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In conventional superconductors, very narrow superconducting-fluctuation regions are observed above Tc,
because strong overlap of Cooper pairs occurs in a coherence volume 4πξ 3/3 with ξ being the coherence
length. In the bulk form of iron-chalcogenide superconductor FeSe, it is argued that the system may be located
in the crossover region from Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC), where strong
superconducting fluctuations are expected. In this respect, we carried out magnetization, specific heat, and Nernst
effect measurements on FeSe single crystals in order to investigate the superconducting fluctuation effect near Tc.
The temperature range of diamagnetization induced by superconducting fluctuations seems very narrow above
Tc. The temperature-dependent magnetization curves measured at different magnetic fields do not cross at a
single point. This is in sharp contrast to the situation in many cuprate superconductors, where such a crossing
point has been taken as a clear signature of strong critical fluctuations. The magnetization data can be scaled
according to the Ginzburg-Landau fluctuation theory for a quasi-two-dimensional system. However the scaling
result cannot be described by the theoretical function of the fluctuation theory due to the limited fluctuation
regions. The specific heat jump near Tc is rather sharp without the trace of strong superconducting fluctuations.
This is also supported by the Nernst effect measurements which indicate a very narrow region for vortex motion
above Tc. Associated with a very small value of Ginzburg number and further analyses, we conclude that the
superconducting fluctuations are vanishingly weak above Tc in this material. Our results are strongly against
the picture of significant phase fluctuations in FeSe single crystals, although the system has a very limited
overlap of Cooper pairs in the coherence volume. This dichotomy provides new insights into the superconducting
mechanism when the system is with a dilute superfluid density.
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I. INTRODUCTION

In iron-pnictide/chalcogenide superconductors, the well-
accepted pairing symmetry is the spin-fluctuation mediated
nodeless s± model, i.e., the superconducting gap changes
sign between the hole and electron pockets [1,2]. In most
systems, both structural and magnetic phase transitions appear
in the temperature-doping (T -x) phase diagram. In addition,
the antiferromagnetic (AFM) phase with an orthorhombic
structure and a nematic electronic state can even coexist with
the superconducting phase in the underdoped region in many
systems [3,4]. Among iron-based superconductors, tetragonal
FeSe has the simplest structure and its superconducting
transition temperature Tc is about 9 K [5]. Surprisingly, only
the structural transition from tetragonal to orthorhombic was
observed at Ts ≈ 90 K in bulk FeSe without any trace of
antiferromagnetic transition. Below Ts a significant electronic
anisotropy is induced [6]. Fermi surfaces revealed by angle re-
solved photoemission spectroscopy and quantum oscillations
[7–12] indicate the presence of hole and electron pockets with
probably a strong nondegeneracy of the dxz and dyz orbitals.
This leads to the breaking of the fourfold symmetry in the
orthorhombic phase below Ts . Regarding the very shallow
band top or bottom, it was argued that the Fermi energy is quite
small and the effective charge carrier density in the material is
very dilute. On the other hand, the superconducting transition
temperature of FeSe can be easily enhanced to about 38 K

*huanyang@nju.edu.cn
†hhwen@nju.edu.cn

at a pressure of 6 GPa, and there is also a pressure-induced
magnetic transition dome in a wide pressure range [13,14].
Stripe-type spin fluctuations, which are almost independent of
pressure, have also been observed below Ts , reconciling FeSe
with other iron-based superconductors [15]. Furthermore,
another interesting issue for superconductivity in FeSe is
about the exact structure of superconducting gap, which is still
under debate. The V-shaped tunneling spectra was observed
near zero bias by earlier scanning tunneling spectroscopy
(STS) measurements on FeSe film [6], which was argued
as the evidence of a d-wave superconducting gap. This was
corroborated by STS measurements on FeSe single crystals,
and the tiny fully gapped states near the Fermi level were
ascribed to the effect of the twin boundaries [16]. However, the
nodeless gap feature is supported by the thermal conductivity
[17] and specific heat measurements [18,19]. Recently, a pair
of nodeless sign-reversal gaps with extremely high anisotropy
has been detected with very detailed Bogoliubov quasipar-
ticle interference analysis based on the STS measurements
[20].

In a conventional superconductor, the superconducting
pairing and condensation occur simultaneously at Tc, and
the superconducting-fluctuation (SCF) region is very limited
above Tc. This is because a great number of Cooper pairs
lie within the coherence volume 4πξ 3/3, where ξ represents
the coherence length. In other words, Cooper pairs strongly
overlap with each other in space. Actually the Cooper pairs in
the coherence volume 4πξ 3/3 in conventional superconduc-
tors can be understood as highly entangled states of thousands
of Cooper pairs. In high-Tc cuprate superconductors, however,
SCFs have been shown to be quite strong. It is argued that large
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Nernst signal or diamagnetic magnetization far above Tc is a
proof of the existence of strong phase fluctuations of preformed
Cooper pairs above Tc [21]. However in another different view,
some electronic order may compete with superconductivity
above irreversible field or temperature [22], which leads to the
Nernst signal [23] or diamagnetic magnetization [24] above Tc .
The temperature range of SCFs in iron-based superconductors
seem not so wide [25–30] except in CsFe2As2 [31]. Recently,
it is suggested that SCFs may be very strong in FeSe single
crystals because of the vicinity to the Bose-Einstein conden-
sate (BEC) and Bardeen-Cooper-Schrieffer (BCS) crossover
region of the material [32,33]. This recommends a picture of
preformed Cooper pairs with phase incoherence far above Tc

in FeSe.
In this work, we carry out careful measurements using

multiple tools on FeSe single crystals, allowing us to get
further information about the SCF effect above Tc. We observe
BCS mean-field-like SCFs in a rather narrow temperature
range in this material, which is similar to the situation in
other iron-based superconductors, such as optimally doped
Ba1−xKxFe2As2 (BaK122). This may be attributed to the very
small Ginzburg number in this family of superconductors.
However, when counting the conduction electrons in the
coherence volume, we indeed find that the density of the
Cooper pairs in real space is much diluted, near the BCS-BEC
crossover region.

II. EXPERIMENTAL TECHNIQUES

High-quality FeSe single crystals were grown by chemical
vapor transport method with the eutectic mix of KCl and AlCl3
as the transport agent [34]. Fe1.04Se polycrystals were grown
as the starting materials by solid state reaction. The mixture
of Fe1.04Se, KCl, and AlCl3 (molar ratio 1:2:4) was put into
the bottom of a quartz ampoule, and the quartz ampoule was
sealed under vacuum. The quartz ampoule was then placed
into a horizontal tube furnace and heated up to 430 ◦C. After
keeping temperature for 30 hours to melt the transport agent,
we create a temperature gradient by lowing the temperature of
the end of the ampoule without reactant down to 370 ◦C. We
then kept sintering the sample with this temperature gradient
for six weeks, and FeSe single crystals with tetragonal structure
were obtained at the colder end of the ampoule.

The resistivity measurements were carried out in a Quantum
Design physical property measurement system (PPMS) by
conventional four-probe method at different fields. The mag-
netization was measured by a Quantum Design SQUID-VSM,
and the magnetic field was always applied in parallel to the
c axis of the sample in the measurements. We measured the
specific heat by using a thermal-relaxation method which was
an option of PPMS. The Nernst effect was measured by the
one-heater-two-thermometer technique on a homemade setup
attached to PPMS; a temperature gradient along the length
direction was established by a heater and the temperature
difference was measured by a pair of type-E thermocouples.
The transverse voltage of the Nernst signal is measured at
a magnetic field perpendicular to the thermal current in the
ab plane, and the data were taken with both positive and
negative fields to reduce the interference of thermopower
signal which is field symmetric.

FIG. 1. (a) Temperature dependence of resistivity at zero mag-
netic field. The inset shows the temperature dependence of magne-
tization measured in ZFC and FC modes at 20 Oe. (b) Temperature
dependent resistivity measured at magnetic fields of 0, 8, 12, and 16 T.
(c) Temperature dependence of excess conductivity at 0 T calculated
by the data in (b).

III. RESULTS

A. Magnetization and analysis near Tc

The inset of Fig. 1(a) shows the temperature dependence of
zero-field-cooled (ZFC) and field-cooled (FC) magnetization
measured at 20 Oe. The bulk superconducting transition
temperature Tc ≈ 8.7 K is determined from the onset of the
magnetization transition from the enlarged view near Tc. The
temperature dependence of resistivity ρ(T ) at zero magnetic
field is shown in Fig. 1(a). A kink can be clearly identified
at Ts ≈ 87.4 K which is caused by the structural transition
from tetragonal to orthorhombic phase, or the establishment of
the nematic state. The superconducting transition temperature
T onset

c is about 8.8 K determined in Fig. 1(b) using the usual
crossing method, and zero resistivity occurs at T 0

c = 8.3 K with
a transition width of about 0.5 K. The residual resistivity ratio
RRR = ρ(300 K)/ρ(0 K) is about 24. The zero temperature
resistivity ρ(0 K) is determined through a linear fit to the low-
temperature data between 10 and 14 K. The resistivity curves
measured at finite magnetic fields exhibit a clear enhancement
compared to that measured at zero field, and the magne-
toresistance defined as MR = [ρ(16 T) − ρ(0 T)]/ρ(0 T) is
about 43% at 10 K. This MR value is much smaller than the
ones from previous work [32,33]. However it should be noted
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FIG. 2. (a) Temperature dependence of mass magnetization mea-
sured at different fields. The open and solid symbols are the data
measured with ZFC and FC modes, respectively. The black solid lines
are the fitting curves by using Curie-Weiss law. (b) The enlarged view
of the magnetization data at 7 T and the definitions of characteristic
temperatures at characteristic magnetic fields. (c) The μ0H -T vortex
phase diagram of FeSe from the magnetization measurements. The
solid squares represent the experimental data of μ0Hc2(T ). The solid
blue line is a linear fit to the upper critical field μ0Hc2(T ) near Tc.

that the huge magnetoresistance in previous reports [32,33] is
followed by an insulatinglike upturn in the low-temperature
region. This giant MR observed in other work suggests that
some exotic physics may be involved here, for example it is
more or less similar to the pressure induced resistance upturn
associated with some magnetic ordering [13,14] or due to the
quantum oscillation effect, and the density of states shows a
significant decreasing under the magnetic field. The excess
conductivity is defined as �σ = 1/ρ(T ) − 1/ρn(T ) with ρn

the linear extrapolation of the normal-state resistivity, which
may be caused by the existence of residual Cooper pairs above
the bulk Tc. A large excess conductivity is usually regarded
as the mark of SCFs. The calculated excess conductivity from
Fig. 1(b) is shown in Fig. 1(c), and the upper limit temperature
of the SCF region seems to be less than 11 K. It should be noted
that temperature dependent normal-state resistivity of FeSe is

TABLE I. The parameters derived from fitting to the M-T data
in Fig. 2(a) by using Curie-Weiss law as Eq. (1).

μ0H (T) M0 (emu/g) C0 (emu K/g) Tθ (K)

0.5 0.13 0.11 17.17
1 0.17 0.15 8.34
2 0.23 0.19 0.10
3 0.35 0.25 1.21
4 0.46 0.35 2.48
5 0.58 0.45 3.47
6 0.70 0.55 4.91
7 0.77 2.20 24.67

more complex than a straight line, and the upper temperature
limit of the excess conductivity is dependent on the fitting
temperature range. It is very difficult to define the SCF region
from resistive measurement, thus we measure magnetization
in the temperature region near Tc to check how strong the SCFs
are in the material.

Figure 2(a) depicts the temperature-dependent magneti-
zation curves measured with ZFC and FC modes at strong
magnetic fields. A large positive magnetization background is
observed for each field in the normal state, which may smear
the weak diamagnetization arising from the SCFs. The positive
magnetization background in the normal state originates from
paramagnetic impurities and Pauli paramagnetism of the
conduction electrons, which is supported by the monotonically
increase of M with decreasing temperature above Tc. In order
to get the net contribution from possible SCFs, we fit the ZFC
magnetization data in the normal state by the Curie-Weiss law
as

M = M0 + C0/(T + Tθ ), (1)

where M0,C0, and Tθ are the fitting parameters. The first term
M0 in Eq. (1) represents mainly the Pauli paramagnetization
part contributed by conduction electrons. The second term
C0/(T + Tθ ) is contributed by the magnetic moments in the
sample, where Tθ denotes the Curie temperature. The fitting
parameters at various fields are shown in Table I.

The fitting curves are shown by solid lines in Fig. 2(a). One
can see that the Curie-Weiss law describes the experimental
data quite well in the normal state. The deviation point
between the magnetization curve and the fitting curve is
defined as an onset temperature T onset

c,M at which the upper
critical field μ0Hc2 equals to the applied magnetic field. A
particular case for 7 T is shown as an enlarged view in
Fig. 2(b). Although there is an uncertainty in defining the
very onset temperature T onset

c,M , one can see that the allowed
region of temperature is quite narrow (about ±1 K). We can
also determine the irreversible temperature Tirr by taking
the separation point of ZFC and FC magnetization curves,
and at that temperature μ0Hirr = 7 T in Fig. 2(b). It should
be noted that there is a kink in the magnetization curves
between T onset

c,M and Tirr , which is marked as T ∗ and is also
field dependent. The characteristic temperature T ∗ may be
caused by some unknown vortex phase transition in the vortex
liquid region, and it needs further experimental investigation.
We leave the discussion on T ∗ to a separate study. The
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μ0H -T phase diagram of FeSe shown in Fig. 2(c) displays the
temperature-dependent behavior of μ0Hc2 and μ0Hirr . One
can find that the vortex liquid region in the phase diagram
is not so wide. The almost linear temperature-dependent
μ0Hc2 near Tc gives rise to a slope dμ0Hc2/dT = −2.85 T/K
near Tc, and the calculated μ0Hc2(0) at zero temperature by
the Werthamer-Helfand-Hohenberg (WHH) formula [35], i.e.,
μ0Hc2(0) = 0.69Tc|dμ0Hc2/dT |Tc

is about 15.7 T. This is
consistent with a previous report [32]. The coherence length at
zero temperature ξ0 can be obtained according to the formula
μ0Hc2(0) = �0/(2πξ 2

0 ) with �0 the magnetic flux quantum.
Considering ξ0 = h̄vF /(π�0) approximately in a plain s-wave
superconductor (vF the Fermi wave velocity and �0 the gap
at T = 0) and Fermi energy EF = m∗v2

F /2, the effective mass
can be estimated by

m∗ = 4h̄2

π�0

μ0Hc2(0)EF

�2
0

. (2)

The gap maximum from the STS measurements [20] is
2.3 meV for the hole pocket around the 	 point and 1.5 meV
for the electron pocket around the M point. In addition with
EF for different bands [11], we can obtain m∗ = 2.5me for δ

branch of the hole pocket, and m∗ = 3.0me for γ branch of the
electron pocket, with me the free electron mass. The estimated
values are comparable with 4.3me and 7.2me for these selected
branches of the Fermi cylinders with maximal cross sections
from Shubnikov-de Haas oscillation measurements [11]. The
acceptable difference of effective mass from two different
methods may be related to the characters of multiband
and highly anisotropic superconducting gaps in FeSe. We
emphasize that, from our magnetization data and analysis,
the SCF region is quite limited. For example, at a field of 7 T,
the upper limit temperature for SCFs is only about 7 K.

In order to investigate the SCFs in FeSe, Ginzburg-Landau
fluctuation theory is used to analyze the diamagnetic signal
near Tc. Since the normal state has a background of magneti-
zation, we need to subtract this part from the total signal. The
magnetization Mdia arising from superconductivity (including
SCFs) shown in Fig. 3(a) are obtained by subtracting the
fitted paramagnetic background (Curie-Weiss term) from the
measured magnetization. One can see that Mdia approaches
to zero just above Tc, which indicates that SCFs are very
weak. Usually a common crossing point or a small crossing
area appears on the set of M-T curves at different magnetic
fields in a superconductor with strong SCFs, which can be
well described by quasi-two-dimensional (quasi-2D) or three-
dimensional (3D) lowest Landau level (LLL) scaling formula
based on Ginzburg-Landau (GL) theory [36]. This has been
well studied in cuprate superconductors [37,38]. However, we
find that the Mdia(T ) curves in our present sample separate
from each other, showing no crossing point or area expected
by the GL-LLL scaling theory. Although this situation suggests
that the scaling theory fails in this system, we still try to scale
the Mdia-T curves by following the scaling law to obtain further
comprehension. By using a nonperturbative approach to the
GL free energy function for a quasi-2D system, the M(T )
curves can be scaled by

M/(T μ0H )0.5 = Cf

{
A[T − Tc(μ0H )]√

T μ0H

}
, (3)

FIG. 3. (a) Temperature dependence of diamagnetic magneti-
zation Mdia at different fields obtained by subtracting the fitted
background by Eq. (1) from the experimental data. (b) Scaling curves
from (a) by using the Ginzburg-Landau fluctuation theory for a
quasi-2D system. The solid line is the expected scaling function of
the quasi-2D scaling theory.

where

f (x) = x −
√

x2 + 2, (4)

and the field-dependent Tc is expressed as

Tc(μ0H ) = Tc0 − μ0H

(
dμ0Hc2

dT

)−1

. (5)

Here Tc0,dμ0Hc2/dT ,A, and C in Eqs. (3) and (5) are the
scaling parameters. The parameter A is dependent on the
GL parameter κ and |dμ0Hc2/dT |Tc

, and C is inversely
proportional to κ . In addition both A and C are independent
of H or T . The quasi-2D scaling curves at different fields in
FeSe are shown in Fig. 3(b), where Mdia/(T μ0H )0.5 is scaled
as a function of [T − Tc(μ0H )]/(T μ0H )0.5. Surprisingly, the
quasi-2D fluctuation scaling law works well on the data
measured from 1 T to 5 T although there is no crossing point for
the Mdia-T curves. The data at 6 and 7 T show clear deviation
from the scaling (not shown here). The parameters Tc0 and
dμ0Hc2/dT obtained from the scaling process are 8.12 K and
−2.13 T/K, respectively, which are comparable to the values
obtained from the resistive and magnetization measurements.
We have also tried the 3D GL fluctuation scaling, which does
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not work on the data. The absence of crossing point in Mdia-T
curves and the nice quasi-2D fluctuation scaling behavior
seem contradictory in this material. However, as shown in
Fig. 3(b), the scaled curves deviate from the scaling function
of Eq. (4). The difference between the scaling curves and the
required scaling function is more pronounced in the fluctuation
region, and the scaled curves show much narrower SCF region
compared with the quasi-2D scaling function shown by the
pink solid line here. Therefore, the scaling behavior in FeSe
cannot be described by the GL-LLL scaling theory, which
is consistent with the absence of the crossing point in the
diamagnetic magnetization curves.

B. BCS mean-field-like transition detected
by specific heat measurement

Specific heat is a useful tool to detect SCFs near Tc.
Figure 4(a) shows the specific heat as a function of temperature

Δ

θ

Δ Δ

Δ

γ β η 4

γ

FIG. 4. (a) Temperature-dependent specific heat measured at
0 T. The red solid line is the normal state fitting curve. The
inset shows the enlarged view of the specific heat jump near
Tc, and �C/Tc is estimated by entropy conservation near Tc.
(b) Temperature dependence of superconducting electronic specific
heat. The transition temperature T SH

c from specific heat jump
estimated by entropy conservation as show in (b) or the inset in
(a) is about 8 K. The blue line represents the fitting curve using the
BCS formula. The inset shows the angle-dependent gap functions
used in the fitting.

at 0 T. As we can see from the enlarged view in the inset
of Fig. 4(a), there is a sharp jump in �C/Tc near the
superconducting transition. The specific heat jump estimated
by entropy conservation yields the ratio �C/γnTc = 1.46,
which is close to 1.43 predicted by BCS theory in the
weak coupling regime. In order to obtain the superconducting
electronic specific heat, we fit the data above Tc by Cn/T =
γn + βT 2 + ηT 4, where γn is the normal-state electronic part,
and βT 2 + ηT 4 is the phonon contribution by Debye model
in low-temperature region. The fitting result is shown by the
red solid line in Fig. 4(a); the parameters obtained from the
fit are γn = 6.7 mJ mol−1 K−2,β = 0.41 mJ mol−1 K−4, and
η = 3.4 × 10−4 mJ mol−1 K−6. Temperature dependence of
superconducting electronic specific heat obtained by the equa-
tion γsc = Csc/T = (C − Cn)/T is shown in Fig. 4(b), and
then we fitted the data by BCS formula. The superconducting
electronic specific heat γsc for an anisotropic superconducting
gap can be expressed as

γsc = 4N (EF )

kBT 3

∫ +∞

0

∫ 2π

0

eζ/kBT

(1 + eζ/kBT )2

×
[
ε2 + �2(θ,T ) − T

2

d�2(θ,T )

dT

]
dθ dε, (6)

where ζ =
√

ε2 + �2(T ,θ ). A linear combination of two com-
ponents with different gaps, namely, γsc = xγsc1(�s) + (1 −
x)γsc2(�es), is used to describe the experimental data as a pre-
vious report [39]. The gap functions we used are an s-wave �s

and an extended nodeless s-wave �es = �0
es(1 + α cos 2θ ).

A set of fitting parameters we choose for the experimental
data are �s(0) = 1.33 meV, �0

es(0) = 1.13 meV, x = 0.2, and
α = 0.78. The angle dependent gap functions used for the
fitting are shown in the inset of Fig. 4(b), and the fitting curve
is shown as the solid curve in Fig. 4(b) with a very sharp
transition at T SH

c = 8 K. We should notice that it is difficult to
obtain the precise gap structure by fitting the data in Fig. 4(a)
due to the lack of data measured at extremely low temperatures.
The feature near 1 K on the fitting curve is lack of experimental
data support. The gap symmetry is very sensitive to the low
temperature data, and such will be presented in a separate
publication [19]. Here the fitting curve can be regarded as
a guide line which satisfies the entropy conservation. Other
gap functions [19,39] will have very little influence on the
shape of the specific jump of the fitting curve near Tc. One can
clearly see that the temperature range of SCFs illustrated by the
extending tail of γsc above T SH

c is very narrow, and the highest
fluctuation temperature can only be extended to about 9 K. This
value is quite close to the onset transition temperatures from the
transport and magnetization measurements. Hence the specific
heat data near the superconducting transition can be well
described by BCS mean-field approach, which confirms the
narrow fluctuation region in FeSe.

In the framework of BCS-Eliashberg mean-field theory,
the formation and condensation of Cooper pairs take place at
the same temperature Tc [40]. However, if phase fluctuations
are too strong, the Cooper pairs may preform at a temperature
T ∗ higher than the Cooper-pair condensation temperature Tc,
hence there will be a wide temperature range of residual
superconductivity between Tc and T ∗ [41]. The difference
between the two theories mentioned above can be easily
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distinguished by the shape of the specific heat curve near Tc

[42]. In the ideal BCS mean-field case, a second-order phase
transition takes place at Tc, which leads to a very sharp jump
in specific heat. In the system with moderate SCFs, a λ-shaped
transition of specific heat coefficient will be observed, i.e.,
the high-temperature end point T ∗ is a bit away from Tc. If the
SCFs are strong enough, temperature difference between the
real-space pairing and the bulk superconductivity governed by
BEC is very large. The specific heat decreases smoothly from
Tc to T ∗, and the shape of the specific heat data is similar to
the one in the λ transition of 4He from a normal fluid to a
superfluid near 2.17 K [43]. As we can see from the data in
FeSe, the specific heat data shows only a very small tail above
T SH

c , which can be described quite well by the BCS mean-field
transition and is very different from the picture of BEC.

C. Narrow SCF region verified by Nernst effect

The vortices in the flux-flow state of a superconductor carry
entropy within and nearby the vortex core, and they will move
from the hot end to the cold one of the sample with temperature
gradient. Transverse Nernst signal is sensitive to the vortex
motion when the magnetic field is applied perpendicular to the
thermal current. The field (or temperature) dependent Nernst
signal Sxy = Ey/∂xT at some fixed temperature (or field)
dominated by vortex motion is usually humplike. It means that
Sxy starts from zero when the vortices start moving and reaches
its maximum at some magnetic field (or temperature). Sxy then
decreases with increasing magnetic field (or temperature) and
finally disappears in the normal state. Thus the Nernst signal in
the flux flow region and at a fixed temperature can be written
as Sxy ∝ H (1 − H/Hc2) [44]. The Nernst signal may have a
small tail above bulk Tc or Hc2 because of the SCFs [45].
However, in cuprates, it was found that the Nernst signal has a
humplike field dependence in a very wide temperature range
above Tc, which is regarded as strong SCFs [21].

We measure the Nernst effect to detect the SCFs in FeSe.
The field-dependent curves of Nernst signal Sxy at different
temperatures above 7 K are presented in Fig. 5(a). One can
find that Sxy is almost proportional to the magnetic field with a
very weak contribution from a quadratic and even higher-order
field terms. In a single-band metal, the Nernst coefficient
νxy = Sxy/μ0H is very small because of the cancellation
effect between the thermal and the coulomb contributions
[45]. However, the value of νxy in FeSe seems very large
even if compared with the typical multiband material NbSe2

[46]. The almost linear field-dependent Nernst signal with
a slight positive curvature above Tc is obviously from the
normal-state properties, such as the biparity motion of electron
and holelike charge carriers. Even when the temperature
decreases just below Tc, there is no obvious hump feature or
negative second derivative originated from the vortex motion.
The Nernst signal measurements are usually carried out at high
vacuum to measure the exact value of the temperature gradient.
However the lowest temperature of the sample with heating
power is only about 6.5 K in our homemade measurement
system in PPMS. We add some exchange helium gas to the
measurement chamber to lower down the temperature when
measuring the Nernst signal at lower temperatures. In this case,
we cannot measure the exact temperature gradient. We plot the

μ

FIG. 5. (a) Field-dependent Nernst signal Sxy at different temper-
atures above 7 K. (b) Field dependence of Nernst transverse voltage
Vxy at different temperatures with tiny exchange helium gas to lower
down the base temperature of the sample.

measured Nernst voltage Vxy in Fig. 5(b), and the relatively
larger voltage noise is caused by temperature fluctuations from
the exchange gas. The same heating power is applied for
Vxy measurements at temperatures from 5.2 to 8.3 K with an
overlapped temperature range as the exact Sxy measurements.
Since the temperature range is only 3 K in Vxy measurements,
we can regard the temperature gradient as a constant in these
measurements.

The temperature dependent Nernst coefficient νxy and
amplified Vxy measured with exchange gas are shown in Fig. 6.
One can see that the Nernst coefficient has a huge hump
with maximum value as large as 0.9 μV K−1 T−1 below and
near the structural transition temperature Ts . Similar data have
been measured on the parent compounds of iron pnictides
with both structural transition and spin-density-wave (SDW)
transition [47–49]. Such a large Nernst signal with a humplike
temperature dependence are quite often observed below the
SDW transition temperature, so it is suggested that the SDW
order or SDW fluctuation may enhance the Nernst coefficient
[30]. However, there is only structural transition in FeSe
without any magnetic order in the sample at zero pressure
[15]. One of the explanations for the huge Nernst coefficient
is some possible spin fluctuations in FeSe which is too weak
to be observed on the sample. It should be noted that the
Hall coefficient in all these materials with huge Nernst peaks
seems very small and even has a sign change with increasing
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μ (

FIG. 6. Temperature dependence of the Nernst coefficient at
different fields. The filled symbols represent the data obtained by
the field-dependent Nernst signal. The open triangles are Nernst
coefficients measured at 4 T and different temperatures. Nernst
voltage values measured with some exchange helium gas are shown as
open circles with the arbitrary unit, i.e., the Vxy values are multiplied
by a necessary factor to make the data have a smooth connection to
the Nernst signal Sxy measured at the same field and temperature.
The inset shows the enlarged view of the Nernst coefficient at low
temperatures and 8 T.

temperature. Therefore, another possibility of the huge Nernst
signal may come from the almost balanced hole and electron
pockets [46]; the drastic change of the Nernst signal near
Ts may be induced by the change of Fermi surface near the
structural transition.

The Nernst coefficient exhibits a small enhancement with
decreasing temperature below Tc. At the lowest measured
temperature (5.2 K), the Nernst signal is zero below 4 T, and
then it ramps up at higher fields, as shown in Fig. 4(b). At about
6 to 7 T, the curve shows a negative curvature and merges into
the background of the normal state. A similar situation occurs
for the data at temperatures up to 6.4 K, while the threshold
of magnetic field for flux flow now becomes much smaller.
This phenomenon is regarded as the typical feature of vortex
flow on top of a large background signal, although we did not
obtain the peak of the Nernst signal in the whole region. A
peak associated with flux flow is absent, because the Nernst
signal arising from vortex motion is much weaker than the
normal-state background. Hence the Nernst coefficient shown
in Fig. 6 from the vortices become negligible near and above
Tc, which is consistent with the conclusion from the field
dependent Nernst signal. The Nernst effect measured in FeSe
is similar to the situation in Fe1+yTe0.6Se0.4 where SCFs are
very weak and the amplitude of the peak of the Nernst signal
from the vortices is also very small [27]. In electron doped
cuprates, one also sees a very similar situation, i.e., the Nernst
signal with a very small peak structure appears on top of a large
background due to biparity contributions [50]. One explanation
for this very small Nernst signal is that the vortices in FeSe or
Te doped FeSe may carry very little entropy, together with the
fact that the vortex liquid region is very small. In any case, we
can conclude that no vortex motion induced Nernst signal is
observed above Tc.

D. Revisit the calculation of the Ginzburg number

SCFs in a superconductor can be described approximately
by the GL theory, and the magnitude of SCFs can be
characterized by the Ginzburg number [51]

Gi = (
kBTc/μ0H

2
c εξ 3

)2
/2. (7)

Here the thermodynamic critical field μ0Hc = μ0Hc2/(
√

2κ).
The upper critical field μ0Hc2 is obtained by extrapolating the
linear part of μ0Hc2(T ) near Tc and calculated [52] by using
the WHH formula μ0Hc2(0) = −0.69Tc[dμ0Hc2(T )/dT ]Tc

,
instead of using the measured value of μ0Hc2(0). The
anisotropy parameter ε ≡ √

m∗
ab/m∗

c = H
‖c
c2 /H

‖ab

c2 is usually
smaller than 1. Considering the relationship between Hc2

and ξ , i.e., ξ = √
φ0/2πμ0Hc2, the Ginzburg number Gi

calculated in the SI unit reads

Gi = 1.7 × 10−11T 2
c κ4/(μ0Hc2ε

2). (8)

Here the coefficient and all the parameters are in SI units. It
should be noted that the original calculation in Ref. 48 has
some mistakes in using the value of μ0 in cgs units, therefore
the exact value of the frequently discussed Gi should be
multiplied by a factor of (4π )2. Because of this error, in high-
Tc cuprate superconductors, the mistakenly used Ginzburg
number is supposed to be Gi ≈ 10−3 ∼ 10−1, while the
value is extremely small (Gi ≈ 10−8 ∼ 10−6) in conventional
superconductors [51]. However, as just mentioned, the real
values of Gi should be multiplied by (4π )2, which enhances Gi

two orders of magnitude larger than the previously widely used
ones. We want to emphasize that, in order to have a meaningful
discussion on the SCFs and their temperature range, Gi should
be much smaller than 1, but the calculated value of Gi in some
cuprates, like Bi2212, may be greater than 1. Although such a
large value of Gi is not meaningful, it may just suggest strong
fluctuations in the sample. In addition, the temperature range of
SCFs is determined simply by the Ginzburg number as GiTc

where Gi seems to be too small in the original calculation
[52]. For example, for YBa2Cu3O7−δ (YBCO), the calculated
Gi using the original formula is 0.00127, and the SCF region
will be only 0.11 K. This is unreasonable. Therefore a factor
of (4π )2 should be multiplied to the original formula, or the
correct form of calculating Gi is Eq. (8).

In the following, we roughly estimate on the values of
Gi and the SCF regions for different superconductors. We
present the typical superconducting parameters and calculated
Gi for Bi2Sr2CaCu2O8 (Bi2212) [53–55], YBCO [54–58],
MgB2 [54,55,59,60], Ba0.6K0.4Fe2As2 (BaK122) [55,61–64],
and FeSe [11,32,65] in Table II. The calculated Gi for BaK122
or FeSe are much smaller than those in Bi2212 or YBCO, but
comparable with the value in MgB2. Meanwhile it is claimed
that another calculation method for Gi in a 2D system is
to determine the ratio Tc/TF , and it is of the order of 10−1

in the BEC limit and 10−5 ∼ 10−4 for BCS superconductors
[66]. The calculated values of Tc/TF from EF in 2D cuprate
superconductors Bi2212 and YBCO are very small because of
the large Fermi energy; the value of FeSe is comparable with
the one in BaK122. This seems in conflict with the situation
that Bi2212 is a typical superconductor with very strong
SCFs, and people even argue that the superconductivity in
Bi2212 is governed by a BEC-like transition [42]. Actually

064501-7



YANG, CHEN, ZHU, XING, AND WEN PHYSICAL REVIEW B 96, 064501 (2017)

TABLE II. Characteristic superconducting parameters of
different superconductors.

Bi2212 YBCO MgB2 BaK122 FeSe

Tc (K) 95 91 39 38 8.2
μ0Hc2 (T) 177 180 4 180 16
κ 115 62 21 80 72
ε 0.02 0.24 0.5 0.5 0.55
Gi 380 2×10−1 5×10−3 2.2×10−2 6.4×10−3

Tc/TF 0.035 0.011 0.007 0.17 0.2
kF ξ 23 4 3
Vcohnpair 1 109 1.5×105 122 31

the strong SCFs in Bi2212 are more likely to be driven by the
strong anisotropy (or small ε). Therefore the ratio Tc/TF may
not be an appropriate parameter to determine the fluctuation
behavior of a superconductor. In addition, for a 3D system,
Gi is determined [66] by 80(Tc/TF )4, the value of Gi is
further lowered down. For iron-based superconductors, such
as FeSe and BaK122, it is closer to the 3D case, so a simple
estimation of Gi ≈ Tc/TF may cause problems. Furthermore,
for a system with multibands, if some bands have large Fermi
energies, while others have very small values, the superfluid
coming from the band with large Fermi energy may stabilize
the condensation and suppress the SCFs. Thus, a correct
way to estimate SCFs is to use Eq. (8). These arguments
may answer the question why SCFs in bulk FeSe are not
strong.

IV. DISCUSSION AND COUNTING ON THE
OVERLAPPED COOPER PAIRS

In the BCS theoretical picture, the Cooper pairing and
condensation occur simultaneously. In this framework, it is
meaningless to describe a Cooper pair in real space. One can
only say that many electrons form a highly entangled paired
state. The basic reason for that is the strong overlap between
Cooper pairs. Therefore in this model, tens of thousands of
Cooper pairs are overlapping each other. The product of the
Fermi vector kF and coherence length ξ , is a very good quantity
to estimate how strong the overlap is. The quantity kF ξ tells
roughly how much conduction electrons or Cooper pairs in one
coherence length. Thus this parameter is also used to define
the crossover from BCS to BEC [67] when kF ξ ≈ 1. kF ξ � 2π

corresponds to BCS-like superconductivity, while kF ξ � 1/π

corresponds to the BEC case. Taking the related quantities
from experiment, we find that both FeSe and BaK122 have the
value of kF ξ smaller than 2π according to the calculation of the
chemical potential, so they may be near the crossover region
from BCS to BEC but much closer to BCS [67]. To consider
the situation in the 3D case, the number of superconducting
electrons in unit coherent volume Vcohnpair can also be
used [68] to determine the different situations between BCS
and BEC. Here coherent volume Vcoh = 4πξ 2

abξc/3 for an
anisotropic superconductor, while npair = ns/2 is the density
of the superconducting electrons with opposite momentum
which can be paired with the selected one. Following the
above discussions, we expect Vcohnpair � 1 in the BCS case,

while Vcohnpair � 1 for the BEC limit [69]. The evolution from
BCS to BEC is accompanied with the significant reduction of
Vcohnpair. We replace ns with the charge carrier density of
the normal state n approximately, and the calculated Vcohnpair

for different superconductors are also listed in Table II. The
charge carrier density in FeSe is much larger than that in
Nb doped SrTiO3 [70] which is supposed to be a system
with the very dilute superfluid density, but the calculated
Vcohnpair is even much smaller than that in Nb doped SrTiO3.
Therefore it is reasonable to argue that the Cooper pairs in
the coherence volume Vcoh in FeSe are diluted. It should be
noted that the charge carrier density in unit coherent volume
is still one order of magnitude larger than 1 and is comparable
to the value in BaK122. From this issue, FeSe is not very
different from other iron-based superconductors, like BaK122.
Although Vcohnpair in BaK122 is close to that in YBCO, the
specific heat measurement [71] in BaK122 shows a clear BCS
mean-field-like transition, and the SCF region in BaK122 is
indeed very narrow as revealed by many different experimental
techniques. We can conclude that both FeSe and BaK122 are
far away from the BCS-BEC crossover region.

Here we have observed a rather narrow region of SCFs
in FeSe above Tc, which is different from previous reports
[32,33]. One main difference is in the M-T data. Kasahara
et al. observed a very weak diamagnetic signal within a wide
temperature range above the bulk Tc from the magnetization
curves under high magnetic fields, which seems absent in
our data. There is low-temperature upturn behavior in our
M-T data instead of the constant positive background in a
previous report [33]. The measured upturn behavior, which
can be well described by the Curie-Weiss law, is mainly caused
by paramagnetic impurities such as interstitial iron impurities.
One possible reason for the absence of strong SCFs in our
samples is that these paramagnetic impurities may suppress
SCFs by inducing pair breaking to the preformed Cooper
pairs above Tc. However, because the effective range of such
a single impurity is very short, which is within about 10 Å
in diameter as measured in Fe(SeTe) [72], and the distance
between these interstitial Fe impurities is quite large, we
think that such paramagnetic impurities are unlikely to act
as pair breakers to suppress strong SCFs. The relatively large
RRR value also supports that the scattering from the diluted
impurities is very weak. Furthermore, the very small residual
specific heat coefficient measured in the superconducting
state indicates that the pair breaking by impurities is very
weak [19]. Additionally, one may argue that the SCF signal
is buried in the upturn behavior of magnetic susceptibility
from the paramagnetic impurities above Tc. The paramagnetic
impurities are inevitable in a sample, however it should be
noted that the upturn of magnetic susceptibility in our sample
is very weak and can be well described by the Curie-Weiss
law. This suggests that SCFs, if they exist, would contribute
a negligible signal above Tc. Clearly, more data from samples
of different groups are required to verify the SCFs from
magnetization measurements. However, based on our specific
heat and Nernst data and thoughtful analysis mentioned
above, we conclude that the SCF region in FeSe above Tc

is quite narrow. This indicates that even for a superconducting
system with diluted Cooper pairs in the coherence volume,
the SCFs are still very limited and the superconducting
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transition is still governed by the BCS mean-field-like
transition.

V. CONCLUSION

In conclusion, our magnetization, specific heat, and Nernst
effect studies all point to very weak superconducting fluctu-
ations and a narrow SCF region above Tc in FeSe. A revised
calculation of the Ginzburg number Gi using the standard
method shows that Gi is rather small in bulk FeSe and close
to other iron-based superconductors, such as BaK122. This
explains our observation of a very narrow SCF region in
bulk FeSe. The number of Cooper pairs (about 31) in the
coherent volume is two or three orders of magnitude lower
than that of a typical conventional superconductor, however

the superconducting transition in FeSe is still governed by
a BCS mean-field-like critical transition. Theoretically, it is
highly desired to understand why such theory still holds for su-
perconducting systems with the dilute density of Cooper pairs.
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[36] Z. Tešanović, L. Xing, L. Bulaevskii, Q. Li, and M. Suenaga,
Phys. Rev. Lett. 69, 3563 (1992).

[37] H. Gao, C. Ren, L. Shan, Y. Wang, Y. Z. Zhang, S. P. Zhao, X.
Yao, and H. H. Wen, Phys. Rev. B 74, 020505(R) (2006).

[38] H. H. Wen, W. L. Yang, Z. X. Zhao, and Y. M. Ni, Phys. Rev.
Lett. 82, 410 (1999).

[39] J. Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons,
and H. D. Yang, Phys. Rev. B 84, 220507(R) (2011).

[40] V. J. Emery and S. A. Kivelson, Nature (London) 374, 434
(1995).

[41] H. H. Wen, G. Mu, H. Q. Luo, H. Yang, L. Shan, C. Ren,
P. Cheng, J. Yan, and L. Fang, Phys. Rev. Lett. 103, 067002
(2009).

[42] A. Junod, A. Erb, and C. Renner, Physica C 317, 333 (1999).
[43] M. J. Buckingham, Prog. Low Temp. Phys. 3, 80 (1961).
[44] K. Maki, Physica 55, 124 (1971).
[45] K. Behnia and H. Aubin, Rep. Prog. Phys. 79, 046502 (2016).
[46] R. Bel, K. Behnia, and H. Berger, Phys. Rev. Lett. 91, 066602

(2003).
[47] Q. Tao, Z. W. Zhu, X. Lin, G. H. Cao, Z. A. Xu, G. F. Chen,

J. L. Luo, and N. L. Wang, J. Phys.: Condens. Matter 22, 072201
(2010).

[48] M. Matusiak, Z. Bukowski, and J. Karpinski, Phys. Rev. B 81,
020510(R) (2010).

[49] M. Matusiak, Z. Bukowski, and J. Karpinski, Phys. Rev. B 83,
224505 (2011).

[50] P. C. Li and R. L. Greene, Phys. Rev. B 76, 174512 (2007).
[51] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,

and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[52] C. J. Lobb, Phys. Rev. B 36, 3930 (1987).
[53] Qiang Li, K. Shibutani, M. Suenaga, I. Shigaki, and R. Ogawa,

Phys. Rev. B 48, 9877 (1993).
[54] G. P. Malik, J. Supercond. Nov. Magn. 29, 2755 (2016).
[55] I. Pallecchi, M. Tropeano, G. Lamura, M. Pani, M. Palombo, A.

Palenzona, and M. Putti, Physica C 482, 68 (2012).
[56] T. P. Orlando, K. A. Delin, S. Foner, E. J. McNiff, Jr., J. M.

Tarascon, L. H. Greene, W. R. McKinnon, and G. W. Hull,
Phys. Rev. B 36, 2394(R) (1987).

[57] P. P. Nguyen, Z. H. Wang, A. M. Rao, M. S. Dresselhaus,
J. S. Moodera, G. Dresselhaus, H. B. Radousky, R. S. Glass, and
J. Z. Liu, Phys. Rev. B 48, 1148 (1993).

[58] P. Zimmermann, H. Keller, S. L. Lee, I. M. Savic, M. Warden,
D. Zech, R. Cubitt, E. M. Forgan, E. Kaldis, J. Karpinski, and
C. Krüger, Phys. Rev. B 52, 541 (1995).

[59] C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115
(2001).

[60] A. D. Caplin, Y. Bugoslavsky, L. F. Cohen, L. Cowey, J. Driscoll,
J. Moore, and G. K. Perkins, Supercond. Sci. Technol. 16, 176
(2002).

[61] H. Yang, H. Luo, Z. Wang, and H. H. Wen, Appl. Phys. Lett. 93,
142506 (2008).

[62] C. Ren, Z. S. Wang, H. Q. Luo, H. Yang, L. Shan, and H. H.
Wen, Physica C 469, 599 (2009).

[63] C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E.
Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen,
and D. C. Larbalestier, Phys. Rev. B 84, 184522 (2011).

[64] H. Ding, K. Nakayama, P. Richard, S. Souma, T. Sato, T.
Takahashi, M. Neupane, Y. M. Xu, Z. H. Pan, A. V. Federov, Z.
Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang,
J. Phys.: Condens. Matter, 23, 135701 (2008).

[65] M. Abdel-Hafiez, J. Ge, A. N. Vasiliev, D. A. Chareev, J. Van
de Vondel, V. V. Moshchalkov, and A. V. Silhanek, Phys. Rev.
B 88, 174512 (2013).

[66] A. I. Larkin and A. A. Varlamov, arXiv:cond-mat/0109177.
[67] F. Pistolesi and G. C. Strinati, Phys. Rev. B 49, 6356 (1994).
[68] D. van der Marel, J. L. M. van Mechelen, and I. I. Mazin,

Phys. Rev. B 84, 205111 (2011).
[69] Y. J. Uemura, Physica C 282-287, 194 (1997).
[70] X. Lin, Z. W. Zhu, B. Fauqué, and K. Behnia, Phys. Rev. X 3,

021002 (2013).
[71] J. G. Storey, J. W. Loram, J. R. Cooper, Z. Bukowski, and J.

Karpinski, Phys. Rev. B 88, 144502 (2013).
[72] J. X. Yin, Z. Wu, J. H. Wang, Z. Y. Ye, J. Gong, X. Y. Hou, L.

Shan, A. Li, X. J. Liang, X. X. Wu, J. Li, C. S. Ting, Z. Q. Wang,
J. P. Hu, P. H. Hor, H. Ding, and S. H. Pan, Nat. Phys. 11, 543
(2015).

064501-10

https://doi.org/10.1088/0953-2048/29/7/073002
https://doi.org/10.1088/0953-2048/29/7/073002
https://doi.org/10.1088/0953-2048/29/7/073002
https://doi.org/10.1088/0953-2048/29/7/073002
https://doi.org/10.1103/PhysRevB.93.224516
https://doi.org/10.1103/PhysRevB.93.224516
https://doi.org/10.1103/PhysRevB.93.224516
https://doi.org/10.1103/PhysRevB.93.224516
https://doi.org/10.1073/pnas.1413477111
https://doi.org/10.1073/pnas.1413477111
https://doi.org/10.1073/pnas.1413477111
https://doi.org/10.1073/pnas.1413477111
https://doi.org/10.1038/ncomms12843
https://doi.org/10.1038/ncomms12843
https://doi.org/10.1038/ncomms12843
https://doi.org/10.1038/ncomms12843
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1103/PhysRevB.87.180505
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.1103/PhysRev.147.295
https://doi.org/10.1103/PhysRevLett.69.3563
https://doi.org/10.1103/PhysRevLett.69.3563
https://doi.org/10.1103/PhysRevLett.69.3563
https://doi.org/10.1103/PhysRevLett.69.3563
https://doi.org/10.1103/PhysRevB.74.020505
https://doi.org/10.1103/PhysRevB.74.020505
https://doi.org/10.1103/PhysRevB.74.020505
https://doi.org/10.1103/PhysRevB.74.020505
https://doi.org/10.1103/PhysRevLett.82.410
https://doi.org/10.1103/PhysRevLett.82.410
https://doi.org/10.1103/PhysRevLett.82.410
https://doi.org/10.1103/PhysRevLett.82.410
https://doi.org/10.1103/PhysRevB.84.220507
https://doi.org/10.1103/PhysRevB.84.220507
https://doi.org/10.1103/PhysRevB.84.220507
https://doi.org/10.1103/PhysRevB.84.220507
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1103/PhysRevLett.103.067002
https://doi.org/10.1103/PhysRevLett.103.067002
https://doi.org/10.1103/PhysRevLett.103.067002
https://doi.org/10.1103/PhysRevLett.103.067002
https://doi.org/10.1016/S0921-4534(99)00077-5
https://doi.org/10.1016/S0921-4534(99)00077-5
https://doi.org/10.1016/S0921-4534(99)00077-5
https://doi.org/10.1016/S0921-4534(99)00077-5
https://doi.org/10.1016/S0079-6417(08)60134-1
https://doi.org/10.1016/S0079-6417(08)60134-1
https://doi.org/10.1016/S0079-6417(08)60134-1
https://doi.org/10.1016/S0079-6417(08)60134-1
https://doi.org/10.1016/0031-8914(71)90247-3
https://doi.org/10.1016/0031-8914(71)90247-3
https://doi.org/10.1016/0031-8914(71)90247-3
https://doi.org/10.1016/0031-8914(71)90247-3
https://doi.org/10.1088/0034-4885/79/4/046502
https://doi.org/10.1088/0034-4885/79/4/046502
https://doi.org/10.1088/0034-4885/79/4/046502
https://doi.org/10.1088/0034-4885/79/4/046502
https://doi.org/10.1103/PhysRevLett.91.066602
https://doi.org/10.1103/PhysRevLett.91.066602
https://doi.org/10.1103/PhysRevLett.91.066602
https://doi.org/10.1103/PhysRevLett.91.066602
https://doi.org/10.1088/0953-8984/22/7/072201
https://doi.org/10.1088/0953-8984/22/7/072201
https://doi.org/10.1088/0953-8984/22/7/072201
https://doi.org/10.1088/0953-8984/22/7/072201
https://doi.org/10.1103/PhysRevB.81.020510
https://doi.org/10.1103/PhysRevB.81.020510
https://doi.org/10.1103/PhysRevB.81.020510
https://doi.org/10.1103/PhysRevB.81.020510
https://doi.org/10.1103/PhysRevB.83.224505
https://doi.org/10.1103/PhysRevB.83.224505
https://doi.org/10.1103/PhysRevB.83.224505
https://doi.org/10.1103/PhysRevB.83.224505
https://doi.org/10.1103/PhysRevB.76.174512
https://doi.org/10.1103/PhysRevB.76.174512
https://doi.org/10.1103/PhysRevB.76.174512
https://doi.org/10.1103/PhysRevB.76.174512
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/PhysRevB.36.3930
https://doi.org/10.1103/PhysRevB.36.3930
https://doi.org/10.1103/PhysRevB.36.3930
https://doi.org/10.1103/PhysRevB.36.3930
https://doi.org/10.1103/PhysRevB.48.9877
https://doi.org/10.1103/PhysRevB.48.9877
https://doi.org/10.1103/PhysRevB.48.9877
https://doi.org/10.1103/PhysRevB.48.9877
https://doi.org/10.1007/s10948-016-3637-5
https://doi.org/10.1007/s10948-016-3637-5
https://doi.org/10.1007/s10948-016-3637-5
https://doi.org/10.1007/s10948-016-3637-5
https://doi.org/10.1016/j.physc.2012.05.015
https://doi.org/10.1016/j.physc.2012.05.015
https://doi.org/10.1016/j.physc.2012.05.015
https://doi.org/10.1016/j.physc.2012.05.015
https://doi.org/10.1103/PhysRevB.36.2394
https://doi.org/10.1103/PhysRevB.36.2394
https://doi.org/10.1103/PhysRevB.36.2394
https://doi.org/10.1103/PhysRevB.36.2394
https://doi.org/10.1103/PhysRevB.48.1148
https://doi.org/10.1103/PhysRevB.48.1148
https://doi.org/10.1103/PhysRevB.48.1148
https://doi.org/10.1103/PhysRevB.48.1148
https://doi.org/10.1103/PhysRevB.52.541
https://doi.org/10.1103/PhysRevB.52.541
https://doi.org/10.1103/PhysRevB.52.541
https://doi.org/10.1103/PhysRevB.52.541
https://doi.org/10.1088/0953-2048/14/11/201
https://doi.org/10.1088/0953-2048/14/11/201
https://doi.org/10.1088/0953-2048/14/11/201
https://doi.org/10.1088/0953-2048/14/11/201
https://doi.org/10.1088/0953-2048/16/2/309
https://doi.org/10.1088/0953-2048/16/2/309
https://doi.org/10.1088/0953-2048/16/2/309
https://doi.org/10.1088/0953-2048/16/2/309
https://doi.org/10.1063/1.2996576
https://doi.org/10.1063/1.2996576
https://doi.org/10.1063/1.2996576
https://doi.org/10.1063/1.2996576
https://doi.org/10.1016/j.physc.2009.03.015
https://doi.org/10.1016/j.physc.2009.03.015
https://doi.org/10.1016/j.physc.2009.03.015
https://doi.org/10.1016/j.physc.2009.03.015
https://doi.org/10.1103/PhysRevB.84.184522
https://doi.org/10.1103/PhysRevB.84.184522
https://doi.org/10.1103/PhysRevB.84.184522
https://doi.org/10.1103/PhysRevB.84.184522
https://doi.org/10.1088/0953-8984/23/13/135701
https://doi.org/10.1088/0953-8984/23/13/135701
https://doi.org/10.1088/0953-8984/23/13/135701
https://doi.org/10.1088/0953-8984/23/13/135701
https://doi.org/10.1103/PhysRevB.88.174512
https://doi.org/10.1103/PhysRevB.88.174512
https://doi.org/10.1103/PhysRevB.88.174512
https://doi.org/10.1103/PhysRevB.88.174512
http://arxiv.org/abs/arXiv:cond-mat/0109177
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.84.205111
https://doi.org/10.1103/PhysRevB.84.205111
https://doi.org/10.1103/PhysRevB.84.205111
https://doi.org/10.1103/PhysRevB.84.205111
https://doi.org/10.1016/S0921-4534(97)00194-9
https://doi.org/10.1016/S0921-4534(97)00194-9
https://doi.org/10.1016/S0921-4534(97)00194-9
https://doi.org/10.1016/S0921-4534(97)00194-9
https://doi.org/10.1103/PhysRevX.3.021002
https://doi.org/10.1103/PhysRevX.3.021002
https://doi.org/10.1103/PhysRevX.3.021002
https://doi.org/10.1103/PhysRevX.3.021002
https://doi.org/10.1103/PhysRevB.88.144502
https://doi.org/10.1103/PhysRevB.88.144502
https://doi.org/10.1103/PhysRevB.88.144502
https://doi.org/10.1103/PhysRevB.88.144502
https://doi.org/10.1038/nphys3371
https://doi.org/10.1038/nphys3371
https://doi.org/10.1038/nphys3371
https://doi.org/10.1038/nphys3371



