ = −t(Ŝ+
0 Ŝ−

R + Ŝ−
0 Ŝ+

R ), (14)

where ŜR = ∑d
i=1 Ŝi denotes the total spin operator on the

ring. Since the creation of a HCB corresponds to a spin flip,
N -particle states are mapped to states with total magnetic
quantum number M = (d + 1)/2 − N .

The eigenstates of Hamiltonian (14) can be expanded as

|ψ〉 = α1|↑〉0 ⊗ |ψ1〉R + α2|↓〉0 ⊗ |ψ2〉R . (15)

The ring states |ψ1〉R and |ψ2〉R are normalized and orthogonal
with magnetization M1 = M − 1

2 and M2 = M + 1
2 , respec-

tively. The eigenvalue equation Ĥ ′|ψ〉 = E|ψ〉 reduces to

Eα1|ψ1〉R = −tα2Ŝ
−
R |ψ2〉R,

Eα2|ψ2〉R = −tα1Ŝ
+
R |ψ1〉R.

(16)

Let |SR,MR〉 be an eigenstate of Ŝ
2
R and Ŝz

R with eigenvalue
SR(SR + 1) and MR , respectively. By making use of

Ŝ+
R Ŝ−

R |SR,MR〉
= [(SR(SR + 1) − MR(MR − 1)]|SR,MR〉, (17)

Eq. (16) can easily be solved. With MR = M2 the ground-state
eigenvalue follows for maximal SR , SR = d/2,

E = −t
√

N (d − N + 1) (18)

and up to a normalization factor we find

|ψ1〉R ∝ (Ŝ−
R )N |↑ , . . . , ↑〉R,

|ψ2〉R ∝ (Ŝ−
R )(N−1)|↑ , . . . , ↑〉R.

(19)

Substitution into Eq. (16) allows one to determine the coeffi-
cients αi . Use of the inverse Holstein-Primakoff transformation
finally yields the ground state of the N HCB:

|ψ〉 = 1√
2

∣∣�(N)
max

〉
R

+ 1√
2
b̂
†
0

∣∣�(N−1)
max

〉
R
. (20)

Here, |�(N)
max〉R denotes the state of maximal occupation number

(4) of N HCB on d sites of the ring, where the corresponding
|ϕmax〉 is given by the zero-momentum state on the ring (i.e.,
φ j ≡ 0).

Since |ψ〉 involves the maximizing state |�max〉R of
Theorem 1 for N and N − 1 particles on the ring, the ground
state |ψ〉 obviously exhibits fractional BEC. To confirm this
also by quantitative means we follow Ref. [4] and calculate the
largest eigenvalue of the corresponding one-particle reduced
density operator

ρ1 ≡ NTrN−1[|ψ〉〈ψ |] ≡
d+1∑
j=1

λj |χj 〉〈χj |, (21)

obtained by tracing out N − 1 HCB. In particular, we de-
termine its eigenstates (natural orbitals |χj 〉) and eigenvalues
(natural occupation numbers λj ). Since |ψ〉 is invariant under
arbitrary permutations of the ring sites this is straightforward:
Let U (π ) be an arbitrary permutation of the ring site states,
U (π )|j 〉 = |π (j )〉,j = 1,2, . . . ,d, where the central site state
is not affected, U (π )|0〉 = |0〉. Then, the structure of the
ground state (20) (recall also Theorem 1) implies for all

π U (π )⊗
N |ψ〉 = |ψ〉. Since U (π ) is a unitary operator,

the one-particle reduced density operator (21) inherits that
symmetry, i.e., one has

[ρ1,U (π )] = 0, ∀π. (22)

As a consequence, ρ1 is block-diagonal with respect to the
eigenspaces of all U (π ). Moreover, we observe that only the
two states |0〉 and 1/

√
d

∑d
j=1 |j 〉 (and their linear combina-

tions) are eigenstates of all U (π ) (always with eigenvalue 1).
The (d − 1)-dimensional subspaceH⊥

2 orthogonal to the space
H2 spanned by those two states is therefore an irreducible
representation of the group of ring site permutations. Thus,
d − 1 natural occupation numbers λj are degenerate and
their respective natural orbitals |χj 〉 span the space H⊥

2 .
To determine the remaining two natural orbitals and natural
occupation numbers we express ρ1, restricted to H2, with
respect to the states |0〉, 1/

√
d

∑d
j=1 |j 〉, leading to

ρ1|H2 = 1

2

⎛
⎝ 1

√
N

(N,d)
max√

N
(N,d)
max N (N,d)

max + N (N−1,d)
max

⎞
⎠. (23)

The matrix (23) can easily be diagonalized, leading to
the remaining two natural orbitals and natural occupation
numbers [the concrete value of the other d − 1 (degenerate)
natural occupation numbers can then be determined via the
normalization of ρ1]. We state the concrete results for the
thermodynamic limit, i.e., N,d → ∞ at fixed filling factor
n ≡ N/(d + 1). The two eigenvalues of Eq. (23) in leading
order follow as N (1 − n) and 1/4. The normalization of
ρ1 then implies that the other eigenvalues in leading order
are given by n2, i.e., they are not macroscopic in N . This
result shows that BEC is present with the maximal possible
degree nmax ≡ 1 − n of condensation [recall Eq. (5)]. The
respective maximally occupied one-particle state is given in
(leading order) by the zero-momentum state on the ring, i.e.,
|ϕmax〉 = 1/

√
d

∑d
j=1 |j 〉

For the sake of completeness, we mention another model
which has |�max〉 as its ground state. It is a one-dimensional
lattice gas model with nearest-neighbor hopping and nearest-
neighbor interactions, provided the ratio of the hopping
parameter and the coupling constant takes a very specific value
[32]. The precise tuning of the coupling constant may be again
difficult in practice.

V. SUMMARY AND CONCLUSIONS

For N hard-core bosons on a lattice of d sites we have
proven that the hard-core constraint itself enforces a nontrivial
universal upper bound on arbitrary occupation numbers.
The maximal possible occupation number Nmax = (N/d)(d −
N + 1) is proportional to the relative “free volume” (d −
N + 1)/d, i.e., to the density of available sites. This upper
bound Nmax can be attained only for one-particle states |ϕmax〉
which are maximally unbiased with respect to the hard-core
basis (sites). The corresponding unique and pure N -HCB
maximizer state |�max〉 is maximally delocalized (see Theorem
1). Accordingly, |ϕmax〉 corresponds to a one-particle state with
zero “momentum”, which has a macroscopic occupancy in
the state |�max〉. Since all these results are independent of
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the spatial dimension and form of the underlying lattice and
of the microscopic details and temperature of the system, our
paper establishes a much broader perspective on BEC: It is
based on the structure of the N -HCB state space only and
does not refer to properties of some specific Hamiltonians.
In addition, from a general viewpoint, we have also shown
that (incomplete) BEC is possible for every lattice despite the
hard-core repulsion.

The significance of our universal result Theorem 1 has been
confirmed through the existence of two well-known models the
ground states of which exhibit the maximal possible degree
of condensation. One of them, the infinite-range hopping
model for “free” HCB, also shows that the largest occupation
number is strongly related to the mobility of the HCB. The
fact that the infinite-range hopping model attains the upper
bound Nmax is not surprising due to the mean-field character
of that model. Indeed, it is known that the order parameter
given by the “degree of condensation” becomes maximal in
mean-field approximations. Since its experimental realization,
however, is very difficult if not impossible we have proposed
in the form of the Hubbard star a HCB model which simulates
the infinite-range hopping. The experimental realization of
the Hubbard star exhibiting BEC of maximal degree seems
to be feasible. Indeed, the experimentalists in the field of
ultracold gases have demonstrated high skills by realizing
various models (see, e.g., Refs. [13,14,33,34]). By generating
a ringlike optical lattice including a central potential well and
by tuning the barrier heights in order to make the hopping
between the central and the ring sites dominant our predictions
can be tested. It is also worth noting that it is the single site
at the ring’s center which makes BEC possible by drastically
increasing the mobility of the HCB on the ring. In the case
that the ring hopping parameter vanishes, tR = 0, it is the
central site only which generates an effective mobility (via
second-order processes) on the ring. In an experiment, it
would be therefore interesting to increase the ratio tR/t more
and more. For values much smaller than unity nothing will
change qualitatively due to the gap in the spectrum of the
Hubbard star Hamiltonian (12). However, at tR/t = O(1) there
will be a crossover from a condensate with Nmax(N ) ∝ N to
Nmax(N ) ∝ √

N (see Refs. [19,20]).
Our results also reveal an interesting link between BEC and

entanglement: The maximum possible condensate concentra-
tion for HCB on a lattice L, or on a sublattice LA, occurs for
states with zero entanglement. This observation adds a new
facet to BEC by building a bridge to quantum information
theory. Moreover, in the same context, our paper could be
understood as a first step towards addressing the famous
and fundamentally important one-body N -representability
problem [35] for HCB: Calculating all constraints on the one-
particle picture emerging from the mixed HCB commutation
relations could lead to new insights into, e.g., quantum phase
transitions in systems of HCB.
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APPENDIX A: PROOF OF THEOREM 1

We consider the expectation value of the occupancy,
N (ϕ)(|�〉), of |ϕ〉 [Eq. (6)] given that the system of N HCB is
in the state |�〉 [Eq. (1)]. We derive a compact expression for
this quantity:

N (ϕ)(|�〉) ≡ 〈�|b†ϕbϕ|�〉

=
∑
i, j

A∗
i A j

d∑
k,l=1

ckc
∗
l 〈i |b†kbl| j〉

=
∑
i, j

A∗
i A j

∑
k∈i,l∈ j

ckc
∗
l 〈i |b†kbl| j〉

=
∑
i, j

A∗
i A j

∑
k∈i,l∈ j

ckc
∗
l δi\{k}, j\{l}

=
∑

i ′

d∑
k,l=1

A∗
i ′∪{k}Ai ′∪{l}ckc

∗
l

=
∑

i ′

(
d∑

k=1

A∗
i ′∪{k}ck

) (
d∑

l=1

Ai ′∪{l}c∗
l

)

=
∑

i ′
|〈 �A(i ′),�c 〉|2. (A1)

In line 4, δ denotes the Kronecker delta. The prime should
indicate that i ′ is a configuration of (N − 1) HCB (in contrast
to i being a configuration of N HCB). The union i ′ ∪ {k}
then means to add a boson in the state |k〉 to the configuration
i ′. For k ∈ i ′ we have i ′ ∪ {k} = i ′ (not allowing for double
occupancies) and we therefore define Ai ′∪{k} = 0 whenever
k ∈ i ′. In the last line we introduced the compact notation
�c ≡ (ck)dk=1, �A(i ′) ≡ (Ai ′∪{k})dk=1, with the kth component,
( �A(i ′))k ≡ 0 whenever k ∈ i ′, and 〈·,·〉 denotes the standard
inner product on d-dimensional complex space. Hence, the
expression (A1) for the one-particle quantity N (ϕ)(|�〉) is the
squared projection of the vector �c (which characterizes the
one-particle state |ϕ〉) onto the vector �A(i ′), summed over all
configurations i ′ of (N − 1) HCB on d sites.

Since N (ϕ)(|�〉) is a polynomial of degree 4 in {Ai }, {ck}
the corresponding Euler-Lagrange equations are cubic and
therefore possibly too difficult to solve analytically. Instead, we
choose an elegant approach avoiding any variational equation.
This will be achieved by expressing the inner product in the
last line of Eq. (A1) in two different ways:

〈 �A(i ′),�c 〉 = 〈
(Ai ′∪{k})dk=1,(χk �∈i ′ck)dk=1

〉
,

= 〈
(Ai ′∪{k}ck)dk=1,(χk �∈i ′)dk=1

〉
, (A2)

where χk �∈i ′ = 1 if k �∈ i ′ and zero otherwise. Application of
the Cauchy-Schwarz inequality in the spirit of the first line of
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Eq. (A2) yields for Eq. (A1)

N (ϕ)(|�〉) =
∑

i ′

∣∣〈 �A(i ′),(χk �∈i ′ck)dk=1

〉∣∣2

�
∑

i ′
| �A(i ′)|2 ∣∣(χk �∈i ′ck)dk=1

∣∣2

=
∑

i ′

(
d∑

l=1

|Ai ′∪{l}|2
) ∑

k �∈i ′
|ck |2

=
d∑

l=1

∑
i�l

|Ai |2
∑

k �∈(i\{l})
|ck |2

=
∑

i

|Ai |2
∑
l∈i

∑
k �∈(i\{l})

|ck |2

=
∑

i

|Ai |2
∑
l∈i

⎛
⎝∑

k �∈i

|ck |2 + |cl |2
⎞
⎠

=
∑

i

|Ai |2
⎡
⎣N

∑
k �∈i

|ck |2 +
∑
l∈i

|cl |2
⎤
⎦

= 1 + (N − 1)
∑

i

|Ai |2
∑
k �∈i

|ck |2. (A3)

In the fourth line,
∑

i�l denotes the sum over those config-
urations i of N HCB which contain the site index l and i ′
can be written as i \ {l}. In the last line we have first used
the normalization of |ϕ〉 and then of |�〉. Application of the
Cauchy-Schwarz inequality in the spirit of the second line of
Eq. (8) yields for Eq. (7)

N (ϕ)(|�〉) =
∑

i ′

∣∣〈(Ai ′∪{k}ck)dk=1,(χk �∈i ′ )dk=1

〉∣∣2

�
∑

i ′

∣∣(Ai ′∪{k}ck)dk=1

∣∣2 ∣∣(χk �∈i ′)dk=1

∣∣2

= (d − N + 1)
∑

i

|Ai |2
∑
k∈i

|ck |2

= (d − N + 1) − (d − N + 1)
∑

i

|Ai |2
∑
k �∈i

|ck |2.

(A4)

In the third line, we have used |(χk �∈i ′)dk=1|2 = d − N + 1 for
all i ′ and for k �∈ i ′ we introduced i = i ′ ∪ {k}. In the fourth
line, we have first used the normalization of |ϕ〉 and then of
|�〉.

The pleasant surprise is that the term
∑

i |Ai |2
∑

k �∈i |ck |2
appears in the final result of estimates (A3) and (A4) with
different signs. By considering the specific linear combination
(d − N + 1)(A3) + (N − 1)(A4) of estimates (A3) and (A4)
it cancels out:

(d − N + 1) N (ϕ)(|�〉) + (N − 1) N (ϕ)(|�〉)
� (d − N + 1) + (d − N + 1)(N − 1)

= N (d − N + 1). (A5)

Eventually, this leads to

N (ϕ)(|�〉) � N

d
(d − N + 1). (A6)

This upper bound on N (ϕ)(|�〉) can be attained only by
those N -HCB states |�〉 and one-particle states |ϕ〉 for which
the vectors �A(i ′), (χk �∈i ′ck)dk=1 and (Ai ′∪{k}ck)dk=1, (χk �∈i ′)dk=1,
respectively, are parallel for all i ′. For the case of ck ∈ R+

0 ,∀k,

this can be achieved only for ck ≡ 1√
d

and Ai ≡ 1/

√
( d

N
).

The case of arbitrary ck phases, ck = eiφk |ck|, can be derived
from the result of zero phases by redefining the lattice site
states, |k〉 → eiφk |k〉. This implies Ai → eiφi Ai with φi ≡∑N

m=1 φim , which completes the proof.

APPENDIX B: A GENERALIZED THEOREM AND ITS
PROOF

From a practical viewpoint, particularly for macroscopi-
cally large lattice systems L, the concept of a subsystem plays
an important role and a natural question arises: What is the
maximal possible occupation number that one can find within
a subsystem LA of dA < d sites? The answer to this important
question is given by the following theorem.

Theorem 2. For N hard-core bosons on a lattice L of d sites
the maximum possible occupation number that can be found
within a sublattice LA of dA sites is given by

N (LA)
max ≡ max

N−
A �NA�N+

A

[
N (NA,dA)

max

]
, (B1)

where N−
A = max (0,N − (d − dA)), N+

A = min (N,dA) and
Nmax is given by Eq. (3). Only one-particle states |ϕ(LA)

max 〉
unbiased with respect to the lattice states {|j 〉}j∈LA

of the
sublattice LA allow for such an occupancy. Any maximizer
state |�(LA)

max 〉 has the form∣∣�(LA)
max

〉 = SN [|�max〉A ⊗ |N − NA〉B], (B2)

where NA is the particle number maximizing Eq. (B1),
|�max〉A is the maximizer state for NA HCB on the sublattice
LA of dA sites according to Theorem 1, |N − NA〉B is an
arbitrary state of N − NA HCB on the complementary lattice
L \ LA, and SN denotes the symmetrizing operator for N

particles.
Let us label the d lattice sites of the total lattice L such

that the sites 1,2, . . . ,dA belong to the sublattice LA. The sites
of its complementary lattice LB ≡ L \ LA are then labeled by
dA + 1, . . . ,d. The one-particle Hilbert space H1(L) for the
total lattice splits according to

H1(L) = H1(LA) ⊕ H1(LB) (B3)

since any one-particle quantum state |ϕ〉 ∈ H1(L) is expressed
in a unique way as |ϕ〉 = ∑dA

k=1 ck|k〉 + ∑d
k=dA+1 ck|k〉. This

structure of the one-particle Hilbert space implies that the
corresponding HCB Fock space F (HCB) over H1(L) has the
following structure:

F (HCB) ∼= F (HCB)
A ⊗ F (HCB)

B , (B4)

where F (HCB)
A/B denote the respective HCB Fock spaces over

H1(LA/B). The isomorphism (B4) is rather elementary. It is
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given by

b
†
j1

· . . . · b
†
jN

|0〉 ↔
⎛
⎝ ∏

ji�dA

b
†
ji
|0〉A

⎞
⎠ ⊗

⎛
⎝ ∏

ji>dA

b
†
ji
|0〉B

⎞
⎠,

(B5)

for all N = 0,1, . . . ,d, and for all sets of different j1, . . . ,jN ∈
{1,2, . . . ,d}, where we used again second quantization and
introduced the vacuum states for F (HCB) (|0〉), F (HCB)

A (|0〉A),
and F (HCB)

B (|0〉B).
We use in the following the expansion

|ϕ〉 =
dA∑

k=1

ck|k〉 (B6)

and

|�〉 =
∑

i

Ai |i〉 =
∑
iA,iB

AiA∪iB
|iA ∪ iB〉. (B7)

Here, the sum
∑

i contains all configurations of N HCB on d

sites. The sums
∑

iA
and

∑
iB

denote sums over configurations
within the lattice LA and LB , respectively. Since the latter two
sums are not restricted to a fixed particle number we need to
define AiA∪iB

≡ 0 whenever iA ∪ iB is not a configuration of
N HCB. We can now begin to calculate the corresponding
particle number expectation value:

N (ϕ)(|�〉) ≡ 〈�|b†ϕbϕ|�〉 = TrF (HCB) [b†ϕbϕ|�〉〈�|]
= TrF (HCB)

A
[b†ϕbϕρA], (B8)

where we introduced the mode-reduced density operator, ρA ≡
TrF (HCB)

B
[|�〉〈�|], for subsystem LA and made use of the fact

that |ϕ〉 contains only lattice sites of system LA. Since the
state |�〉 for the total system has fixed particle number, the
reduced state ρA is block-diagonal with respect to the different
particle number sectors. By introducing the operator P̂

(NA)
A

projecting F (HCB)
A onto the subspace of fixed particle number

NA we have ρA = ∑N
NA=0 P̂

(NA)
A ρAP̂

(NA)
A . Depending on the

concrete values of N,d, and dA it is possible to further restrict
this sum since not all particle numbers NA between zero and
N are possible on LA. For instance, for the case N = d − 1
and dA = d − 1 only particle numbers NA = N − 1,N are
possible. In general, the sum can be restricted to the minimal
(N−

A ) and maximal possible particle number (N+
A ) following as

N−
A = max (0,N − (d − dA)), N+

A = min (N,dA). (B9)

Consequently, we can express ρA as

ρA =
N+

A∑
NA=N−

A

q(NA)ρ
(NA)
A , (B10)

where the state ρ
(NA)
A has particle number NA and is trace

normalized to 1. Hence, we have

q(NA) ≡ TrF (HCB)
A

[
P̂

(NA)
A ρAP̂

(NA)
A

]
=

∑
|iA|=NA

∑
|iB |=N−NA

|AiA∪iB
|2, (B11)

where
∑

|iA|=NA
denotes the sum over all configurations iA

on LA with particle number |iA| = NA (and analogously∑
|iB |=NB

). In principle, one could also restrict the trace over

F (HCB)
A

in Eq. (B11) to the particle number sector with NA

particles. Plugging in the expression (B10) in Eq. (B8) yields

N (ϕ)(|�〉) =
N+

A∑
NA=N−

A

q(NA)TrF (HCB)
A

[
b†ϕbϕρ

(NA)
A

]
. (B12)

The crucial point is now that N (ϕ)(|�〉) is a convex com-
bination (indeed we have q(NA) � 0 and

∑
NA

q(NA) = 1)
of the (non-negative) particle number expectation values
TrF (HCB)

A
[b†ϕbϕρ

(NA)
A ] and that all ρ

(NA)
A are independent in

the sense that each configuration iA ∪ iB in Eq. (B7)
contributes to exactly one ρ

(NA)
A . Hence, the maximum of

N (ϕ)(|�〉) is obtained by maximizing each expectation value
TrF (HCB)

A
[b†ϕbϕρ

(NA)
A ] separately and then picking the largest one

(by choosing all other weights q(NA) equal to zero). The first
part of this task is already done: According to Theorem 1,
TrF (HCB)

A
[b†ϕbϕρ

(NA)
A ] attains its maximum N (NA,dA)

max when the
one-particle state |ϕ〉 ∈ H1(LA) � H1(L) [recall Eq. (B6)] is
unbiased with respect to the lattice site states {|k〉}dA

k=1 and when
the corresponding state ρ

(NA)
A is pure, ρ(NA)

A = |�〉A A〈�|, with
|�〉A given by Eq. (4). Consequently, the maximal possible
particle number expectation value within the lattice LA is
given by

N (LA)
max ≡ max

N−
A �NA�N+

A

[
N (NA,dA)

max

]
, (B13)

where N±
A are given by Eq. (B9). The total maximizer state

(B7) takes the form∣∣�(LA)
max

〉 = SN [|�max〉A ⊗ |N − NA〉B], (B14)

where NA is the particle number maximizing Eq. (B13),
|N − NA〉B is any arbitrary state of N − NA HCB on the com-
plementary lattice L \ LA, and SN denotes the symmetrizing
operator for N particles.

Theorem 2, particularly the form (B2) of the maximizer
state, shows that a locally (i.e., within LA) maximal possible
occupation number requires that the mode-reduced density
operator ρB of the complementary system LB ≡ L \ LA is
pure, i.e., its entanglement entropy is minimal (zero). This
suggests that the entanglement entropy of the complementary
system is reciprocally related to the largest occupation number
within LA.
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