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We report a systematic dependence of the spin-transfer torque (STT) switching threshold on junction size
and its resistance-area product (RA, or rAmtj) for the CoFeB-MgO-CoFeB type of magnetic tunnel juctions.
The RA dependence of the switching efficiency is seen to become stronger for junctions of larger size (in
the range of 15 to 50 nms). Here, the STT switching efficiency is defined as the ratio of the nanojunction
free-layer energy barrier for thermal activation reversal to its STT switching threshold current. That is, the
efficiency κ = Eb/Ic0, and it is seen to follow the junction rAmtj in the form of 1/κ = A0 + A1/rAmtj, with
A1 ∝ a − a0, where a is the device diameter and a0 is of the order of 10 nm. The 1/rAmtj dependence is consistent
with a tunnel-conductance-dependent spin-pumping-like action, although the spin-pumping mixing conductance
originating from the rAmtj of a magnetic tunnel interface is orders of magnitudes below that of the natural
damping of the free layer. We postulate that the spin-torque-induced dynamics in these magnetic tunnel junctions
must involve high-frequency spin dynamics near the tunnel interface beyond the average free-layer dynamics
frequencies. Such interface high-energy process gives rise to a two-step process for spin-current transmission
into the free layer and causes visible spin-pumping spin-current loss across a tunnel barrier.
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I. INTRODUCTION

Spin-torque-driven magnetic reversal in MgO-based, per-
pendicularly magnetized magnetic tunnel juctions (MTJs) ex-
hibits nonmacrospin behaviors from device sizes of 11–15 nm
and up in diameter, with the apparent switching efficiency
κ = Eb/Ic0 exhibiting an inverse diameter dependence [1–4].
This behavior of κ originates from a linear diameter scaling
of Eb, which is consistent with an edge-demagnetization
reduction’s contribution, and from a quadratic diameter scaling
of Ic0, whose origin beyond macrospin limit is not completely
understood.

Another observation is a dependence of the efficiency
κ on the MTJ’s resistance-area (RA) product (rAmtj). This
observation has been reported before [5], although its origin
is not clear. On one hand, the observed dependence resembles
spin-pumping-like action across an interface with a mixing
conductance related to the MTJ’s RA product rAmtj. On the
other hand, the magnitude of rAmtj in such MTJs is typically
two to three orders of magnitudes too high to give noticeable
change to the ferromagnetic free-layer damping of the order
of α ∼ 0.005 or there about.

More recently, in closer examination of our MTJs with
perpendicularly magnetized anisotropy (PMA), it is further
noticed that the dependence of κ on junction rAmtj is junction
size dependent, with an empirical relationship of 1/κ = A0 +
A1/rAmtj, and A1 ∝ a − a0, with a0 ∼ 10 nm.

A size-dependent κ is understood as a consequence of the
nanomagnet being switched via dynamically nonmacrospin
intermediate states. An RA dependence of κ is not expected
from macrospin dynamics either, and its connection to dy-
namic inhomogeneity has not been established.

In this paper, we report our experimental findings on an
MTJ’s STT switching efficiency κ as it depends on the junction
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size and its RA. These observations point to the involvement
of the tunnel-interface magnetic moment in high-energy
dynamics. These interface-related high-energy processes are
the leading cause for the observed RA dependence of κ .

II. EXPERIMENT

Tunnel junctions with MgO barriers and CoFeB as free lay-
ers with PMA were produced in ways similar to what has been
reported earlier [6]. These include the sputter deposition, at
ambient temperature, a CoFeB-based MTJ materials thin-film
stack. The wafers are then post-deposition annealed in vacuum
at 300 ◦C for 1 h prior to being lithographically patterned down
to sizes ranging from about 15 nm to > 100 nm in diameter
for circular-shaped devices in this series of samples. A reactive
ion etch is used for the main junction etching step, followed
by a low-energy (∼200 eV) grazing incidence Ar ion beam
etch for trimming the junction sides to the desired dimensions.
The finished structures are characterized for their spin-torque
switching properties using methods described in Ref. [2]. The
free-layer (FL) CoFeB is about 1.7 nm thick.

These junctions are used for measuring a set of size-
dependent quantities including thermal activation energy
Eb, spin-torque switching threshold voltage Vc0, spin-torque
switching threshold current Ic0, as evaluated from Vc0/Rp for
its being most representative of the associated spin current
[7,8] and the switching efficiency κ = Eb/Ic0. The median
junction sizes for each size bin, corresponding to a group of
devices of identical mask dimension design, are obtained on
the same wafer and same location using scanning electron mi-
croscope (SEM) on test sites prior to insulator encapsulation.

First, we concentrate on the average threshold Ic0 and Eb

behavior. Such Ic0 values are measured using a time-dependent
threshold evaluation method, namely, by measuring Icτ =
(|Vcτ,AP-P| + |Vcτ,P-AP|)/Rp, where τ designates the voltage
pulse width in time at which the threshold is measured. Here
“P-AP” designates the direction for a parallel-to-antiparallel
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FIG. 1. Measured Ic0/Eb vs 1/rAmtj relationship of CoFeB-MgO
tunnel junctions. (a) The dependence for junctions of four different
size groups, whose median sizes are shown with same-color labels.
Each data point is from one junction. Each size bin contains over
1000 devices. Lines are linear fits to the groups in the stated size bin.
(b) The rAmtj dependence comes primarily from Ic0, as Eb is shown
here for the same data set to be not strongly dependent on rAmtj.
(c) A strong device diameter dependence is seen in the slope of
Ic0/Eb vs 1/rAmtj from (a). (d) The intercept of Ic0/Eb vs 1/rAmtj fit
is not as strongly size dependent. Error bars for A0 and A1 represent
linear regression standard errors. Those for diameter reflect the bin
width of data selection.

switch (in reference to the relative magnetic orientation of the
free layer and the reference layer across the tunnel barrier), and
“AP-P” for antiparallel-to-parallel switching. With a series of
such pulse-width-dependent measurements, one could make a
log-linear regression, from which the P-AP and AP-P averaged
quantities of Ic0 and Eb are deduced. The averaging of AP-P
and P-AP results ensures the cancellation of the leading-order
effects of external field bias on switching threshold Vc0 and
thermal-activation energy Eb because a bias-field-induced
effect on Ic0 and Eb would be antisymmetric for AP-P and
P-AP. A detailed description of Ic0 and Eb measurements in
this experiment can be found in our earlier publications [1,2],
based on a linearized, low-bias, symmetric MTJ model that
associates the bias voltage to a spin current [7–10].

A set of experimentally measured switching efficiency
Ic0/Eb vs 1/rAmtj data is shown in Fig. 1(a). Each data point
represents a single junction’s result. Different colors group
junctions into different diameter size bins with a 4-nm bin
width. For all devices included in this figure, the tunnel
magnetoresistance (TMR) is above 80%, ensuring devices
as being representative of “good” quality junctions free of
gross defects in barriers, and with no significant degradation
from fabrication. The TMR value also agrees with extended
film’s TMR estimate from current-in-plane tunnel (CIPT)
measurements [11].

A sizable portion of raw data scatter in Fig. 1(a) is due
to the measurement methodology. The pulse width versus
switching threshold voltage for each individual pulse width

was the average of only five pulse-height sweep repeats. This
insufficient average resulted in a variation of reported Eb value
with a 1σ variance greater than 6% for Eb values around 40
to 60 kBT . This is simply due to temporal threshold variation
of individual switching events. The limitation of the number
of pulse repeats is so as to allow a reasonable throughput for a
large number of junctions to be sampled in a development
environment. The large number of junctions tested (over
1000 per size bin) as represented here gives another level of
ensemble average, resulting in less net variance of the trend
for size and RA dependence. This added averaging, however,
is not perfect, as it mixes temporal and device-to-device
variation. It is a compromise that grew out of our technology
development environment. A more focused single-device
detailed measurement is underway on selective wafers. These
results when complete will be reported elsewhere.

From these data shown in Fig. 1, an empirical form can be
established for Ic0/Eb vs 1/rAmtj:

Ic0

Eb

= A0 + A1

rAmtj
. (1)

As illustrated in Figs. 1(c) and 1(d), the value of the
Ic0/Eb vs 1/rAmtj slope is here measured to be of the
order of A1 ≈ 4 ± 0.07 μV μm2/kBT at a diameter around
35 ± 2 nm. The corresponding intercept is of the order
A0 ≈ 0.4 ± 0.01 μA/kBT . Here, error-bar estimates are from
standard error values of linear regression shown in Fig. 1(a).

Should the switching efficiency be in the macrospin limit
[which it is not here for our data and for Eq. (1)], the expression
Ic0/Eb could be further related to the fundamental materials
properties in the form of [12]

1

κ
= Ic0

Eb

=
(

4e

h̄η

)
α, (2)

where η = √
mr (mr + 2)/2(mr + 1) is the spin-polarization

factor1 for a symmetric tunnel junction, mr = (RAP − RP)/RP

is the tunnel magnetoresistance (TMR).
In the context of Eq. (2), our experimental observation

summarized in Eq. (1) could be viewed as a phenomenological
damping coefficient of

αeff = α0

(
1 + A1

A0rAmtj

)
(3)

which is exactly the form it would take if the added damping
originates from a spin-pumping effect across a conducting in-
terface [13,14]. In fact, an intercept A0 ≈ 0.4 μA/kBT would
translate to an α0 ∼ 0.006 according to Eq. (2) and assuming
magnetoresistance mr ∼ 1, essentially agreeing with the pure
materials damping as determined from coupon-film level FMR
measurements, to well within a factor of 2.

1Note here η is the total spin polarization including both electrodes
of the MTJ. It differs from assuming an incident charge current
with fixed spin polarization independent of the relative angle
between polarization of the current and the receiving electrode’s
magnetization. An in-depth discussion and the derivation of the η

factor can be found in Refs. [7,9,10].

064437-2



RESISTANCE-AREA PRODUCT AND SIZE DEPENDENCE . . . PHYSICAL REVIEW B 96, 064437 (2017)

FIG. 2. The rotationally symmetric behavior of switching effi-
ciency’s rAmtj and size dependence. (a), (b) The write-0 [correspond-
ing to an antiparallel initial state between FL and RL (reference
layer)] and write-1 (parallel initial state) direction’s dependence of
Ic0/Eb vs 1/rAmtj. (c), (d) The resulting linear fit’s slope and intercept
from (a) and (b). This demonstrates the lack of dependence of A0

and A1 on relative orientations between the FL and RL. Note: in both
directions, the data for Ic0 plotted are obtained by Vc0 across the MTJ
divided by the parallel state junction resistance. This corresponds
to the spin-current values in both directions, as the magnitude of a
symmetric MTJ’s spin current is directly proportional to bias voltage
but not to the charge current [7–10].

The values of Eb and Ic0 reported in Fig. 1 are averages
of P-AP, or “write 1” (W1) in memory technology language,
and AP-P (or W0) values. For reasons shown in Sec. IV B
(reasons concerning the chirality-dependent dynamic spin-
current coupling between the FL and its environment), it is
important to also examine the individual direction’s switching
Eb and Ic0. This is shown in Fig. 2.

Data in Fig. 2 suggest the size dependence of A1 in
the above observation is essentially independent from the
free layer and reference layer (FL-RL) relative orientation,
whereas for A0 there might be some orientation dependence,
although the contrast over this size range is comparable to
size-dependent data scatter. We consider the observed A0

variation as inconclusive for precession-direction dependence
at present. This is because, in addition to precession chirality
dependence, the FL is also under an incompletely canceled
dipolar field from the RL, whose magnitude as judged from the
MTJ’s resistance-field hysteresis loop is in the range of 100 to
800 Oe for this data set, depending on size and with significant
scatter. A change of dipolar bias-field strength would also
affect the switching threshold for the AP-P and P-AP branches.
Given the lack of systematic size or switching-direction
dependence of A0, we conclude that, to the leading order,
the precession-direction dependence of A0 and A1 in our data
as described by Eq. (1) is not dominant.

To summarize, there are three main experimental findings,
namely, (1) a linear dependence of inverse switching efficiency

1/κ on MTJ’s specific tunnel conductance 1/rAmtj, (2) a linear
dependence of the slope A1 on junction diameter a, and (3) the
observation of (2) is independent from the relative orientation
of FL-RL magnetic moment alignment. These three attributes
are what we will focus on next to develop an understanding.

III. INTRODUCTION TO MODEL DEVELOPMENT

A large portion of the perpendicular magnetic anisotropy
energy in this class of MTJs is believed to originate from the
interface between the tunnel barrier MgO and the CoFeB “free
layer” [15]. Magnetic moments situated at the MgO-CoFeB
interface have a high concentration of anisotropy energy,
most likely in areas coinciding with good electronic structure
coupling into the MgO interface, and consequently high tunnel
conductance. These same interface moments may also have
a possible weakening of their exchange coupling to the rest
of the FL ferromagnetic moments. Such weakening could
occur either because of their partial oxidation state or because
of the complex exchange interaction for interface moments.
These interface moments have a high PMA energy density
and a relatively weak exchange to the rest of the FL. This
combination is likely to cause nonmacrospin dynamics at the
interface [16–18]. It could, for example, cause the appearance
of an apparent fourth-order magnetic anisotropy, reflecting the
relative rotation between the magnetic moments in the interior
of the FL and those with dominant PMA at the interface [16].

To distinguish the dynamics of these high-energy interface
magnetic moments from the volume of the FL, a simplified
model concept beyond macrospin is needed. We start with the
next simplest possible construct of two coupled macrospins, or
what we call an m1-m2 model. Here, two magnetic moments
m1 and m2 are exchange coupled together with a finite
exchange energy. Each is treated as a macrospin. In our
specific situation, m1 emulates the interface moment, whose
magnitude is small, and it is situated in a strong anisotropy
potential. m2 emulates the rest of the magnetic moments in
the FL, containing the majority of magnetic moments of the
FL, but is with a relatively weak PMA, or even with an easy-
plane anisotropy, if the demagnetization energy dominates.
These two moments m1 and m2 couple via an exchangelike
interaction. This exchange energy’s relative strength to the
anisotropy energies experienced by m1 and m2 leads to a
wide range of dynamic behaviors. All dynamics are treated
in the classical limit, by two coupled Landau-Lifshitz-Gilbert
equations (the LLG equations).

By assuming m1 representing the interface moment and its
dynamics operating on a time scale much shorter than that of
the rest of the FL, represented by m2, it becomes possible to at
least approximately use a separation of time-scales approach,
and treat m1’s fast dynamics as adiabatic for the slow dynamics
of m2 and the full FL switching process.

In the following sections, we will first introduce a few topics
related, some directly and others somewhat indirectly, to the
m1-m2 two-macrospin model. These form the building blocks
we then use to address the issue of spin-torque-driven magnetic
instabilities and magnetic switching in such a system, and
consequences brought on by the interface-concentrated PMA.
This is an approach similar to what has been taken in Ref. [16].
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IV. THREE MAIN FORMS OF SPIN CURRENT
FOR A MACROSPIN NANOMAGNET

For a nanomagnet coupled to an external environment
both magnetically (via an exchangelike or magnetic-field-like,
force) and electronically (involving a spin-carrying detail-
balanced transport current of mobile electrons), there are
three main classes of interactions relevant to the dissipative
dynamics of the magnet. These are (1) magnetic damping,
(2) time-varying magnetic field (this could include a time-
varying fieldlike exchange interaction), and (3) a spin-carrying
electronic current. Below we give a brief description of these
three types of spin currents.

For convenience of comparing to electrical transport-related
experimental results, the spin-current expressions here are
mostly written in equivalent charge-current unit. That is, a h̄/2
per unit time spin current is converted into a charge current of
one electron per unit time. This allows for the use of convenient
units such as amperes and volts for easy comparison with
transport variables. This is particularly helpful for describing
spin-torque phenomena in magnetic tunnel junctions, spin
valves, and in other electrical-transport-related situations.

A macrospin is defined as the limiting case of a small
ferromagnetic body whose dimensions are well below that
of the exchange lengths in the problem. Conveniently, it can
be thought of as the limiting case where the ferromagnet’s
exchange energy Aex is above any of the energy scales of
concern in the problem.

The dynamics of a macrospin moment vector m can be
described by the Landau-Lifshitz-Gilbert equation (the LLG
equation) as

1

γ

dnm

dt
= Heff × nm + α

γ
nm × dnm

dt
, (4)

where nm = m/|m| is the unit vector of the moment direction,
Heff is the total effective field including the anisotropy and
applied field. α is the phenomenological LLG damping
coefficient. γ = |g|μB/h̄ ≈ 2μB/h̄ is the magnitude of the
electronic gyromagnetic ratio.

The left-hand side of Eq. (4) is an expression of torque
� normalized by m = |m| in the form of �/m. This torque
is composed of two terms shown on the right-hand side.
The first term is energy conserving if Heff is static in time. The
second term is energy nonconserving, and represents the spin
current associated with the dissipative interaction via damping.
In addition to damping, a time varying Heff can also bring on
energy-nonconserving interactions with m.

Magnitude wise, for most practical cases the energy-
conserving part of the torque, associated with applied field
or anisotropy field, is about a factor of 1/α ∼ 102 larger than
the damping torque �α , i.e., the second term in Eq. (4).

A. Spin current related to damping

A torque on the macrospin is a spin-current flow. From
Eq. (4), the damping-related spin current (torque), in unit of
energy (such as [erg]), can be written as

Isα = αm

γ
nm × dnm

dt
=

(
mα

gμB

)
h̄nm × dnm

dt
, (5)

FIG. 3. An illustration to the vector definitions of the LLG
equation (4). The magnetic moment unit vector makes a polar angle
θ with the ez axis. β is the projection of nm onto the x−y plane. The
damping torque �α is perpendicular to nm and points to a direction
that either increases or decreases the cone angle θ , depending on the
signs of the spin and spin-current direction. The total effective field
Heff is assumed to align in ez direction in our models, same is the
related angular velocity vector �a = γ Heff if the moment is in free
motion.

where μB is the Bohr magneton and g ∼ 2 is the magnitude
of electronic Landé g factor.

Consider a moment in a uniaxial field Heff ‖ ez as in Fig. 3,
the moment having an instantaneous cone angle of θ , and an
angular veolcity �a ‖ ez, one gets a nonzero cycle-averaged
spin current with the polarization direction along ez as

Isα = |〈Isα〉| =
(

mα

gμB

)
(h̄�a) sin2 θ. (6)

For free damping motion with a static Heff , one has �a →
�H = γ |Heff| as the moment-field system’s intrinsic dynamics
frequency, i.e., the moment’s precession frequency.

Define a “voltage” VB = h̄�H/e where e is the electron
charge, one can rewrite Eq. (6) in a form similar to charge-
current transport with a charge-current-equivalent unit describ-
ing the spin current. Using the conversion of Is,cg = (2e/h̄)Is ,
where Is is in angular momentum flow unit (i.e., torque or
energy), and Is,cg is the same current but in charge-current unit
(such as amperes) as indicated by the “cg” subscript, one has,
for the on-resonance condition, the damping α-related spin
current as

Isα,cg =
[(

e2εj

h̄

)(
αm

μB

)]
VB sin2 θ

=
(

2e

h̄

)
(αmHeff) sin2 θ (7)

or a spin-mixing conductance in charge unit of gα =
(e2εj /h̄)(αm/μB), such that Isα,cg = gαVB sin2 θ . This is the
charge-equivalent conductance of spin-current loss due to
damping, for a macrospin with a precessing cone angle θ .

064437-4



RESISTANCE-AREA PRODUCT AND SIZE DEPENDENCE . . . PHYSICAL REVIEW B 96, 064437 (2017)

If without other dynamic excitation, this usually small
damping spin current will result in a gradual cone-angle
reduction, eventually bring the moment to its lowest-energy
state of θ = 0 along the field direction.

A word on the practical unit system used in these ex-
pressions. Here, εj = 107 erg/J is an energy unit conversion
factor. For the rest of quantities, electron charge e = 1.602 ×
10−19 Coulomb, h̄ = 1.0547 × 10−27erg sec. Moment m and
field H are in emu and Oe, respectively.

B. Spin current on a macrospin from a rotating field

1. Spin current from a rotating magnetic field

A common method for countering damping-related cone-
angle reduction is to drive the moment with a small rotating
magnetic field in the x−y plane of Fig. 3, with angular velocity
�a . This is the basic idea of ferromagnetic resonance (FMR).
This process can be readily described by Eq. (4) as

1

γ

dnm

dt
− α

γ
nm × dnm

dt
= (Heff + Hac) × nm (8)

and explicitly we write

Hac = Hac[cos (�at)ex + sin (�at)ey] (9)

usually with Hac � Heff being the amplitude of the ac
magnetic field, rotating in the (x,y) plane. For the case of
uniaxial anisotropy along ez direction collinear with applied
field Ha , one has Heff = (Ha + Hkez · nm)ez, where Hk is the
uniaxial anisotropy field for moment m.

For small cone-angle excitation near the energy minimum,
Eq. (8) with nm ≈ (βx,βy,1) in linearized form for βx,y � 1
and Hac � Heff gives

1

γ

d

dt

[
βx

βy

]
= Heff

1 + α2

[−α −1

1 −α

][
βx

βy

]

+ Hac

1 + α2

[
α 1

−1 α

][
cos (�at)

sin (�at)

]
(10)

whose steady-state solution is a well-defined problem of
eigensystem under driven motion, yielding[

βx

βy

]
= Hac

(Heff − �a/γ )2 + (�a/γ )2α2

×
[
Heff − �a/γ α�a/γ

−α�a/γ Heff − �a/γ

][
cos (�at)

sin (�at)

]
(11)

with a power-frequency relationship of

θ2 = β2
x + β2

y = H 2
ac

(Heff − �a/γ )2 + (�a/γ )2α2
. (12)

This amplitude response to the ac-driving field is the essence
of FMR. When �a → γHeff, the maximum amplitude of θ2 =
(Hac/αHeff)2 is obtained as the on-resonance cone-angle power
magnitude.

A steady-state-driven precession is present even if off
resonance, when the amount of spin current pumped into
the macrospin via rotating magnetic field is balanced by the
macrospin’s damping. That is, in steady state for a macrospin

driven at angular veolcity �a , the amount of spin current
pumped into the system is the same as described by Eq. (6)
with its cone angle described by Eq. (12). That is,

Is,cg =
(

2e

h̄

)
(αm�a/γ )

H 2
ac

(Heff − �a/γ )2 + (�a/γ )2α2

(13)

for an arbitrary rotation field frequency �a . This follows from
a direct time average of the driven-state solution (11). The
resonance condition gives the maximum spin current into the
damping channel of Is max,cg = (2e/h̄)(mH 2

ac/αHeff).
Equation (13) relates a rotating magnetic field’s amplitude

Hac and its rotation frequency �a to the amount of spin current
it couples into a macrospin’s damping loss in steady-state
motion. This is a result we will use later to estimate spin-current
transport in the m1-m2 model.

In Eq. (13), note the corresponding spin current is de-
pendent on the sign of �a . That is, the rotation direction is
important in determining the resonance condition, and hence
the net amount of average spin current coupled across.

The ac-field excitation discussed here is assumed to be a full
rotational field. A linear oscillatory field can be decomposed
into two counter-rotating fields at the same frequency. The
net result would be a reduction on the θ2 expression of
Eq. (12) by approximately a factor of 4 when near resonance.
Correspondingly, Eq. (13) near resonance would pick up an
additional factor of ∼ 1

4 . The resulting resonance condition will
then be symmetric to the sign of �a .

In our MTJ FL environment, a dipolar coupling could
affect dynamics by manifesting itself as a rotational magnetic
field. The direction of rotation of such a field would affect
its ability to couple spin current into adjacent ferromagnets,
such as the reference layer. This is the reason we need
to experimentally examine the orientation dependence of
the observed spin-current switching threshold, as shown in
discussions surrounding Fig. 2. The lack of a systematic
FL orientation dependence in our experiment therefore rules
out dynamic dipolar coupling as the main mechanism for
the observed additional damping behavior as reflected by
the STT switching threshold change. These discussions are
very approximate because the spin current versus precessional
magnetic field derived above is only strictly valid for steady-
state dynamics, which does not precisely describe the STT
reversal dynamics.

2. Moment precession and exchange-coupling-
related spin current

Now consider our two-coupled-macrospin model, i.e., the
m1-m2 model, where moment m1 represents the interface-
based magnetic moment in an MgO-MTJ system, which is
relatively weakly coupled to the rest of the free-layer film
designated as m2. The interface moment m1 has a small total
moment compared to the total of the FL, i.e., m1 � m2,
and m1 is situated in a strong interface uniaxial anisotropy
potential whose energy density Ks is on par with the total
demagnetization energy of the FL. That is Ks ∼ 2πM2

s2t2,
where Ms2 is the magnetization of m2 in thin-film form, and t2
its thickness. Because of the vast difference in energy density,
the natural time scale for the dynamics of m1 is much shorter
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than that of m2. For a semiquantitative understanding of our
complex system, one could employ an effective adiabatic
approximation, assuming that to describe the m1 dynamics,
one could treat m2 as stationary, whereas when treating m2

dynamics, one could assume m1 to be always in its steady-state
energy minimum with m2.

The interface moment m1 is then driven by an external
spin current to precess at its natural frequency. One can use
the adiabatic approximation described above to estimate the
amount of spin current such a driven motion of m1 delivers
into the exchange coupled m2. For simplicity, one assumes for
this m1-m2 system the magnetic axes are all collinear, as is the
incoming spin current’s polarization. While this assumption
may become problematic for describing large cone-angle
movements of m2, it is at least suitable for capturing the initial
development of instability when m2’s cone angle is small.

Start with Eq. (13) as the expression for spin current
delivered into m2 via a driven and precessing m1 at a polar
angle of θ1 � 1 (and assume for this step the cone angle of m2

is small compared to θ1 and can be treated as on axis). One re-
places a precession frequency for m1 as �a → �1 = γHeff1 =
γ (2Eb1 + Eex)/m1; one treats the exchange coupling between
m1-m2 as the source of the rotating ac magnetic field that
drives m2 by writing Hac → (Eex/m2) sin θ1 ≈ Hex12θ1, with
Hex12 = Eex/m2, and the effective uniaxial anisotropy field
on m2 as Heff2 ≈ 2Ebeff/m2 � Heff1. Now, one can write the
spin current delivered into m2 via this rotational field as Is12,cg,
which in charge unit reads as, according to Eq. (13),

Is12,cg =
(

2e

h̄

)
(α2m2Heff1)

H 2
ex12θ

2
1

(Heff2 − Heff1)2 + α2
2H

2
eff1

. (14)

The intrinsic damping-related spin current within moment m1

for such a precession motion would be, from Eq. (7),

Iα1,cg =
(

2e

h̄

)
(α1m1Heff1)θ2

1 . (15)

Therefore, the total spin-current loss of m1 precessing at
amplitude θ1 is Iα1,cg + Is12,cg, and the effect of the precession-
induced spin current on m1 is an additional apparent damping
of the form α1 → αeff1, with

αeff1 = α1 + α2

(
m2

m1

)
H 2

ex12

(Heff1 − Heff2)2 + α2
2H

2
eff1

. (16)

C. Spin pumping across an interface
in contact with mobile carriers

A spin-pumping-induced spin current across a specified
interface can be written as the so-called spin-mixing conduc-
tance [13,14]. Here, we only note that phenomenologically
for most situations, the spin-mixing conductance associated
with dissipative spin current across a conducting interface
without significant interface-localized spin-flip excitation has
an approximate upper bound around the corresponding charge
conductance of the same interface. This spin-mixing con-
ductance, denoted below as gα , is equivalent to an effective

spin-pumping-induced damping coefficient αsp. In charge-
equivalent unit, this relationship is of the form

gα =
(

e2εj

h̄

)(
m

μB

)
αsp, (17)

where e = 1.602 × 10−19 C is the electron charge, h̄ =
h/2π is the reduced Planck constant in erg sec, and εj =
107 erg/Joule. The resulting gα is in 1/[�], and αsp is the
spin-pumping-induced additional damping for the macrospin
m’s dynamics. By the same reasoning, the bulk damping
coefficient of m can be translated into an equivalent interface
conductance using Eq. (17). This allows for the comparison
of different paths of spin-current loss to see which one is the
most significant.

If the FL interface to an outside spin-shunted environment
is limited by an electrical transport conductivity of 1/rAmtj per
unit area, such as in the case of FM | tunnel barrier | FM struc-
ture, one has, on a per-unit-area basis, m → Mst , and the gα-
equivalent interface resistance of rAα = (h̄/e2εj )(μB/αMst),
where 1/rAα = gα .

For a typical materials set used for spin-torque-related
MTJs, the FM is usually a CoFeB-based alloy, with Ms ≈
103 emu/cm3, thickness t ∼ 1 nm, and a materials α ≈ 0.004
[19,20]. These give the damping equivalent rAα ∼ 9 m�μm2.
This is much lower than an MTJ’s tunnel current related
rAmtj � 2 �μm2. Thus, within a single macrospin picture, one
would not expect a significant amount of spin-current loss
through the tunnel-current-related spin pumping because its
RA is too high compared to the intrinsic damping by a factor
of about 100× or more.

Experimentally, however, one does observe a systematic
dependence of the spin-torque switching threshold current
on the tunnel junction’s RA value, as shown in Sec. II. This
observation appears to be systematic and robust, but could not
be readily explained within the simple macrospin spin-torque
excitation model, suggesting the presence of other significant
processes beyond macrospin.

Below, we discuss a “serial-spin-current divider model”
based on the separation of the interface moment’s high-energy
dynamics from the rest of the FL. This approach within the
context of the extremely simplified two-macrospin m1-m2

model can account for the order of magnitude of the spin-
pumping loss of spin current that occurs in practical MTJs we
examined in Sec. II.

V. SERIAL-SPIN-CURRENT DIVIDER MODEL

A. Model structure and material parameter assumptions

Consider a model MTJ free-layer disk of diameter a and
thickness t , with t/a � 1. Assume for now that the disk is in
macrospin state, with one side of the disk contacting a tunnel
barrier. One can use the methodology developed in Sec. IV
to keep track of the spin current induced by the precessional
moment of this magnetic disk. For simplicity, we drop the
factor of π/4 in area calculation and simply write the junction
interface total area as a2.

We will use notations of our two-macrospin m1-m2 model
construct, in the form of m1 = Ms1t1a

2 as the interface layer
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FIG. 4. An illustration of the m1-m2 model for the FL of an
MTJ. The topology of the sketch serves only to distinguish interface
anchored vs the rest of the FL moment, and does not necessarily
imply the moments are smoothly lined up in cleanly layered fashion,
although a layered construct could be one possible configuration of
such an m1-m2 system. See Sec. VII for more discussions.

of moment, and m2 = Ms2t2a
2 the interior moment of FL, as

illustrated in Fig. 4.
The interface moment m1 is situated in a high-anisotropy

energy well, with energy density per unit area Ks to provide
sufficient perpendicular anisotropy for the entire FL to stay
perpendicular. m1 also has much less net total moment, i.e.,
Ms1t1a

2
1 � Ms2t2a

2
2 . Here, the device FL is modeled as a

simple cylindrical disk, a1 = a2 = a, and the thicknesses
add up to the total FL value, t1 + t2 = t . In addition, we
use an interface exchange energy Eex to describe the mag-
netic coupling between m1 and m2. The relevant exchange
fields on each moment are Hex21 = Eex/m1 and Hex12 =
Eex/m2. We assume Ks ∼ 2πM2

s2t2, t1 � t2 in our specific
example.

It follows then m1 dynamics would occur at a much
higher-frequency range than m2. This allows for an adiabatic
assumption for m1 dynamics where m2 is assumed stationary,
and an approximate description for the m2 dynamics with the
same adiabatic assumption that m1 is always in its fully relaxed
steady-state energy minimum.

B. A serial-spin-current propagation scenario

In this scenario, we assume that, to the leading order,
the spin-transfer torque (STT) from the tunnel carriers is
completely absorbed within m1. In steady state, the m1

dynamics under STT influence couples some spin current out
of m1 and into other channels that we describe below.

Write the total STT spin current arriving at m1 as Is .
Define VB1 = 2μBHeff1/e, with Heff1 = Hk1 + Hex21 =
(2ξb1 + ξex)kBT /m1, where the dimensionless parameters ξb1

and ξex describe the anisotropy and exchange energy of m1

in kBT unit with kBT being the ambient thermal energy
(of ∼26 meV at room temperature). For a total cone-angle
amplitude of θ1 for m1 dynamics in steady state under Is , the
balance of spin current reads as

Is = Is1 + Is2 = VB1θ
2
1 (gTB + gα1 + gBB),

Is1 = VB1θ
2
1 (gTB + gα1),

Is2 = VB1θ
2
1 gBB, (18)

where Is is the total spin current leaving m1 if it precesses
at θ1. At constant θ1, this must equal to the total incoming
STT spin current from tunnel current. Is1 is the spin current
leaving m1 by bulk damping and via tunnel-barrier interface
spin pumping. Is2 is the spin current leaving m1 and enter m2,
mostly through exchange-coupled precession dynamics. gTB is
the spin conductance for the tunnel-barrier facing interface of
m1, with rAmtj as its RA product. gα1 is the spin conductance
for m1’s intrinsic damping α1. gBB is the spin conductance
due to exchange coupling between m1 and m2. We assume
the mobile electron’s contribution to spin-current transport
between m1 and m2 is small compared to gBB.

From Eqs. (16) and (17) one may write, with C1 =
(
e2εj

h̄
)(

m1

μB

),

gTB = a2

rAmtj
� C1αTB,

gα1 = C1α1,

gBB � a2

rAmm
� C1αBB = a2

(
e2εj

h̄

)(
α2Ms2t2

μB

)

× H 2
ex12

(Heff1 − Heff2)2 + α2
2H

2
eff1

.

(19)

Here, we defined three additional parameters: αTB and αBB are
the effective damping coefficients for m1 of its MTJ barrier
spin pumping and its exchange-induced spin-current loss from
m1 into m2, respectively; and rAmm which, related to gBB, is
a fictitious RA product describing the strength of interface
spin-current loss from m1 to m2. Equations (18) and (19) solve
to give the spin current divide as

Is1 = α1 + αTB

α1 + αTB + αBB
Is,

(20)
Is2 = αBB

α1 + αTB + αBB
Is.

C. STT threshold current estimate for Is, and RA
dependence of switching efficiency

Under the adiabatic assumption discussed above, one
may write the thermal-activation energy defined threshold
instability current for m1 for total spin-current input Is as
Icfs:

Icfs = (2ξb1 + ξex)(α1 + αTB + αBB). (21)

Here, for simplicity of the expressions, thresholds such as Icfs

are expressed using a reduced unit of I0 = (2e/h̄)kBT with
kBT being the ambient thermal energy.

The overall magnetic switching threshold for the combined
m1-m2 system, as dictated by the slow dynamics of m2, then,
is approximately

Isc2 = α2ξaeff = α2

(
ξb1�T

[
ξex

Nf

]
+ ξb2

)
, (22)

where ξaeff is the effective thermal-activation energy barrier
height for the slow dynamics of the m1-m2 system, �T[x] =
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3 coth3 x − 3

x2
− 2 is a thermal-smearing related function2

that reduces the amount of PMA m1 couples into m2 due to
m1’s thermal fluctuation. Nf is the number of regions within
m1 that fluctuates independently at finite temperature kBT .

The effective thermal activation barrier height ξaeff’s
fluctuation-dependent reduction (or equivalently the apparent
increase of fluctuation temperature) due to STT current Is can
thus be approximately written as

ξaeff[Is] ∼
{
ξb1�T

[
ξex

Nf

(
1 − Is1

Icfs

)]
+ ξb2

}(
1 − Is2

Isc2

)
.

(23)

A low Is expansion of ξaeff in Eq. (23) with Is1,s2 substituted
by Is from Eq. (20) gives a leading-order result of the effective
thermal activation barrier height at zero spin-current bias.
Assuming ξex/Nf � 1, i.e., exchange is sufficient to keep
m1 with a sufficiently small thermal fluctuation cone angle
compared to the dynamics of θ1 for each individual region,
one has

ξbeff � ξaeff[Is → 0] ≈ ξb1

[
1 − 3

(
Nf

ξex

)2
]

+ ξb2,

Isc

ξbeff
≈ α2

[
1 +

(
e2εj

h̄μB

)
(Ms1t1α1)rAmm

+
(

rAmm

rAmtj

)]
, (24)

where ξbeff is the effective zero applied spin-current thermal
activation barrier height for the combined m1-m2 system, and
Isc is the instability threshold current for Is according to the
zero barrier height intercept from linearized expansion of
Eq. (23), in reduced unit of I0 [as defined when discussing
Eq. (21)]. In the limit of ξex → +∞, the first line of Eq. (24)
recovers the simple macrospinlike form of ξbeff → ξb1 + ξb2,
as it should.

Restoring real-life unit I0 for the inverse efficiency, and
including an MTJ-related spin-polarization efficiency factor

η =
√

mr (mr + 2)

2(mr + 1)
, one writes

Isc

ξbeff
� 1

κ
≈

(
2e

h̄

)
kBT

(
α2

η

)[
1 +

(
e2εj

h̄μB

)

× (Ms1t1α1)rAmm +
(

rAmm

rAmtj

)]
(25)

2Equation (22) is the finite-temperature, finite Eex, and small m1

total energy equivalent of the coefficient in front of the cos2 θ term in
Eq. (28) of Ref. [16]. It is the result of an estimate based on a so-called
“Finger Model”(unpublished). The essence of the model is that, for
our practical size range of tens of nm of diameters, the material for m1

is not single domain, but rather breaks into Nf regions of independent
fluctuators at finite temperature and under STT excitation. Such
fluctuations reduce the net exchange coupling between the m1 and
m2 regions, reducing the total PMA energy. Equation (22) is a
leading-order estimate for such a residual anisotropy energy after
including finite-temperature-induced reduction effect.

which gives rise to an MTJ RA-dependent inverse-efficiency
slope and intercept (A0 and A1 in our experimental observa-
tions, Figs. 1 and 2) of

slope = δ(1/κ)

δ
(
1/rAmtj

) ≈
(

2e

h̄

)
kBT

(
α2

η

)
rAmm,

intercept = Isc

ξbeff

∣∣∣∣
rAmtj→+∞

=
(

2e

h̄

)
kBT

(
α2

η

)

×
[

1 +
(

e2εj

h̄μB

)
(Ms1t1α1)rAmm

]
(26)

with

rAmm =
(

h̄

e2εj

)(
μB

α2Ms2t2

)
(Heff1 − Heff2)2 + α2

2H
2
eff1

H 2
ex12

,

(27)

where the definition of rAmm follows from the third line in
Eq. (19).

Equation (26) gives a model-derived slope and intercept
of the inverse switching efficiency versus MTJ RA, based
on a two-body, serial-spin-current transport process. This
relationship can be compared with experiment.

Within the confines of the m1-m2 model, this predicts
a size-independent slope and intercept of the switching
efficiency versus junction RA (i.e., rAmtj). Experimentally,
however, one observes a significant size dependence in these
quantities, and one is well aware that in our size range
of 15 nm and up, the MTJ does not behave in a simple
macrospin fashion, but involves dynamic inhomogeneities that
reveal additional internal degrees of freedoms, even after one
separates the interface dynamics from that of the FL interior.
The phenomenological construct of this serial-spin conduction
model would need to be modified to examine the effect of
finite-size magnetic excitation effects inside m1 and m2. Before
delving into these details, however, we first examine some
quantitative values to see if the two-macrospin-based m1-m2

model (26) and experimental results are within similar orders
of magnitudes.

D. Quantitative evaluation of the two-macrospin m1−m2 serial
conduction model: Comparison with experiments

A set of possible material parameters for use in this
model system is listed in Table I. These parameters are not
sufficiently constrained by available observations. To proceed
with estimates, one uses a reasonable range of values to check
and ensure the consistency of the model mechanism with
observed quantities, and of their trends of dependence on these
listed variables.

In Eqs. (26) and (27), we use a set of material param-
eters listed in Table I, that is, assuming α2 = 0.01, Ms2 =
800 emu/cc, t2 ≈ 2 nm, Heff1 ∼ 70 kOe, Heff2 ∼ 3 kOe,
Hex12 ∼ 1.0 kOe, one has a model predicted macrospin value
for slope A1 in Eqs. (26) and (1) as slope → A1,macrospin ≈
3.1 μV μm2/kBT . Equivalently, one has a model predicted
rAmm,macropsin ≈ 10.7 �μm2 compared with the experimen-
tally derived value of rAmm,measured ≈ 13.8 �μm2, for devices
around 35-nm diameter.
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TABLE I. A summary view of symbols and range of values of material parameters in Sec. V D’s model calculations for comparison with
experimental findings. The parameters are not sufficiently constrained by observations.

Variable Unit Typical values Description

Ms1 emu/cm3 100–200 m1 saturation magnetization estimate from [16] and error-rate tests
t1 nm ∼0.2 m1 layer thickness
Hk1 kOe 10–80 m1 anisotropy field, related to ξb1

Hex21 kOe 10–100 m1 exchange field at m1-m2 interface, related to ξex

Heff1 kOe 10–100 m1’s total effective field, ∼2Hk1 + Hex21

Ms2 emu/cm3 ∼800 m2 layer’s saturation magnetization
t2 nm ∼2 Essentially it is the FL thickness, model assumes t2 � t1
Hk2 kOe −5–10 m2’s anisotropy field, including demag field
Heff2 kOe 0–10 Hk2 plus any applied field
Hex12 kOe 0.1–10 Exchange field from the m1-m2 interface
ξb1 kBT 10–100 m1’s total PMA energy (for a given diameter a, same below)
ξex kBT 10–100 m1-m2 interface’s total exchange energy
ξb2 kBT 10–100 m2’s total anisotropy energy
α1,2,R n.u. 0.0001–0.03 m1, m2, and RL’s LLG damping

Da eV Å
2

0.05–0.5 In-plane direction exchange stiffness of the m2 layer

The model expectation value therefore is within reason
compared with the experimentally measured values, although
precise comparison would not be attempted here since one
does not know with certainty the parameters that determine the
model. An obvious discrepancy of the two-macrospin model
above is it does not predict any diameter dependence of the
efficiency’s dependence on rAmtj. This needs to be addressed
by examining other pathways of spin current, which we will
examine more closely in the next section.

E. Other possible channels of spin conduction

Note in Eq. (18) one essentially writes two parallel spin
conduction outlet channels for m1, that of gTB = 1/rAmtj for
everything we call spin-pumping-like, and gBB = 1/rAmm, in
which we lump together all spin conduction processes from
m1 into m2.

One could in principle split gTB and gBB further into other
possible components. First, let us examine gTB, i.e., the spin
current leakage on the MgO interface side. In addition to the
tunnel barrier’s rAmtj, one could also include the “fieldlike”
interaction across a magnetic tunnel junction’s barrier. This
term has been demonstrated to both have an antiferromagnetic
exchange direction [21], and the coupling strength having a
V 2 dependence on MTJ bias voltage [22], from band-structure
considerations [7,23]. Early experiments placed an estimate
of an antiparallel coupling of the order of 0.1 erg/cm2 in
a Fe|MgO|Fe sandwich system [24]. Later, Tiusan et al.
arrived at a zero-bias interface exchange energy of the
order 4 × 10−2 erg/cm2 from FMR studies of Fe|MgO|Fe|V
multilayers for an MgO barrier of about 1 nm thick, with the
AF coupling strength increasing strongly upon reduction of
MgO thickness [25].

In our samples, the strength of this “fieldlike” exchange
interaction term, here below denoted as Hexmtj (on the FL
side), is not known. Based on the work cited above, one could
place a rough estimate of the low-bias exchange field on FL,

in the neighborhood of Hexmtj ∼ − 0.04 erg/cm2

800 emu/cc × 2.0 nm
∼

−250 Oe with the negative sign denoting antiparallel coupling.

Turn now to the expression of rotating exchange-field-
induced spin current [Eq. (19)]. One could use a similar
relationship to define an exchange-field-like contribution to
the spin conductance across the tunnel barrier.

First, consider the possible rotation-field coupling between
the FL’s interface moment and RL during the two-moment
serial-spin conduction model. This can be written as

rAexmtj =
(

h̄

e2εj

)(
μB

αRMsRtR

)
(Heff1 − HeffR)2 + α2

RH 2
eff1

H 2
exmtjR

,

(28)
where MsR, tR , HeffR, αR , and HexmtjR are the quantities for the
reference layer involved in driven dynamics following the FL
interface’s m1 dynamics.

For parameter estimates, a rational starting point is to
assume the reference layer’s response is dominated by an
interface CoFeB dusting layer not tremendously different
from that of the FL’s m1. Assuming αR ∼ 0.03 (so as to
include possible spin-current loss into the rest of the RL),
MsR ∼ 800 emu/cc, tR ∼ 1 nm, HeffR ∼ 6 kOe, and HexmtjR ∼
250 Oe, one has from Eq. (28) a rAexmtj ∼ 93 �μm2, which is
larger than the MTJ tunnel barrier’s RA product by about 10×.
This, however, is the zero-bias estimate, and the strength of
HexmtjR is expected to increase with V 2, although the voltage
dependence coefficient for our PMA MTJ is not known,
either. An earlier, in-plane version of junctions with similar
rAmtj ∼ 10 �μm2 gave the voltage-dependent coefficient of
about 70 Oe at 1 V [22].

Noting the nature of interactions as such, the matching
frequency of the two bodies plays a significant role in
enhancing spin conduction. That is, an on-resonance spin
conduction process is far more effective than off resonance.
There could be potentially multiple scenarios of on-resonance
interactions, either in RL responding to the “slow” dynamics
of the FL, where in Eq. (1) one substitutes Heff1 with Heff2, or
in RL’s interface moment having a similar m1-like structure
as that of the FL, in which case one might need to replace
HeffR with something closer to Heff1. The combination of
possibilities is quite numerous. An extreme case is to consider
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the on-resonance minimum value of rAexmtj by removing the
(Heff1 − HeffR)2 term. That gives

rAexmtj,min ∼
(

h̄

e2εj

)(
μB

MsRtR

)
αRH 2

eff1

H 2
exmtjR

, (29)

which for an interface moment resonance with MsR ∼
200 emu/cc, tR ∼ 0.2 nm, and αR ∼ 0.03, Heff1 ∼ 70 kOe,
one has rAexmtj,min ∼ 2.2 �μm2, on par with an MTJ’s tunnel
barrier resistance. However, if the resonance is among the
slow dynamics mode, rAexmtj,min < m �μm2 is easily possible
with reasonable parameters for Heff2 and the moment-thickness
product of the RL: for example, if MsR ∼ 50 emu/cc (low
moment value due to SAF reference layer balance), and tR ∼
3.0 nm, and with slow dynamics Heff2 ∼ 3 kOe replacing Heff1,
one could easily get rAexmtj,min ∼ 1.1 m�μm2. In this scenario
then, the resonant coupling between RL and FL alone would be
sufficient to provide a spin-current leakage on par with intrinsic
damping’s equivalent interface rAα ∼ 2 m �μm2 according to
Eq. (17) (with rAα = a2/gα as its definition here), and the
parameters given above for our FL.

The mechanisms discussed in this section are meant to point
out the possible existence of many plausible mechanisms that
could provide a spin-pumping-like process for the FL to lose
its spin current. It does not at present uniquely identify one
single mechanism as the leading contributor. That is likely
a very device geometry and materials-specific problem that
remains too complex and is thus quite elusive at present.

Note also that discussions here are confined to steady-state,
subthreshold limit dynamics. When fast-driven dynamics is
involved, the transient spin-current flow will be more complex,
and such simple linearized analysis is generally not valid.
They are therefore only an approximate guide to the orders
of magnitudes of the various interaction contributions in the
problem, and would not yield quantitatively reliable results.

One piece of evidence, however, argues strongly against
a significant involvement of such an exchange-field-like cou-
pling between FL rotation and RL. As discussed in Sec. IV B,
the precessional-field-induced spin-current loss depends on the
direction of the precession. In other words, it should behave
very differently for AP-P (W0) vs P-AP (W1) transition,
equivalent to having the precession frequency at ±Heff1 in
Eq. (1). This magnitude of asymmetry is simply not seen in
our data, as discussed in Fig. 2. Thus, there is no evidence for
direct involvement of exchange-field-like coupling as the main
mechanism in this particular set of junctions we experimented
with.

Therefore, the serial-spin-current conduction picture de-
scribed in Sec. V B and quantified in Sec. V D remains the
most likely scenario for the observed RA-dependent switching
efficiency. Such two-macrospin model, however, is clearly
insufficient, as it would not produce a size-dependent change
of switching efficiency versus junction RA. To attempt to
explain the size dependence, one needs to go beyond the
simple two-macrospin construct, and include some form of
size-dependent internal degrees of freedom for the FL.

In the next section, we give a semiquantitative consideration
of one such mechanism, namely, the coupling of spin current
into finite-wavelength standing waves of the FL.

VI. STANDING-WAVE MODES AS ADDITIONAL
OSCILLATORS COUPLING THE M1−M2 SYSTEM

In this section, one examines in more detail the m1 to m2

spin-current transport process within the context of the serial
spin-current divider model as described in Sec. V. We now
take a broader view of the precessional exchange-field-induced
spin current within the FL’s m1-m2 system described by
Eqs. (25)–(27). This process can be viewed, in a linear system
(small-amplitude limit), as possible coupling terms into a
superposition of more than one available mode of excitation in
m2. The assumptions of a serial-spin-current divider model
in terms of its material parameters (Sec. V A) and model
scenarios (Sec. V B) are preserved.

What is different is in the expression of spin conductance
gBB in Sec. V B and Eq. (19), instead of a single-mode
macrospin resonance for m2, one writes the total coupling
to multiple available standing-wave resonance modes of m2:

gBB = a2

rAmm
= a2

(
e2εj

h̄

)(
α2Ms2t2

μB

)

×
∑

n

�nH
2
ex12(

Heff1 − Heff2,n
)2 + α2

2H
2
eff1

, (30)

where Heff2,n represents resonant frequency conditions of
active standing-wave modes of the FL’s m2, and �n a numer-
ical factor representing the junction-area averaged coupling
strength for a given mode “n.” The detail of such summation
will depend on the size of interface moment m1’s coherent
region in comparison to that of the mode wavelength, which
is too complex to attempt. The simple physics behind Eq. (30)
is that one considers any and all spin-current m1 precession
delivers into m2 as valid spin current to affect the slow
dynamics of the m2 system. An implicit assumption also is
that the mode-mode coupling in m2 is sufficiently strong that
a steady-state precession amplitude could be established on a
time scale fast compared to m2’s slow dynamics.

In practice, only modes with nearly location-independent
phase within the coherent length of m1 dynamics would couple
effectively with an m1-precession-related gBB. That argues for
relatively low-lying, high-symmetry, long-wavelength modes.
Therefore, we attempt here to semiquantitatively consider the
lowest-lying standing-wave mode that is close to Heff1.

For simplicity, we consider only the two lowest-lying
modes: that of the macrospin mode (which we already did in
Sec. V B), and that of the lowest center-peaked, edge-pinned
standing-wave mode, which we now address.

The lowest-order center-peaked standing-wave mode could
have an excitation frequency next to (or near) macrospin mode
in our particular geometry. Thus, it is also the mode that likely
has a low-lying instability spin-current threshold. To see this,
one needs to examine the nature of magnetic resonance and
standing-wave modes in the presence of nonuniform edge-
demagnetization fields.

A. Location-dependent anisotropy field

The leading-order location-dependent perpendicular direc-
tion demagnetization factor, which is a cause of a location-
dependent anisotropy field in our perpendicularly magnetized
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FIG. 5. An illustration of the radial location dependence of total
effective anisotropy field for a 2-nm-thick disk with various diameters
from a = 10 to 60 nm, 10 nm apart. One assumes for Eq. (32)
its Ms2 → Ms = 800 emu/cm3, and Hku = 12 kOe. The curves are
numerically generated using Eq. (32), and with the z position in
the middle of the disk, z → t/2. Inset: top view of the a = 10 nm
diameter disk for the first center-peaked standing-spin-wave mode’s
normalized in-plane moment amplitude from Eq. (33), with k = (s/a)
and s = 4.81.

FL disk, can be expressed as [26]

N (1)
zz (r,z,ζ ) = 1

4

∫ +∞

ξ=0
J0(ξr)J1(ξ/2){exp (−ξz)

+ exp [−ξ (ζ − z)]}dξ, (31)

where ζ = t/a is the disk’s aspect ratio, t being its thickness,
and a its diameter. Here, r and z are the radial and z coordinates
normalized to the disk’s diameter. Thus, for a point inside the
FL disk, r ∈ [0,1/2], and z ∈ [0,t/a]. The location-dependent
total effective field is, therefore, expressed using real length-
unit coordinates (r,z):

Heff2(r,z) = Hku − 4πMsN
(1)
zz

(
r

a
,
z

a
,
t

a

)
(32)

with Hku being its effective volume anisotropy (for our FL’s
m1-m2 slow dynamics, specifically) which can also include
a uniform z-direction magnetic field in this small-amplitude
limit. An illustration for this radial-position-dependent ef-
fective magnetic field of a FL disk of Ms2 = 800 emu/cm3,
t = 2.0 nm, and Hku = 12 kOe is shown in Fig. 5 for diameters
from 10 to 60 nm.

B. Standing waves in a nonuniform anisotropy field

One method of approximating a solution for a standing
spin wave in a nonuniform magnetic field of similar spatial
symmetry is that, to the leading order, a standing spin wave’s
dispersion function contains an effective anisotropy field that
is weighed by the location-dependent spin-wave amplitude
[27,28].

As a starting point, consider the edge-pinned standing-wave
mode for a perpendicularly magnetized, circular-shaped FL
disk with uniform anisotropy field. In small amplitude, thin
film (t � a), and in linearized amplitude limit, it has the

solution of [29]

Mx = AJν−1(kρ) cos [(ν − 1)ϕ − �τ ],

My = −AJν−1(kρ) sin [(ν − 1)ϕ − �τ ] (33)

for a uniform (location independent in disk interior) anisotropy
potential. Here, Mx,My denote the in-plane, location-(ρ,ϕ)-
dependent amplitude excitation of the spin wave, with
Mx,My � Ms2. They are the position-dependent equivalent
of the βx,y amplitude in Eq. (10). k is the standing-wave wave
vector chosen to satisfy the boundary condition, and Jν is the
Bessel-J function of νth order.

For our lowest-lying, nonuniform standing-wave mode,
considering the edge-peaked nature of the anisotropy field
shown in Fig. 5, it would correspond to (approximately) the
standing-wave mode with a center peak, and with a first zero
crossing near disk edge ρ ≈ a/2 in Eq. (33). This sets ν = 1
and k1 = s/a with s = 4.809 65 representing the first node at
disk edge.

The next step is to use this approximate standing-wave
solution’s amplitude to weigh the anisotropy field’s radial
dependence, and use that to estimate the leading-order cor-
rection to our spin-wave resonance frequency due to location-
dependent Heff2 correction as defined by Eq. (32). Taking
this approach, the corresponding amplitude-weighed, mode-
specific demagnetization factor entering the mode-frequency-
field relationship is then

N (1)
zzsw ≈ 1

Ab

∫ 1/2

ρ=0
N (1)

zz (ρ,ζ/2,ζ )J 2
0 (sρ)ρ dρ, (34)

where Ab = ∫ 1/2
ρ=0 J 2

0 (sρ)ρ dρ is a normalization factor. The
total mode-frequency-related field Hksw is now expressed as

Hksw = h̄ωsw

2μB

= Hku − 4πMs2N
(1)
zzsw + Da

2μB

( s

a

)2
(35)

with Hku being its effective volume anisotropy, as defined in
Eq. (32), Da the exchange-stiffness constant, and s ≈ 4.81 as
defined in Eq. (34) for the first center-peaked standing-wave
mode with complete edge pinning.

For comparison, the uniform-rotation (macrospinlike)
mode experiences an effective field that is Hkav that is the
simple volume average of N (1)

zz of Eq. (31), which gives

Hkav ≈ Kku − 4πMs2Nz(t/a) (36)

with the volume-averaged demagnetization factor to the
leading order estimated as [30]

Nz(ζ ) ≈ 1 −
(

ζ

π

)[
2 ln

(
4

ζ

)
− 1

]
+ O[ζ ]2. (37)

The diameter dependence of the center-peaked mode (35) for
a set of exchange-stiffness value Da is compared with the
volume-averaged anisotropy field in Fig. 6. Where the solid
lines cross under the dashed line, the standing-wave mode
becomes the lowest-frequency mode, and correspondingly
with the lowest spin-torque instability threshold current.

Therefore, with these dispersion characteristics, a finite
exchange-stiffness system would have a critical size, beyond
which the first-order standing-wave mode’s STT threshold
(which is proportional to its eigenfrequency) would become
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FIG. 6. The diameter dependence of the first center-peaked
standing-wave mode’s effective energy Hksw [Eq. (35)] for four

exchange-stiffness values of Da = 0.05,0.10,0.15,0.20 eV Å
2
, com-

pared with the volume-averaged total anisotropy energy or Eq. (36)
(dashed line). The same set of material parameters as in Fig. 5
was used, namely, Ms2 = 800 emu/cm3, t = 2 nm thick, and Hku =
12 kOe.

lower than the volume-averaged, uniform-rotation mode, and
thus becomes the mode first to exceed threshold and grow.

This mechanism alone could imply a dimensional
crossover. For devices of a diameter larger than a length of
the order of the PMA-determined exchange length, which is
related to the point in Fig. 6 where the dashed line crosses
the solid lines, the threshold switching current would scale
differently than the uniform rotation mode (i.e., macrospin),
and start to scale with the first standing-wave mode, thus
adding a constant-current scaling term from the exchange-
stiffness part of Eq. (35). The crossover diameter due to
this mechanism as illustrated in Fig. 6, however, for our
representative parameters used here, tend to be relatively
large, with an estimate of above 50 nm. The experimentally
interesting region where our data concentrate on is already
well below this size, down to 20 nm or less. Yet, our MTJ
system remains nonmacrospinlike, indicating the presence of
other mechanisms.

Indeed, the standing-wave mode can play a role for junction
diameters well below the exchange length. Since the spin-
current coupling between m1 and m2 is from exchange-field
precession, the high-frequency m1 dynamics would couple
more effectively into the standing-wave mode which has a
frequency above the uniform rotation mode, especially in small
device diameter limit.

To see this, let us estimate the spin conductance in steady-
state dynamics for the m1-m2 transport according to Eq. (30).
For simplicity, we only evaluate this lowest standing-wave
resonance mode to get an idea of the magnitude of rAmm and
its diameter a dependence. Substituting Hksw of Eq. (35) into
Eq. (30), one has

rAmm ≈
(

h̄

e2εj

)(
μB

α2Ms2t2

)
(Heff1 − Hksw)2 + α2

2H
2
eff1

H 2
ex12

.

(38)

FIG. 7. The diameter dependence of r∗
Am according to Eq. (39),

numerically evaluated (a) for four different values of Heff1, with Da =
0.3 eV Å

2
, and (b) for five different values of Da , at Heff1 = 80 kOe.

Solid data points are from measurements shown in Fig. 1.

Equation (38) describes a resonance coupling process for
spin-current conduction between m1 and m2. The interface
moment m1, under STT drive, precesses at its own frequency
Heff1 which is significantly higher than the “slow dynamics”
of the rest of the FL. For a given mode, Hksw as defined by
Eq. (35) is a function of diameter a as well as the mode
structure. For the lowest-lying nonuniform standing-wave with
edge-pinning boundary, s ≈ 4.8 in Eq. (35). This mode’s
eigenfrequency depends on diameter a. As it approaches m1’s
Heff1 at small device size, the resonance condition improves,
and the conductance (1/rAmm) increases, making it more
efficient for the interface moments to couple their spin current
into the rest of the FL, resulting in less spin-pumping loss.

More conveniently for comparison with experiments, one
can examine the intercept-to-slope ratio in Eqs. (25) and (1),
which we call r∗

Am:

r∗
Am = rAmm

1 +
(

e2εj

h̄μB

)
(Ms1t1α1)rAmm

= A1

A0
. (39)

Assuming the same materials parameter set as used in
Sec. V D, together with an exchange-stiffness value of Da =
0.3 eV Å2, one has the resulting numerical results for r∗

Am
versus device diameter a for a set of different Heff1 assump-
tions plotted in Fig. 7. These illustrate the effect of small
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diameter or large exchange stiffness Da as increasing effective
precessional spin-current coupling, reducing r∗

Am.
Model results in Fig. 7(b) can be compared with our

experimental data of Fig. 1(c). These are shown in Fig. 7(b)
as solid symbols. The measurement data are sparse, while
the model is extremely simplistic without including any
distributions of quantities such as Heff1 and Da , which would
affect the shape of the size dependence. Nevertheless, an
agreement of the general magnitude of the RA dependence
and the trend direction is seen.

One may also estimate from the observed intercept Fig. 1(d)
the values of the product of Ms1t1α1 according to Eqs. (25) and
(39). The fact one observes no significant dependence of the
intercept term A0 on that of A1 (which is shown to be strongly
size dependent) implies(

e2εj

h̄μB

)
(Ms1t1α1)rAmm � 1. (40)

This is qualitatively consistent with our assumption of Ms1t1
being small. One may further deduce an upper limit for the
interface moment’s damping coefficient to be of the order 10−4

to be consistent with our other assumptions of Ms1t1 values.
Bear in mind, however, all such estimates are only an order-of-
magnitude discussion, and one should not overinterpret values
too quantitatively.

VII. DISCUSSIONS

In principle, there are many other possible coupling terms
in Eq. (30) into higher-order spin-wave modes of the FL.
The task of quantifying contributions from those terms is
beyond the scope of this paper. These higher-order modes are
likely to have more complex location-dependent symmetries,
making conduction of m1 exchange-driven spin current less
efficient when integrated over the entire junction area. Also,
higher-order modes are likely to have more losses before
their spin contribution is finally coupled back into the low-
energy uniform rotation mode that describes the macroscopic
reversal. A more accurate analytical description will also face
challenges of large-amplitude nonlinear and non-steady-state
processes. Those will be extremely sensitive to details of
material inhomogeneity length scales and strengths.

Fundamentally, our experiments and model discussions
based on such observations presented above only require the
moment for m1 to be (a) of high-energy (high-frequency)
nature, and (b) directly coupled to the interface tunnel
conductance. This will not uniquely determine m1’s spatial
distribution. These moments can be somewhat uniformly
distributed at the junction interface, i.e., an “interface-layer”
picture, as illustrated by Fig. 4. Alternatively, they may exist in
the form of simultaneous “hot spots” at the MgO | CoFeB FL
interface [31], where the anisotropy and tunnel conductance
are concentrated within small volumes of the FL, while
everywhere else, the rest of the FL covering the junction
area only provide limited magnetic exchange coupling, and
no coupling to tunnel conductance nor significant interface
PMA. To resolve the materials nature of such interface moment
will require more structural characterization and feedback on
correlations between film structure and growth condition, and
the resulting physical properties of the end device.

The uncertainty of physical structure also means a lack of
direct knowledge for many of the model parameters used in
this work, parameters such as those listed in Table I. The values
used are not unreasonable based on our understandings of these
materials and their behaviors, such as switching error distribu-
tions, and details of their FMR [32]. However, those observa-
tions together can only at best provide a “reasonable range” of
values, and are insufficient to completely constrain the model
parameters. This is likely an ongoing challenge to bridge our
understanding and the physical nature of these MTJs.

Because of these factors, the aim of this paper is only
to provide some extremely oversimplified models for the
grasping of the leading-order cause and effects. The real-life
quantitative behavior is more complex. Beyond this qualitative
understanding presented here, a full micromagnetics simula-
tion may be a tool better suited to reveal quantitative behaviors
for any specific-materials constructs and parameters.

VIII. CONCLUSION

Our CoFeB | MgO | CoFeB-based MTJ samples exhibit
a spin-torque switching efficiency Eb/Ic0 that depends both
on junction size and tunnel barrier RA. An empirical rela-
tionship from experiment is obtained that states Ic0/Eb =
A0 + A1/rAmtj, with A1 ∝ a − a0, where a is the junction
diameter, and a0 ∼ 10 nm in this set of our samples.

The form of Ic0/Eb being proportional with 1/rAmtj is
consistent with a spin-pumping-like spin-current loss. But,
these MTJs typically have RA values rAmtj � 2 �μm2. These
are at least 100× larger than what would give rise to significant
spin-pumping loss compared to intrinsic damping of the FL in
a macrospinlike uniform rotation process.

These data presented here, together with earlier experimen-
tal observations in CoFeB PMA thin-film MTJ structures, such
as an abnormal hard-axis magnetoresistance, and an apparent
high-order PMA coefficient [16,31], and the knowledge of an
MgO-CoFeB interface with concentrated PMA energy density
[15,33], these all point to the existence of interface magnetic
moments responsible for spin-polarized tunneling that are
under high PMA energy density and are with dynamic time
scales much shorter than the whole of the FL.

A toy model, the next simplest model to that of macrospin
rotation, is developed to represent such time-scale separation
between the interface and bulk moments of the FL. It is done
by constructing a coupled two-macrospin system, or we call it
the m1-m2 model. The m1-m2 model can adequately describe
the magnitude of the spin-pumping-like spin-current loss due
to the tunnel conductance determined by the MTJ’s RA. This
is fundamentally due to the high-frequency interface moment
dynamics, and the resulting division of spin-current transport
between the exchange-coupled path from m1 to m2, and the
spin-pumping path of m1 across tunnel barrier. The m1-m2

model, however, would not explain the observed MTJ size
dependence of the switching efficiency nor the size dependence
of the efficiency’s RA dependence.

The junction-size-dependent STT switching efficiency can
be semiquantitatively described by a modified m1-m2 model,
taking into account approximately the coupling between m1’s
high-frequency dynamics and m2’s standing-wave modes in
addition to its macrospin uniform rotation mode. The treatment
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is only semiquantitative: it accounts for the leading-order
effects only. The result gives a correct order-of-magnitude
estimate as well as the direction for the STT switching
efficiency’s size dependence.

This work highlights the role the interface-moment high-
frequency dynamics plays in STT excitation and switching.
These high-energy processes originate from the presence of
interface-concentrated PMA, and a relatively weak exchange
coupling between these interface-located moments and the rest
of the FL.

There are other mechanisms at play that could give rise to a
small apparent RA dependence of the switching efficiency,
mechanisms that we did not address in this paper. Chief
among them is measurement-related junction Joule heating.
This would result in a slight nonconstant temperature threshold

mapping for Ic0, and would also affect the extracted value of
Eb. A full evaluation of the role Joule heating could play
in such measurements is beyond the scope of this paper. The
methods one chose to evaluate Eb may also affect the resulting
value of switching efficiency. We are aware of at least one
published result [34] where for two values of rAmtj = 6 and
12 �μm2, the efficiency of devices of similar sizes was nearly
the same.
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