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Nonadiabaticity in spin pumping under relaxation
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Using a minimum model consisting of a magnetic quantum dot and an electron lead, we investigate spin
pumping by its precessing magnetization. Focusing on the “adiabaticity,” which is quantified using a comparison
between the frequency of precession and the relaxation rate of the relevant system, we investigate the role of
nonadiabaticity in spin pumping by obtaining the dependence of the spin current generated on the frequency of
precession using full counting statistics. This evaluation shows that the steady-state population of the quantum
dot remains unchanged by the precession owing to the rotational symmetry about the axis of precession. This
implies that in the adiabatic limit the spin current is absent and that spin pumping is entirely a nonadiabatic
effect. We also find that the nonadiabatic spin current depends linearly on the frequency in the low-frequency
regime and exhibits an oscillation in the high-frequency regime. The oscillation points to an enhancement of spin
pumping by tuning the frequency of precession.
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I. INTRODUCTION

The generation of a spin-polarized electron current (spin
current) in a normal metal without a bias voltage is one of
the central issues in realizing spintronics applications [1,2].
Standard models used in analyzing spin current generation,
or so-called spin pumping, consists of two essential features:
(a) attaching a system such as a ferromagnet and/or a quantum
dot to a normal metal lead and (b) periodically modulating
parameter(s) of the composite system. Conventionally, the
models proposed in analyzing spin pumping fall roughly
into three classes: those using (i) the precession of the
magnetization in a ferromagnet attached to a normal metal lead
[3–12], (ii) the periodic modulation of parameters such as gate
voltages and tunneling amplitudes in a system that consists
of quantum dots attached to normal metal leads [13–18], and
(iii) the periodic modulation of the strength of magnetization
in addition to parameters in a system consisting of a quantum
dot attached to a ferromagnetic lead and a normal metal lead
[8,9,19]. Of these models, those using the precession of the
magnetization, model (i), have attracted intensive study as they
can generate pure spin currents without any associated charge
current. This is because of the conservation of charge in the
lead and a rotational symmetry about the axis of precession. In
this paper we focus on the advantages and benefits of model
(i). We briefly summarize these conventional studies.

Spin pumping has been mostly studied in situations where
the precession of the magnetization is sufficiently slow.
Referred as adiabatic spin pumping, it was first proposal
by Tserkovnyak et al. [3,4] based on the scattering theory
for adiabatic pumping given by Brouwer [20]. Later, Wang
et al. [5] derived an expression for the spin current with a
finite precession frequency using Green’s function techniques,
and they showed that the expression reduces to its adiabatic
expression, which in the low-frequency limit depends linearly
on the frequency. Recently, an expression for the spin current
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was derived from linear response theory [11,12,21]. In these
conventional investigations, the condition defining “adiabatic-
ity” assumes that the modulation frequency � associated with
the varying of the parameter (precession for spin pumping)
is sufficiently small compared with the characteristic energy
scale δE over which the stationary scattering matrix or Green’s
function changes significantly [22,23], i.e.,

� � δE

h̄
. (1)

However, there is an another widely used condition for
adiabaticity written

� � τ−1
R , (2)

which compares the modulation frequency with the relaxation
time of the relevant system τR [18,24–27]. Physically, as
for quasistatic processes in thermodynamics, the modulation
frequency needs to be sufficiently slow enabling the steady
state of the relevant system to follow it. If the steady-state
population of the relevant system explicitly depends on
the modulating parameter, a certain fraction of the observ-
able quantity is transferred through the system as a response
to the change in population of the relevant system by the
parameter modulation. By summing up the transferred quantity
over one modulation cycle, one may obtain a net amount
of pumped quantity under condition (2). Adiabatic pumping
under condition (2) was originally introduced by Sinitsyn
and Nemenman in Ref. [24], which presents a study of a
stochastic kinetic equation describing a chemically reactive
system. It has been extended to quantum systems [25] and
is used to study adiabatic pumping of an electron or energy
system that is subjected to the modulation of environmental
parameters [18,26,27]. In Ref. [18] it has also been used to
study adiabatic spin pumping under amplitude modulation
of a collinear magnetic field applied to both a quantum dot
and leads. To the best of our knowledge, spin pumping by
precession of the magnetization has not yet been explicitly
studied from the viewpoint of the adiabaticity condition in
regard to the relaxation time, Eq. (2). Because setting the
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relaxation time to infinity is impossible, it may be necessary to
evaluate the effect of its finiteness on spin pumping, as well.

The main purpose here is to investigate spin pumping in
situations where the relaxation time is comparable with or
shorter than the period of precession, i.e.,

� � τ−1
R . (3)

For this purpose we consider a minimum model [12] consisting
of a magnetic quantum dot attached to an electron lead
and analyze spin pumping by its precessing magnetization.
Using full counting statistics [28–30] with the quantum master
equation [18,26,27], we obtain a frequency dependence for
the spin current and an underlying electron dynamics. In the
formulation we take into account all contributions including
empty and completely filled states of the dot in the dynamics
as well as spin flips between half-filled states of the dot; in
conventional studies only the latter is considered [5,12]. We
find that all contributions are important for spin pumping.
With this formulation we can cover the range from the
low-frequency limit up to the order of the relaxation rate
τ−1
R . Surprisingly, we find that the steady-state population

of the quantum dot remains unchanged under precession in
contradistinction to that encountered in conventional studies
on the adiabatic limit, Eq. (2) [18,24–27]. This arises from
the rotational symmetry about the axis of precession of model
(i). We also find that population conservation leads to the
absence of a spin current in the adiabatic limit under condition
(2). This implies that spin pumping is entirely a nonadiabatic
effect when viewed from this perspective. Also we find that
the nonadiabatic spin current linearly depends on the frequency
in the low-frequency regime, and exhibits oscillations in the
high-frequency regime.

The paper is organized as follows: we introduce our
minimum model (Sec. II) and summarize the full counting
statistics (Sec. III A), using it to formulate spin pumping
(Sec. III B). We consider spin pumping in the adiabatic limit
(Sec. IV), and a numerically study of it (Sec. V) without using
the adiabatic approximation. In Sec. VI we provide discussions
and concluding remarks.

II. MODEL

With our spin pumping model of a ferromagnetic quantum
dot attached to an electron lead [5,12], the dot has a dynamic
magnetization M(t) that rotates around a fixed axis (labeled
z axis). An electron in the dot is spin polarized because
of the s-d exchange interaction with the magnetization, and
is represented by two-component creation and annihilation
operators d† = (d†

↑, d
†
↓) and d, where ↑ or ↓ represents the

spin polarization of the electron parallel or antiparallel to the
z axis.

The Hamiltonian of the model has three term H (t) =
Hd(t) + Hl + Ht. Here the term Hd(t) governing the dot is
defined by

Hd(t) = d†[εd − M(t) · σ ]d, (4)

where M(t) ≡ M[sin θ (t) cos φ(t), sin θ (t) sin φ(t), cos θ (t)]
and εd is the unpolarized energy of a quantum-dot electron.
Introducing the eigenstates |j↑,j↓〉 (with jσ = 0 or 1) of
the number operator of the dot

∑
σ d†

σ dσ as a basis, the dot

Hamiltonian Hd(t) is represented by matrix

|0,0〉 |0,1〉 |1,0〉 |1,1〉

Hd(t) =

⎛
⎜⎝

0 0 0 0
0 εd + M cos θ (t) −Me+iφ(t) sin θ (t) 0
0 −Me−iφ(t) sin θ (t) εd − M cos θ (t) 0
0 0 0 2εd

⎞
⎟⎠.

(5)

The electron lead is described by the term

Hl ≡
∑

σ=↑,↓

∑
k

εkc
†
σ,kcσ,k, (6)

where c
†
σ,k and cσ,k (σ =↑ or ↓) are the creation and

annihilation operators of the lead electrons which are treated
as free electrons with energy εk . The coupling between the dot
and the lead is assumed to be spin conserving,

Ht ≡
∑

σ=↑,↓

∑
k

h̄vk(d†
σ cσ,k + c

†
σ,kdσ ), (7)

where h̄vk is the dot-lead coupling strength, which we assume
to be weak.

III. FORMULATION

We define the spin current generated by a cyclic precession
of the magnetization using full counting statistics [30], a brief
summary of which is provided followed by its application in
formulating spin pumping.

A. Full counting statistics

Consider a Hamiltonian H = H0 + Hint with H0 ≡ HS +
HE describing a general interacting system composed of a
relevant system S and an environment E, and Hint describing
their interaction. The full counting statistics provides the time
evolution of the transfer of a quantity from the relevant system
to the environment using the difference between the outcomes
of the two point projection measurement of an observable of
the environment Q. Denoting the measurement outcomes of
Q at ti and t > ti as qti and qt , the net amount of the quantity
transferred is given by difference 	q ≡ qt − qti , where its sign
is chosen to be positive when the quantity is transferred from
S to E. The statistics of 	q is summarized in its probability
distribution function

Pt (	q) ≡
∑
qt ,qti

δ[	q − (qt − qti )]P [qt ,qti ], (8)

with joint probability to obtain outcomes qti and qt , succes-
sively,

P [qt ,qti ] ≡ Tr[Pqt
U (t,ti)Pqti

W (ti)Pqti
U †(t,ti)Pqt

], (9)

where Tr is the trace taken over the total system, Pqt
= |qt 〉〈qt |

signifies the projective measurement of Q at t , U (t,ti) is
the evolution operator of the total system, and W (ti) is the
initial condition of the total system. The cumulants of 	q are
provided by its cumulant generating function

St (λ) = ln
∫

Pt (	q)eiλ	qd	q, (10)
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where λ is the counting field associated with Q, e.g., the first
cumulant, the mean, is computed from

〈	q〉t = ∂St (λ)

∂(iλ)

∣∣∣∣
λ=0

. (11)

The full counting statistics provides a systematic pro-
cedure to obtain St (λ). Using the definitions (8) and
(9), and introducing the modified evolution operator
Uλ(t,ti) ≡ eiλQU (t,ti)e−iλQ as well as the notation W̄ (ti) ≡∑

qti
Pqti

W (ti)Pqti
, St (λ) is expressed as

St (λ) = ln TrS[ρ(λ)(t)], (12)

with

ρ(λ)(t) ≡ TrE[Uλ/2(t,ti)W̄ (ti)U−λ/2(t,ti)], (13)

where TrS and TrE are the partial traces taken over the system
and the environment, respectively. Note that for λ = 0, ρ(λ)

reduces to the reduced density matrix of the quantum dot
as ρ(0) = TrE[W (t)]. When the initial condition of the total
system is a factorized state W (ti) = ρ(ti) ⊗ ρ

eq
E , where ρ

eq
E is

the Gibbs state of the environment, the time evolution of ρ(λ)(t)
is described by

∂

∂t
ρ(λ)(t) = ξ (λ)(t)ρ(λ)(t), (14)

which is the time-convolutionless-type quantum master equa-
tion [31–34] that has been modified to include the counting
field [27]. Here ξ (λ)(t) is a superoperator that acts on the
density matrix ρ(λ)(t) and generates its time evolution. With
the Markovian approximation taken to second order in the
interaction Hint and the time dependence of the generator
omitted, its explicit form is then given by

ξ (λ)ρ ≡ 1

ih̄
[HS,ρ] − 1

h̄2

∫ ∞

0
dτTrE

[
Hint,

[
Hint(−τ ),ρ

⊗ ρ
eq
E

]
λ

]
λ
, (15)

where Hint(t) ≡ eiH0t/h̄Hinte
−iH0t/h̄ and [A,B]λ ≡ A(λ)B −

BA(−λ) with A(λ) ≡ eiλQ/2Ae−iλQ/2.
To work with the superoperator, it is convenient to introduce

its supermatrix representation, where we represent the density
matrix ρ(λ) in vector form and the superoperator ξ (λ) in matrix
form (see Appendix B). The formal solution of the master
equation (14) is expressed as

|ρ(λ)(t)〉〉 = exp[�(λ)(t − ti)]|ρ(λ)(ti)〉〉, (16)

where |ρ(λ)(t)〉〉 is the vector form of ρ(λ)(t) and �(λ) is a
supermatrix form of ξ (λ). The cumulant generating function
Eq. (12) is rewritten as St (λ) = ln〈〈1|ρ(λ)(t)〉〉, where 〈〈1|
is the trace operation acting to the right as 〈〈1|ρ(λ)(t)〉〉 =
Trd[ρ(0)(t)]. Hence, the first cumulant of 	q given by Eq. (11)
is rewritten as

〈	q〉t =
〈〈

1

∣∣∣∣
[

∂

∂(iλ)
ρ(λ)(t)

]
λ=0

〉〉
, (17)

where we have used the invariance of the trace 〈〈1|ρ(0)(t)〉〉 =
TrS[ρ(0)(t)] = 1. As 〈〈1|ρ(0)(t)〉〉 = 1, the state 〈〈1| is a left
eigenstate of �(0) with zero eigenvalue, i.e., 〈〈1|�(0) = 0.
Using it together with Eqs. (16) and (17), we derive a formula

for the mean of the transferred Q during the time interval
t − ti [27],

〈	q〉t =
∫ t

ti

dt ′〈〈1|
[
∂�(λ)

∂(iλ)

]
λ=0

|ρ(0)(t ′)〉〉. (18)

Its time derivative

J (t) ≡ d〈	q〉t
dt

= 〈〈1|
[
∂�(λ)

∂(iλ)

]
λ=0

|ρ(0)(t)〉〉 (19)

provides the flow of the quantity Q between the relevant system
and the environment. Conversely, the integration of J (t) over
a given time interval provides 〈	q〉t .

B. Spin current

Based on Eq. (18), we now formulate the spin current
generated by the cyclic precession of the magnetization
with period T . For the purpose, we consider the number
of electrons with spin σ (=↑ or ↓) in the lead, represented
by Nσ = ∑

k c
†
σ,kcσ,k , as the observable to be evaluated. We

associate Hd (t), Hl , and Ht with HS , HE , and Hint, respectively.
Moreover, we consider a steplike change in the direction of M
around the z axis: dividing the period T into N intervals,
ti � t ′ � ti+1 (i = 1, . . . ,N) with t1 = 0 and tN+1 = T , and
assume the time dependence of θ (t) and φ(t) to be

θ (t) = const., φ(t) =
(

1 +
⌊

t

δt

⌋)
δφ, (20)

where �x� ≡ max{n ∈ Z|n � x} is the floor function, δφ ≡
2π/N , and δt ≡ ti+1 − ti = T /N . Specifically, we fix the
direction of M during each interval ti � t ′ � ti+1, and change
φ discretely at each ti with substitution φi = φi−1 + δφ and
initialization φ0 = 0, where φi is the fixed angle during the ith
interval. Assuming that the density matrix for the total system
is factorized as W (ti) = ρ(ti) ⊗ ρ

eq
l at each ti , Eq. (18) yields

the number of transferred electron during the interval.
Denoting the sequential difference in counting outcomes of

Nσ from ti to ti+1 as 	nσ,i , and the counting field associated
with Nσ as λσ , the mean number of transferred electrons with
spin σ during the time interval is given by

〈	nσ,i〉 =
∫ ti+1

ti

dt ′〈〈1|
[

∂�
(λσ )
i

∂(iλσ )

]
λσ =0

|ρ(0)
i (t ′)〉〉, (21)

where �
(λσ )
i and |ρ(0)

i (t ′)〉〉 are, respectively, the generator and
the density matrix of the quantum dot in the interval. We also
introduce its time derivative

Jσ,i(t) ≡ d〈	nσ,i〉
dt

= 〈〈1|
[

∂�
(λσ )
i

∂(iλσ )

]
λσ =0

|ρ(0)
i (t)〉〉, (22)

for which the time integration provides the number of
transferred electrons. By summing 〈	nσ,i〉 over one cycle of
the precession, we have the total number of electrons with spin
σ transferred during the cycle,

〈	nσ 〉 =
N∑

i=1

〈	nσ,i〉. (23)
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With this expression for the number of electrons transferred,
we define the spin current as

I↑ ≡ 〈	n↑〉 − 〈	n↓〉
T . (24)

Here we have subtracted 〈	n↓〉 from 〈	n↑〉 in defining the
spin-up current because the net number of spin-down electrons
transferred from the dot to the lead reduces the net number of
spin-up electrons transferred.

IV. ADIABATIC LIMIT

We next consider spin pumping in the adiabatic limit subject
to condition (2) following the procedure by Sinitsyn and
Nemenman in Ref. [24]. We establish that the spin current
Eq. (24) vanishes in the adiabatic limit.

In Ref. [24] the adiabatic limit was assessed by dividing the
cycle of modulation into interval of duration δt(≡ T /N) and
assuming that the system quickly approaches its steady state
in each interval. Following a similar procedure, we divide
the cycle of precession into durations δt , which correspond
to the steplike changes in M(t) introduced in Sec. III B.
We evaluate the density matrix of the quantum dot during
interval ti � t � ti+1 by using the completeness relation for
the right and left eigenstates of �

(0)
i . Assuming that the system

quickly approaches its steady state, as in Ref. [24], we only
need the term corresponding to the steady state in the spectral
decomposition. Evaluating the density matrix up to first order
in δt , we find that the first order term in δt vanishes in our
model, implying that in the adiabatic limit the density matrix
becomes |ρ(0)

0 (t)〉〉 ≈ |u(0)
0 (ti)〉〉, where |u(0)

0 (ti)〉〉 is the steady
state satisfying �

(0)
i |u(0)

0 (ti)〉〉 = 0 (see Appendix D for details
of the approximation). For steady-state |u(0)

0 (ti)〉〉, we also find
that there is no electron transfer between dot and lead [see
Eq. (D6)]. Therefore, we have

〈	nσ,i〉 ≈
∫ ti+1

ti

dt ′〈〈1|
[

∂�
(λσ )
i

∂(iλσ )

]
λσ =0

|u(0)
0 (ti)〉〉 = 0, (25)

indicating that there is no net electron transfer in the interval
and hence no spin current is generated in the adiabatic limit.
We therefore need to analyze next nonadiabatic effects on spin
pumping by the precession of magnetization.

V. NUMERICAL EVALUATION OF NONADIABATIC
SPIN PUMPING

We present and discuss results of our numerical evaluation
of spin pumping beyond the adiabatic approximation. To
describe the dot-lead coupling, we use the Ohmic spectral
density with an exponential cutoff v(ω) ≡ ∑

k v2
k δ(ω − ωk) =

λω exp[−ω/ωc], where λ is the coupling strength and ωc

is the cutoff frequency. In numerical evaluations we set
λ = 0.05 and ωc = 4ωu with a unit angular frequency defined
as ωu ≡ 2M/h̄, which corresponds to the angular frequency
of the Rabi oscillation between states |0,1〉 and |1,0〉.

Introducing a unit energy εu ≡ h̄ωu = 2M and a unit time
tu ≡ 2π/ωu, we normalize angular frequency, energy, inverse
temperature, and time, and introduce the notation ω̄ ≡ ω/ωu,
ε̄ ≡ ε/εu, β̄ ≡ β/εu, and t̄ ≡ t/tu, respectively.

(a)

(b)

t̄

t̄

ρ11

ρ00

ρ01

ρ10

J↑−J↓

J↑

J↓

FIG. 1. (a) Time evolution of the populations and (b) time
dependence of the flows are plotted as functions of the normalized
time t̄ .

A. Static magnetization

Let us first analyze the electron and spin dynamics under
a static magnetization setting the polar angle of the magneti-
zation to θ = 3π/4 and its azimuthal angle to φ = 0. As an
initial condition, we set the dot in the Gibbs state

ρ(0) = e−βdHd/Z, Z = Trd[e−βdHd ], (26)

where βd is the effective inverse temperature of the dot. In
Fig. 1 we show the time evolution setting both the initial
effective temperature of dot and the lead temperature to 0,
that is, β−1

d = β−1
l = 0. This initial condition implies that the

dot is empty at t̄ = 0 because the lowest energy eigenstate of
the dot is |0,0〉 (Sec. II). We also set the chemical potential μ of
the lead and its inverse temperature βl to satisfy the conditions

εd − M < μ < εd + M and β−1
l � 2M. (27)

We chose parameter settings ε̄d = 10 for the unpolarized
energy of the dot and β̄−1

l = 0 is the temperature of the
lead, which satisfy conditions (27), and introduced μ̄10 for
the chemical potential of the lead.

In Fig. 1(a) we plot the time evolution of the populations
ρjj ′ (t) ≡ 〈j,j ′|ρ(t)|j,j ′〉 (ρ00: empty state, ρ10: half-filled
with ↑, ρ01: half-filled with ↓, and ρ11: completely filled).
Clearly the electrons are flowing into the dot during the initial
stage, but subsequently, within a certain time scale (relaxation
time), the populations approach their steady-state values,
where only the half-filled states ρ10 and ρ01 are populated. The
steady state corresponds to the state where a single electron
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with spin parallel to the magnetization M is in the quantum dot
[see ρ̃st

10 in (C3) in Appendix C]. The time evolution is physi-
cally reasonable because, for the initial distribution (26) with
the condition (27), a lead electron at the Fermi level may move
to an energy level of the dot located below the Fermi level,
which is the state with a single electron with spin parallel to M
[see Eq. (A3) in Appendix A], due to the dot-lead interaction
Ht to reduce the total energy of the composite system.

In Fig. 1(b) we also present the time evolution of the time
derivative of the transferred electron numbers J↑ (red line),
J↓ (blue line), and their difference J↑ − J↓ (black line). They
indicate the flow of electrons from dot to lead at each moment,
and in particular that more spin-↓ electrons flow into the dot
than spin-↑ electrons. These flows are consistent with ρ01 >

ρ10 from the time evolution of the populations [Fig. 1(a)].
Because J↑ > J↓, their difference takes positive values J↑ −
J↓ > 0 that decay with time. This indicates that a positive spin
current is generated in the lead because the time integration
of J↑ − J↓ provides the amount of spin current generated [see
Eq. (24)]. Note also that there is no electron current when
the system is in the steady state. This absence is analytically
proved in Appendix E.

We note that the condition (27) is essential for spin
pumping. This is because, if the condition is not satisfied,
either electrons are not transferring to the dot (as εd − M > μ)
or spin-↑ and spin-↓ electrons of equal amounts flow onto the
dot (for μ > εd + M). In both cases, we have J↑ − J↓ = 0,
and hence there is no spin current generation.

B. Precessing magnetization

1. Constant frequency

Consider now a quantum dot with a precessing magneti-
zation. Different from the above, we suppose that the dot is
initially in steady-state (C4) with setting θ = 3π/4 and φ = 0
as the starting point of a precessing magnetization instead of
the Gibbs state (26) to exclude any transient spin transfer in
the initial stage of the precession.

In Figs. 2(a) and 2(b) we show the time evolution of popu-
lations Jσ and J↑ − J↓ for the first two intervals. In the calcu-
lation, the number of divisions is set to N = 5 and the time in-
terval to δt̄ = 10. Therefore the change in angle at each subse-
quent ti is δφ = 2π/5, that is, φi = φi−1 + 2π/5 with φ0 = 0.

In Fig. 2(a) we find that initially the populations deviate
from their steady-state values by changing φ at ti , but then they
approach steady-state (C4) for each φi with the populations
remaining unchanged from their initial value because the
steady-state populations (C4) do not depend on φ. In Fig. 2 the
time evolution of the components ρ01 and ρ10 (blue and red
lines) exhibit oscillations caused by transitions between states
|0,1〉 and |1,0〉 in consequence of the applied magnetization.
Its period is given by the Rabi period between the two states
TR ≡ h̄/2M = tu.

The other two components ρ00 and ρ11 also show transient
behavior after changing φ. We present an amplification of
their time evolution [inset of Fig. 2(a)] where we find that ρ00

and ρ11 do not show Rabi oscillation. This is understandable
because the two states |0,0〉 and |1,1〉 do not contribute to the
time evolution under the magnetization [see Eq. (5)]. While
their values are small compared to ρ01 or ρ10, they definitely

ρ11

ρ00

ρ01

ρ10

ρ11

ρ00

J↑−J↓

J↑

J↓

(a)

(b)

t̄

t̄

FIG. 2. Time evolution of populations Jσ and J↑ − J↓ for the
first two intervals are plotted. The number of divisions of the period
is N = 5.

contribute to the electron transfer between dot and lead. This
is because the electron dynamics always involves a transfer
via ρ00 (or ρ11), which we can see from the generator for the
second order of the dot-lead interaction (15) [see also (B10)
in Appendix B].

In Fig. 2(b) the colored lines represent Jσ , and the black
line represents their difference J↑ − J↓ show that spin-↑
electrons (red line) and spin-↓ electrons (blue line) are moving
in opposite directions; the former move from dot to lead,
whereas the latter move from lead to dot. These trends show
that the quantities J↑ and J↓ are balanced as a result of
charge conservation in the lead. Their difference (black line) is
positive, J↑ − J↓ > 0, indicating that this positive spin current
is generated in the lead without an associated charge current.

Calculating the spin current for different values of θ , we
find that its spin polarization exhibits a θ dependence in that
for 0 < θ < π/2 the spin polarization of the spin current is
antiparallel to the z axis, whereas for π/2 < θ < π the spin
polarization is parallel to the z axis. This is because the relative
relationship between the energy levels of the states |0,1〉 and
|1,0〉 is interchanged; specifically, the energy level of |1,0〉 is
higher than that of |0,1〉 in the former case, whereas the order
of energies is the reverse in the latter case. As the population of
the lower level is larger than the other during the time evolution
(see Sec. V B 1), the spin polarization of the spin current is
exchanged with respect to θ .

2. Frequency dependence

Consider next the dependence of the spin current on the
frequency of precession � = 2π/T . Here we change the
period T = Nδt by varying the time interval δt while the
number of divisions remains fixed at N = 20. All other
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(A)

(B)

(C)

Ω̄

Ī↑

FIG. 3. Frequency dependence of the generated spin current. The
horizontal axis represents the normalized frequency of the magneti-
zation �̄ = �/ωu and the vertical axis represents the normalized spin
current Ī↑ = I↑/ωu.

parameters and initial conditions are set as before. The
dependence of the spin current on N is studied in Appendix E.

In Fig. 3 we plot the dependence of the generated spin
current I↑ against the normalized as �̄ ≡ �/ωu. We find that
the � dependence of the spin current features two regimes: a
low-frequency regime (up to �̄ ∼ 0.005), where I↑ depends
linearly on �, and a high-frequency regime, where I↑ oscillates
depending on �. In the following, we explain the origins of the
characteristics of the � dependence in the two regimes from
the electron dynamics.

Regarding the oscillation in the high-frequency regime
(Fig. 4), we plotted the time evolution of ρ01, ρ10, and
J↑ − J↓ at three different values of � as (a) �̄ = 0.0125, (b)
�̄ = 0.0110, and (c) �̄ = 0.0100 where the values are chosen

to satisfy (a) δt = 4TR , (b) δt = 4.5TR , and (c) δt = 5TR for
the Rabi period TR = 2π/ωu. We find that the spin current
takes maximum values for (a) and (c) and a minimum value
for (b) (see Fig. 3). In this regime, the time interval δt is
comparable with the relaxation time of the system, and hence
φ changes during the relaxation of the Rabi oscillation.

By comparing Figs. 4(a) and 4(c) with 4(b), we find that the
electron flow is enhanced by changing φ when δt is an integer
multiple of the Rabi period TR , and is suppressed when δt

is a half-integer multiple of TR . This arises because the φ

dependence of the off-diagonal components of Hd [Eq. (5)].
Since the components representing the transition from |0,1〉
to |1,0〉 and for the reverse direction contain exponentials
of φ with different signs, the change of φ enhances one of
these transition, and suppresses the remainder. In the present
case, the counterclockwise precession enhances the former
transition as one can see from the figures; ρ10 increases and
ρ01 decreases just after the change in φ. This suggests a means
to enhance spin pumping by changing φ in synchrony with the
Rabi oscillation as for Figs. 4(a) and 4(c).

Regarding the linear dependence of � in the low-frequency
regime, the time interval δt is sufficiently larger than the
relaxation time. Hence the populations have already reached
their steady-state values when φ is changed (see Fig. 2). In this
case, the net amount of spin generated during the ith interval

〈	n↑,i〉 − 〈	n↓,i〉 =
∫ ti+1

ti

dt[J↑,i(t) − J↓,i(t)] (28)

is a constant independent of the upper bound of the time
integration ti+1 because J↑,i(t) − J↓,i(t) has reached 0 at a
certain time t with t < ti+1. As the numerator in Eq. (24) is
constant, the spin current depends linearly on �,

I↑ = 〈	n↑〉 − 〈	n↓〉
2π

�. (29)

∼∼

t̄/T̄

t̄/T̄

∼∼

t̄/T̄

t̄/T̄

∼∼

(a) (b) (c)

t̄/T̄

t̄/T̄

ρ01

ρ10

FIG. 4. Three examples of the electron and spin dynamics in the high-frequency regime. The frequencies are (a) �̄ = 0.0125, (b) �̄ =
0.0110, and (c) �̄ = 0.0100. In each figure, the first five intervals are plotted. The horizontal axis has been normalized by the magnetization
period.
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VI. DISCUSSION AND CONCLUDING REMARKS

We have investigated spin pumping from the viewpoint
of the adiabaticity condition for relaxation time Eq. (2).
By formulating spin pumping using full counting statistics
with the quantum master equation approach, we studied the
frequency dependence of the spin current and the electron
dynamics underlying it. The main results are summarized as
follows: (i) the spin current vanishes in the adiabatic limit
with condition (2), which means that spin pumping is entirely
a nonadiabatic effect in the sense of the adiabaticity condition,
(ii) the nonadiabatic spin current oscillates depending on
the frequency in the high-frequency regime, reflecting the
competition between the transient Rabi oscillation of the
electron in the quantum dot and its relaxation time, and
(iii) the spin current depends linearly on the frequency in the
low-frequency regime.

The result (i) apparently contradicts that from conventional
studies, which derive adiabatic expressions for spin pumping
[3–5,11]. This stems from the difference between the adia-
baticity conditions (1) and (2). Unlike the former condition,
which solely requires the frequency to be small irrespective
of the relaxation rate, the latter condition strictly requires that
the relevant system is always in its steady state. Therefore,
the inference is that an adiabatic effect under the former
condition includes a nonadiabatic effect in the sense of the
latter condition.

As a finite relaxation time is essential to obtain result
(ii), the oscillation of the spin current has not been raised in
conventional studies. The result suggests a means to enhance
spin pumping by setting the frequency of precession in
synchrony with the Rabi frequency of the dot electron.

Whereas a linear dependence of spin pumping on the
frequency has been obtained in previous studies [3–5,11],
it cannot be simply compared with result (iii). This is
because conventional studies have focused on contributions
from spin flips between half-filled states ρ01 and ρ10. To
establish a clear relationship between these studies, we need
to investigate further corrections to the conventional linear
formula originating from contributions from the empty and
completely filled states ρ00 and ρ11. This remains a topic for
future investigation.

We note that the reliability of the result for the high-
frequency regime is restricted up to � ∼ τ−1

R , because in
the evaluation we have used the Markovian approximation in
obtaining Fig. 3. To study the regime beyond this restriction,
it is necessary to evaluate the counting statistics without the
Markovian approximation. Treatment of the non-Markovian
effect with the full counting statistics has been studied in
Ref. [35]. From this treatment, we are able to study a time
scale that is sufficiently shorter than the relaxation time, which
has been analyzed in conventional studies on spin pumping.
There we expect that a clear relationship can be established
between the two adiabaticity conditions (1) and (2). We also
note that our conclusion, the absence of spin pumping in the
adiabatic limit, is owing to the conservation of the steady-state
population of the quantum dot under the precession. The
condition may not be satisfied in a more complex quantum
system such as a magnetically anisotropic quantum dot [36],
thus a further study on the role of nonadiabaticity in such

a system is an interesting issue. These issues remain open
problems for future study.
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APPENDIX A: ROTATING FRAME

In Sec. II we introduced a representation of the quantum-
dot Hamiltonian taking as the quantization axis for spin the
z axis of the laboratory frame. We now introduce an another
representation of this Hamiltonian introducing a basis that
rotates with the magnetization M—i.e., the rotating frame. We
introduce creation and annihilation operators d̃

†
s and d̃s , where

s =↑M and ↓M represents the spin polarization of the electron
parallel and antiparallel, respectively, to M by(

d̃↑M

d̃↓M

)
=

(
cos θ(t)

2 e−iφ(t) sin θ(t)
2

e+iφ(t) sin θ(t)
2 − cos θ(t)

2

)(
d↑
d↓

)
,

(A1)

and their Hermitian conjugates d̃
†
↑M

and d̃
†
↓M

. Using these
operators, the quantum dot Hamiltonian is expressible in
diagonal form,

H̃d =
∑

s=↑M,↓M

εs d̃
†
s d̃s , (A2)

where the tilde over the Hamiltonian signifies the rotating-
frame representation ε↑M

= εd − M and ε↓M
= εd + M . In the

rotating frame, we use the eigenstates of
∑

s d̃
†
s d̃s , denoted by

|j̃↑M
,j̃↓M

〉 with j̃s = 0 or 1, as a basis, in which H̃d has matrix
representation

H̃d =

⎛
⎜⎝

0 0 0 0
0 εd + M 0 0
0 0 εd − M 0
0 0 0 2εd

⎞
⎟⎠. (A3)

We introduce the unitary transformation u(t) from Hd(t)
to H̃d,

H̃d ≡ u(t)Hdu
†(t), (A4)

for which the matrix representation is

u(t) =

⎛
⎜⎜⎝

1 0 0 0
0 − cos θ

2 e+iφ(t) sin θ
2 0

0 e−iφ(t) sin θ
2 cos θ

2 0
0 0 0 1

⎞
⎟⎟⎠. (A5)

In the rotating frame, the interaction Hamiltonian is
represented as

H̃t = h̄
∑

s

∑
σ

∑
k

(ws,σ,kd̃
†
s cσ,k + w∗

s,σ,kc
†
σ,kd̃s), (A6)
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where the coefficients ws,σ,k are given by

w↑M,↑,k ≡ vk cos
θ

2
, w↓M,↑,k ≡ vke

+iφ sin
θ

2
,

w↑M,↓,k ≡ vke
−iφ sin

θ

2
, w↓M,↓,k ≡ −vk cos

θ

2
, (A7)

and w∗
s,σ,k is the complex conjugate of ws,σ,k .

APPENDIX B: A SUPERMATRIX REPRESENTATION OF
THE GENERATOR

We present next a supermatrix representation of the genera-
tor, expressing it in the rotating frame instead of the laboratory
frame. This is because the former representation is simpler and
more useful than the latter. The representation in the laboratory
frame can be obtained by applying a unitary transformation in
the supermatrix space as discussed later in this Appendix.

In the rotating frame, the generator in the ith interval is
defined by

ξ̃
(λ)
i ρ̃ ≡ 1

ih̄
[H̃d,ρ̃]− 1

h̄2

∫ ∞

0
dτTrl

[
H̃t,

[
H̃t(−τ ),ρ̃ ⊗ ρ

eq
l

]
λ

]
λ
,

(B1)

where λ is the set of counting fields λ ≡ (λ↑,λ↓), which
reduces to ξ̃

(λσ )
i by setting one of two counting fields equal to

zero. For the two counting fields, we define a modified operator
A(λ) ≡ ei(λ↑N↑+λ↓N↓)Ae−i(λ↑N↑+λ↓N↓). The modified interaction
Hamiltonian and its interaction picture are given by

H̃
(λ)
t = h̄

∑
s

∑
σ

∑
k

(ws,σ,kd̃
†
s cσ,ke

+iλσ + w∗
s,σ,kc

†
σ,kd̃se

−iλσ ),

(B2)

H̃
(λ)
t (t) = h̄

∑
s

∑
σ

∑
k

(ws,σ,kd̃
†
s cσ,ke

+iλσ e+i(ωs−ωk )t

+w∗
s,σ,kc

†
σ,kd̃se

−iλσ e−i(ωs−ωk )t ), (B3)

respectively. By inserting these expressions into Eq. (B1), we
obtain

ξ̃ (λ)ρ̃ = −i
∑

s

ωs(d̃
†
s d̃s ρ̃ − ρ̃d̃†

s d̃s) −
∑
s,s ′

[
�

−(0)
s,s ′ (t)d̃†

s d̃s ′ ρ̃

+�
+(0)∗
s,s ′ (t)d̃s d̃

†
s ′ ρ̃+�

−(0)∗
s,s ′ (t)ρ̃d̃

†
s ′ d̃s+�

+(0)
s,s ′ (t)ρ̃d̃s ′ d̃†

s

−�
+(λ)
s,s ′ (t)d̃†

s ρ̃d̃s ′−�
−(λ)∗
s,s ′ (t)d̃s ρ̃d̃

†
s ′−�

+(−λ)∗
s,s ′ (t)d̃†

s ′ ρ̃d̃s

−�
−(−λ)
s,s ′ (t)d̃s ′ ρ̃d̃†

s

]
, (B4)

where

�
±(λ)
s,s ′ (t) ≡

∑
σ

∑
k

∫ t

0
dτws,σ,kw

∗
s ′,σ,ke

i(ωs′ −ωk)τ f ±(εk)e−iλσ ,

(B5)

f +(εk) ≡ Trl
[
c
†
σ,kcσ,kρ

eq
l

] = 1

1 + eβl(εk−μ)
, (B6)

and

f −(εk) ≡ Trl
[
cσ,kc

†
σ,kρ

eq
l

] = 1 − f +(εk). (B7)

Here the Fermi distribution of the lead electron f +(εk) is
independent of σ because the energy levels of the lead electrons
with spin-up and spin-down are degenerate.

By collecting the matrix elements of the reduced
density matrix ρ̃(λ)(t) into the form of a vector, we obtain
a supermatrix representation of the generator. As the
Hilbert space of the quantum dot has dimension 4, the
density matrix has 16 elements. Thus the density matrix is
represented by a 16-dimensional vector, and the generator
is represented by a 16 × 16 supermatrix. Nevertheless,
to evaluate the first cumulant of 	nσ,i using Eq. (21),
we do not need all 16 components of the density matrix
because some of these components do not contribute to
the trace taken in the expression. Indeed, we find that
only six components ρ̃

(λ)
00 (t) ≡ 〈0̃,0̃|ρ̃(λ)(t)|0̃,0̃〉, ρ̃

(λ)
01 (t) ≡

〈0̃,1̃|ρ̃(λ)(t)|0̃,1̃〉, ρ̃
(λ)
0110(t) ≡ 〈0̃,1̃|ρ̃(λ)(t)|1̃,0̃〉, ρ̃

(λ)
1001(t) ≡

〈1̃,0̃|ρ̃(λ)(t)|1̃,0̃〉, ρ̃
(λ)
10 (t) ≡ 〈1̃,0̃|ρ̃(λ)(t)|1̃,0̃〉, and ρ̃

(λ)
11 (t) ≡

〈1̃,1̃|ρ̃(λ)(t)|1̃,1̃〉 contribute to the first cumulant. By arranging
the components as |ρ̃(λ)(t)〉〉 = [ρ̃(λ)

00 (t),ρ̃(λ)
01 (t),ρ̃(λ)

0110(t),
ρ̃

(λ)
1001(t),ρ̃(λ)

10 (t),ρ̃(λ)
11 (t)]t, where [· · · ]t denotes transposition,

we obtain a supermatrix representation of the generator

�̃
(λ)
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
+(0)
↑M

+ X
+(0)
↓M

−X
−(−λ)
↓M

Y−(λ)∗ Y−(−λ) −X
−(−λ)
↑M

0

−X
+(λ)
↓M

X
+(0)
↑M

+ X
−(0)
↓M

0 0 0 −X
−(−λ)
↑M

Y+(λ) 0 Z 0 0 Y−(−λ)

Y+(−λ)∗ 0 0 Z∗ 0 Y−(λ)∗

−X
+(λ)
↑M

0 0 0 X
+(0)
↓M

+ X
−(0)
↑M

−X
−(−λ)
↓M

0 −X
+(λ)
↑M

Y+(−λ)∗ Y+(λ) −X
+(λ)
↓M

X
−(0)
↑M

+ X
−(0)
↓M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

with

X±(λ)
s ≡ �±(λ)

s,s + �±(−λ)∗
s,s , (B9a)

Y±(λ) ≡ −�
±(λ)
↓M,↑M

− �
±(−λ)∗
↑M,↓M

, (B9b)
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and

Z ≡ −i
2M

h̄
+ �

+(0)∗
↑M,↑M

+ �
−(0)∗
↑M,↑M

+ �
+(0)
↓M,↓M

+ �
−(0)
↓M,↓M

. (B9c)

The generator for the density matrix without a counting field is obtained by setting λ = 0 as

�̃
(0)
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
+(0)
↑M

+ X
+(0)
↓M

−X
−(0)
↓M

0 0 −X
−(0)
↑M

0

−X
+(0)
↓M

X
+(0)
↑M

+ X
−(0)
↓M

0 0 0 −X
−(0)
↑M

0 0 Z 0 0 0

0 0 0 Z∗ 0 0

−X
+(0)
↑M

0 0 0 X
+(0)
↓M

+ X
−(0)
↑M

−X
−(0)
↓M

0 −X
+(0)
↑M

0 0 −X
+(0)
↓M

X
−(0)
↑M

+ X
−(0)
↓M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

The reduced density matrix in the laboratory frame is obtained by applying the unitary transformation to ρ̃(λ)(t), ρ(λ)(t) =
u†(t)ρ̃(λ)(t)u(t). The unitary transformation on the Hilbert space operator can also be represented by a supermatrix. For the
six-dimensional vector |ρ̃(λ)(t)〉〉, the unitary transformation supermatrix U (t) connecting |ρ̃(λ)(t)〉〉 with the density matrix in the
laboratory frame |ρ(λ)(t)〉〉, i.e., |ρ̃(λ)(t)〉〉 = U (t)|ρ(λ)(t)〉〉, is given by

U (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 cos2 θ
2

1
2e−iφ sin θ 1

2eiφ sin θ sin2 θ
2 0

0 − 1
2eiφ sin θ cos2 θ

2 −e2iφ sin2 θ
2

1
2eiφ sin θ 0

0 − 1
2e−iφ sin θ −e−2iφ sin2 θ

2 cos2 θ
2

1
2e−iφ sin θ 0

0 sin2 θ
2 − 1

2e−iφ sin θ − 1
2eiφ sin θ cos2 θ

2 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B11)

We can obtain a supermatrix representation of the generator in laboratory frame by applying the unitary supermatix to Eq. (B8),
that is, �

(λ)
i = U †(t)�̃(λ)

i U (t).

APPENDIX C: STEADY STATE

We now derive a steady-state solution of the master equation (14) for λσ = 0. We first derive an expression for the steady-state
solution in the rotating frame and then obtain it in the laboratory frame by applying the unitary transformation Eq. (B11). To
derive the steady-state solution, we use the graphical method discussed in Refs. [37,38], following the latter in particular.

Let us denote the steady state in the ith interval as |ũ(0)
0 (ti)〉〉 ≡ (ρ̃st

00,ρ̃
st
01,ρ̃

st
0110,ρ̃

st
1001,ρ̃

st
10,ρ̃

st
11)t. It satisfies �̃

(0)
i |ũ(0)

0 (ti)〉〉 = 0.
From the expression (B10), we immediately obtain ρ̃st

0110 = 0 and ρ̃st
1001 = 0. The rest of the components of the density matrix

satisfy the homogeneous equations⎛
⎜⎜⎜⎜⎝

X
+(0)
↑M

+ X
+(0)
↓M

−X
−(0)
↓M

−X
−(0)
↑M

0

−X
+(0)
↓M

X
+(0)
↑M

+ X
−(0)
↓M

0 −X
−(0)
↑M

−X
+(0)
↑M

0 X
+(0)
↓M

+ X
−(0)
↑M

−X
−(0)
↓M

0 −X
+(0)
↑M

−X
+(0)
↓M

X
−(0)
↑M

+ X
−(0)
↓M

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ρ̃st
00

ρ̃st
01

ρ̃st
10

ρ̃st
11

⎞
⎟⎟⎟⎠ = 0. (C1)

The nontrivial solution of the homogeneous equations (C1)
is now obtained graphically. Consider graphs consisting of
four nodes and three edges [Fig. 5(a)]. Each node represents
a component of the density matrix, and each edge represents
a nonzero matrix element between the components. These
graphs are called maximum spanning trees referring to graphs
containing neither isolated nodes nor closed circuits. By
defining the direction of every edge with respect to a certain
node, we obtain a directed graph for the node. In Fig. 5(b)
we depict the directed graphs for the node corresponding
to ρ̃st

00. The directed edge represents a transition from the

node at the tail of the arrow to the node at the head of the
arrow. For each directed edge, we associate a matrix element
representing the transition as a weight as presented in Fig. 5.
By multiplying all weights in the graph, we obtain a value
of the graph. For the graph in Fig. 5(b), the values are
−X

−(0)
↓M

X
−(0)
↑M

X
+(0)
↑M

(left) and −X
−(0)
↓M

X
−(0)
↑M

X
−(0)
↓M

. The sum of

the values A00 = −X
−(0)
↓M

X
−(0)
↑M

X
+(0)
↑M

− X
−(0)
↓M

X
−(0)
↑M

X
−(0)
↓M

is the
value for the node ρ̃st

00. Similarly, we obtain values for the other
three nodes: A01 = −X

+(0)
↓M

X
−(0)
↑M

X
+(0)
↓M

− X
+(0)
↓M

X
−(0)
↑M

X
−(0)
↓M

,

A10 = −X
−(0)
↓M

X
+(0)
↑M

X
−(0)
↓M

− X
−(0)
↓M

X
+(0)
↑M

X
−(0)
↓M

, and A11 =
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ρ̃st
01

ρ̃st
10

ρ̃st
00

ρ̃st
11

ρ̃st
00

ρ̃st
11

ρ̃st
01

ρ̃st
10

ρ̃st
01

ρ̃st
10

ρ̃st
01

ρ̃st
10

ρ̃st
00

ρ̃st
11

ρ̃st
00

ρ̃st
11

−X
−(0)
↓M

−X
−(0)
↑M

−X
+(0)
↑M

−X
−(0)
↓M

−X
−(0)
↑M

−X
−(0)
↓M

(a)

(b)

FIG. 5. (a) Maximum spanning trees and (b) directed graphs
associated with the node ρ̃st

00.

−X
+(0)
↓M

X
+(0)
↑M

X
+(0)
↓M

− X
+(0)
↓M

X
+(0)
↑M

X
−(0)
↓M

. Using the values
Anm (n,m = 0 or 1), the solution of Eq. (C1) is given

as

ρ̃st
nm = Anm

A00 + A01 + A10 + A11
. (C2)

Using Eq. (B9a) with Eqs. (B5)–(C2), we obtain the steady-
state solution of the master equation

∣∣ũ(0)
0 (ti)

〉〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̃st
00

ρ̃st
01

ρ̃st
0110

ρ̃st
1001

ρ̃st
10

ρ̃st
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f −(ε↑M
)f −(ε↓M

)

f −(ε↑M
)f +(ε↓M

)

0

0

f +(ε↑M
)f −(ε↓M

)

f +(ε↑M
)f +(ε↓M

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C3)

By applying the unitary transformation (B11), we also obtain
the steady-state solution in the laboratory frame |u(0)

0 (ti)〉〉 =
(ρst

00,ρ
st
01,ρ

st
0110,ρ

st
1001,ρ

st
10,ρ

st
11)t as

∣∣u(0)
0 (ti)

〉〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f −(ε↑M
)f −(ε↓M

)

cos2 θ
2 f +(ε↑M

)f −(ε↓M
) + sin2 θ

2 f −(ε↑M
)f +(ε↓M

)

e+iφ(ti ) cos θ
2 sin θ

2 [f +(ε↑M
)f −(ε↓M

) − f +(ε↓M
)f −(ε↑M

)]

e−iφ(ti ) cos θ
2 sin θ

2 [f +(ε↑M
)f −(ε↓M

) − f +(ε↓M
)f −(ε↑M

)]

sin2 θ
2 f +(ε↑M

)f −(ε↓M
) + cos2 θ

2 f −(ε↑M
)f +(ε↓M

)

f +(ε↑M
)f +(ε↓M

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

From these expressions, the steady-state populations in the
laboratory frame ρst

00, ρst
01, ρst

10, and ρst
11 do not depend on

φ. Thus the steady-state populations remain unchanged by
changing φ.

APPENDIX D: DERIVATION OF EQ. (25)

We now derive the expression Eq. (25) in the adiabatic
limit following Ref. [24]. For the steplike precession of M(t),
the density matrix of the quantum dot during ti � t � ti+1 is
expressed by

∣∣ρ(0)
i (t)

〉〉 = e�
(0)
i (t−ti )

i−1∏
j=1

e�
(0)
j δt

∣∣ρ(0)
1 (0)

〉〉
, (D1)

where |ρ(0)
1 (0)〉〉 is the initial condition in the first interval.

Similar to the procedure in Sec. V B, we suppose that the
initial condition is a steady state with φ = φ1 − δφ, denoting
it by |ρ(0)

1 (0)〉〉 = |u(0)
0 (t0)〉〉 with t0 = t1 − δt . By assuming that

the system quickly approaches its steady state in each interval,
we only need the term corresponding to the steady state in the
spectral decomposition of each interval in Eq. (D1). Hence we
obtain

∣∣ρ(0)
i (t)

〉〉 ≈ ∣∣u(0)
0 (ti)

〉〉 i∏
j=1

〈〈
v

(0)
0 (tj )

∣∣u(0)
0 (tj−1)

〉〉
, (D2)

where 〈〈v(0)
0 (tj )| is the left zero eigenstate of �

(0)
j in

the j th interval satisfying 〈〈v(0)
0 (tj )|�(0)

j = 0. The left zero

eigenstate is given by the trace operator as 〈〈v(0)
0 (tj )| =

〈〈1| because of the trace invariance 〈〈1|ρ(0)
j (t)〉〉 = 1 [see

comment below Eq. (17)]. Evaluating 〈〈v(0)
0 (tj )|u(0)

0 (tj−1)〉〉 =
〈〈v(0)

0 (tj )|u(0)
0 (tj − δt)〉〉 in Eq. (D2) up to first order in δt , we

obtain

∣∣ρ(0)
i (t)

〉〉 ≈ ∣∣u(0)
0 (ti)

〉〉 i∏
j=1

(
1 − 〈〈

v
(0)
0 (tj )

∣∣ ∂

∂t

∣∣u(0)
0 (t)

〉〉∣∣∣∣
t=tj

δt

)
.

(D3)

Using the expression for the steady-state Eq. (C4) together
with 〈〈v(0)

0 (tj )| = 〈〈1|, we find 〈〈v(0)
0 (tj )| ∂

∂t
|u(0)

0 (t)〉〉|t=tj = 0.
Hence we obtain the density matrix in the adiabatic limit
as |ρ(0)

i (t)〉〉 ≈ |u(0)
i (ti)〉〉. Regarding the result of Eq. (21), we

obtain an expression for the number of transferred electrons
during the ith interval in the adiabatic limit,

〈	nσ,i〉 ≈
∫ ti+1

ti

dt ′〈〈1|
[

∂�
(λ)
i

∂(iλσ )

]
λσ =0

∣∣u(0)
0 (ti)

〉〉
. (D4)

As the trace operation is unchanged by a unitary transfor-
mation, we obtain the same expression in the rotating frame.
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Using expression (B8) with Eq. (A7), we have

〈〈1|
[

∂�
(λ)
i

∂(iλσ )

]
λσ =0

∣∣u(0)
0 (ti)

〉〉 = 〈〈1|
[

∂�̃
(λ)
i

∂(iλσ )

]
λσ =0

∣∣ũ(0)
0 (ti)

〉〉

= 2π

{
v(ω↑M

)
[
f +(ε↑M

)
(
ρ̃st

00+ρ̃st
01

)
− f −(ε↑M

)
(
ρ̃st

10 + ρ̃st
11

)]
cos2 θ

2
+ v(ω↓M

)
[
f +(ε↓M

)

× (
ρ̃st

00 + ρ̃st
10

) − f −(ε↓M
)
(
ρ̃st

01+ρ̃st
11

)]
sin2 θ

2

}
, (D5)

where v(ω) = ∑
k v2

k δ(ω − ωk) with ωk ≡ εk/h̄ is the spectral
density describing the dot-lead coupling, and ωs ≡ εs/h̄.
As the steady-state (C3) satisfies the relations ρst

00 + ρst
01 =

f −(ε↑M
), ρst

10 + ρst
11 = f +(ε↑M

), ρst
00 + ρst

10 = f −(ε↓M
), and

ρst
01 + ρst

11 = f +(ε↓M
), we find

〈〈1|
[

∂�
(λ)
i

∂(iλσ )

]
λσ =0

∣∣u(0)
0 (ti)

〉〉 = 0, (D6)

and hence we obtain the final result Eq. (25). The result
Eq. (D6) also provides an analytical proof of the absence of
electron flow Jσ = 0 in the steady state.

APPENDIX E: DEPENDENCE OF THE SPIN CURRENT ON
THE DIVISION NUMBER N

Here we present the dependence of the spin current on the
number of divisions N . In Fig. 6 we show the � dependence of

Ī↑

Ω̄

N =20

N =30

N =40

FIG. 6. Spin current for three different N . The black, blue, and
red lines correspond to N = 20, 30, and 40, respectively.

the spin current for three numbers of divisions: N = 20,30,40.
The other parameters are the same as set for calculations in
Sec. V. For each N , the frequency �̄ = 2π/(Nδt̄) is changed
by varying the time interval δt̄ . Figure 6 shows that the amount
of spin current generated decreases as the number of divisions
N increases.

For fixed frequency �, the time interval δt becomes smaller
as N increases. In the limit N � 1, the time interval is small
as δt � 1 whenever the adiabatic approximation Eq. (D4) is
valid. Therefore, the spin current approaches zero for large N .
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