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Magnetic hexadecapole order and magnetopiezoelectric metal state in Ba1−xKxMn2As2
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We study an odd-parity magnetic multipole order in Ba1−xKxMn2As2 and related materials. Although
BaMn2As2 is a seemingly conventional Mott insulator with G-type antiferromagnetic order, we identify the ground
state as a magnetic hexadecapole ordered state accompanied by simultaneous time-reversal and space-inversion
symmetry breaking. A symmetry argument and microscopic calculations reveal the ferroic ordering of
leading magnetic hexadecapole moment and admixed magnetic quadrupole moment. Furthermore, we clarify
electromagnetic responses characterizing the magnetic hexadecapole state of semiconducting BaMn2As2 and
doped metallic systems. A magnetoelectric effect and antiferromagnetic Edelstein effect are shown. Interestingly,
a counterintuitive current-induced nematic order occurs in the metallic state. The electric current along the z axis
induces the xy-plane nematicity in sharp contrast to the spontaneous nematic order in superconducting Fe-based
122 compounds. Thus, the magnetic hexadecapole state of doped BaMn2As2 is regarded as a magnetopiezoelectric
metal. Other candidate materials for magnetic hexadecapole order are proposed.
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I. INTRODUCTION

Multipole moment, a concept established in the classical
electromagnetism, characterizes the anisotropy of electric and
magnetic charge distribution. Emergent multipole order in
condensed matter physics has attracted fundamental interest
for more than three decades [1]. Ferroic and antiferroic order
of multipole moment has been observed in many d- and
f -electron systems. Although previous studies have focused
on the even-parity multipole order [1], recent studies point
to the odd-parity multipole order which may be realized in
locally noncentrosymmetric systems [2–8]. Experimentally,
several materials have been identified [9], which can be traced
back to Cr2O3 [10].

Locally noncentrosymmetric systems preserve global inver-
sion symmetry in the crystal structure although the local site
symmetry lacks inversion symmetry. Then, the antisymmetric
spin-orbit coupling (ASOC) entangles various degrees of
freedom such as spin, orbital, and sublattice [11,12]. The
peculiar electronic structure may cause intriguing phenomena
characterizing odd-parity multipole order, such as magne-
toelectric (ME) effect [3,4]. Although previous theoretical
works of odd-parity magnetic multipole order are based on toy
models [3–6], in this paper we show the complete classification
of magnetic multipole order in tetragonal systems and identify
the magnetic hexadecapole order in BaMn2As2. Characteristic
electromagnetic responses in the magnetic hexadecapole state
are clarified.

BaMn2As2 is an isostructural compound of BaFe2As2, a
parent compound of Fe-based high-temperature superconduc-
tors (the space group is No. 139, I4/mmm). However, physical
properties of BaMn2As2 and doped BaMn2As2 are quite differ-
ent from the Fe-based compounds; BaMn2As2 undergoes the
G-type antiferromagnetic (AFM) transition below high Néel
temperature TN = 625 K and shows semiconducting behaviors
[13–15]. On the other hand, BaFe2As2 is a metallic compound
with a stripe magnetic structure [15–17] shown in Fig. 1.
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Neither superconductivity nor structural transition, which
have been observed in Fe-based 122 compounds [15–17],
occurs in doped BaMn2As2.

The ground state of BaMn2As2 seems to be a conven-
tional Mott insulator with AFM order [18,19], analogous
to cuprate high-temperature superconductors. However, we
notice unusual symmetry of the AFM state, namely, unbroken
translation symmetry. This is, indeed, because of a locally
noncentrosymmetric crystal structure of BaMn2As2. The two
Mn sites are crystallographically nonequivalent even in the
paramagnetic state. In the folded Brillouin zone, the wave
vector of magnetic order is q = 0, and therefore, a ferroic
order parameter may characterize the seemingly “AFM order.”
Because the space-inversion (SI) symmetry is broken instead
of the translation symmetry, an odd-parity multipole moment
may be a relevant order parameter specifying the ground state
of BaMn2As2. Interestingly, BaMn2As2 can be metalized by
doping hole carriers (Ba1−xAxMn2As2, A= K, Rb) [20–24]
or applying high pressure [25]. Then, the AFM order is robust
in the hole-doped regime [20,22–24,26]. Hence, unconven-
tional responses characteristic of itinerant odd-parity magnetic
multipole state are expected, for which studies may open a new
paradigm of multipole physics.

The paper is organized as follows. In Sec. II, we classify
the magnetic multipole order by group theory and identify

FIG. 1. Contrast of magnetic structure of BaMn2As2 and
BaFe2As2.
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the candidates of order parameter in BaMn2As2. A complete
classification based on irreducible representations (IRs) of a
given point group is carried out as done for unconventional
superconductors [27]. In Sec. III, we microscopically evaluate
the magnetic multipole moment. There remains an ambiguity
of the definition for odd-parity magnetic multipole moment
in crystals, similar to electric polarization in a bulk system.
To avoid this difficulty, we propose a unique definition of
odd-parity magnetic multipole moment by difference from
a reference state. In Sec. IV, we introduce an effective
single-band model Hamiltonian for studies of electromagnetic
responses. In Sec. V, we demonstrate ME effect arising from
the magnetic hexadecapole order and its enhancement in the
metallic state. The AFM Edelstein effect is also shown. In
Sec. VI, we show a counterintuitive current-induced nematic
order, the in-plane (xy plane) rotational symmetry breaking
by out-of-plane electric current ( J ‖ ẑ). This response is a
manifestation of odd-parity magnetic order in the metallic
system. In Sec. VII, a brief summary is given, and we propose
other magnetic hexadecapole compounds showing magnetic
structure similar to BaMn2As2.

II. GROUP-THEORETICAL CLASSIFICATION

In general, a phase transition leads to symmetry reduc-
tion, such as the time-reversal (TR) symmetry breaking by
ferromagnetic order. The crystal symmetry of the system is
represented by point group, and thus phase transitions can be
characterized by the reduction of the point group. In the frame-
work of the group theory, physical quantities are classified
into IRs of a given point group, and symmetry constraints for
emergent responses are obtained. The order parameter of the
phase transition has to belong to the totally symmetric IR of
the point group in the ordered state, but not in the normal state.
This scheme is supported by Landau’s symmetry argument of
second-order phase transitions [28].

In BaMn2As2, the crystallographic point group D4h de-
scends to the subgroup D2d by the AFM transition. IRs in
the normal state are reduced to those in the ordered state as
shown in Table I. The IRs of D2d do not have subscripts g/u,
which indicate the SI symmetry breaking by the AFM order.
Hence, it is suggested that the seemingly conventional G-type
AFM order of BaMn2As2 is identified as a parity-violating
odd-parity multipole order. According to Table I, only the B1u

IR in the normal state is reduced to the totally symmetric A1 IR
in the AFM state. Following the group-theoretical framework,
we conclude that a basis function belonging to the B1u IR is a
relevant order parameter of BaMn2As2.

Now, we classify magnetic multipole moments in the
tetragonal system with the D4h symmetry, and make a list
of possible magnetic multipole order. The magnetic multipole

TABLE I. Reductions of IRs D4h → D2d . The twofold rotational
symmetry axes of D2d are the x/y axes of D4h.

D4h A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

D4h ↓ D2d A1 A2 B1 B2 E B1 B2 A1 A2 E

moments are written as [29]

Mlm = μB

∑
i

(
2l (i)

l + 1
+ 2s(i)

)
·∇i

(
rl
i

√
4π

2l + 1
Y ∗

lm(θi,φi)

)
,

(1)

where μB, l , s, and Ylm are, respectively, Bohr magneton,
orbital angular momentum, spin, and spherical harmonics.
The label i represents electrons in the unit cell and (ri,θi,φi)
are polar coordinates of the ith electron from a reference
point. The phase factor satisfies Y ∗

lm = (−1)lYl−m (Condon-
Shotley phase). When we discuss multipole moments in a
lattice system, it is convenient to use cubic harmonics Z±

lm

defined by

Z+
lm = (−1)m√

2
(Ylm + Y ∗

lm),

Z−
lm = (−1)m

i
√

2
(Ylm − Y ∗

lm), (2)

for 0 < l and 0 < m � l. When m = 0, we denote Zl0 = Yl0.
Accordingly, the multipole moment in the Cartesian coordi-
nates is denoted by

M+
lm = (−1)m√

2
(Mlm + M∗

lm),

M−
lm = (−1)m

i
√

2
(Mlm − M∗

lm). (3)

In our classification, we treat the spin and orbital an-
gular momentum as a classical axial vector (x̂, ŷ,ẑ) ≡
μB[2l/(l + 1) + 2s] since we take thermodynamical and
quantum mechanical expectation values. Table II shows the
classification of multipole moments of low rank (l � 4) in
the D4h point-group symmetry, revealing candidates of order
parameter of the AFM state in BaMn2As2. Up to rank-4,
magnetic multipole moments belonging to the B1u IR of the
D4h point group are

M+
22 (Quadrupole):

√
3(x x̂ − y ŷ), (4)

M+
42 (Hexadecapole):

⎧⎪⎪⎨
⎪⎪⎩

3
√

5z(x2 − y2) ẑ,

+
√

5
2 (7z2 − r2)(x x̂ − y ŷ),

−
√

5
2 (x2 − y2)(x x̂ + y ŷ).

(5)

These basis functions are certainly invariant under all sym-
metry operations in the AFM state. Thus, the AFM order
may be identified as magnetic quadrupole order or magnetic
hexadecapole order. In Sec. III, we microscopically evaluate
multipole moments and show that the magnetic hexadecapole
moment is the leading-order parameter.

In Table III, we show the complete classification of
magnetic multipole order parameter in the D4h point group.
The TR odd basis functions in both real space and momentum
space are listed. In the real-space representation, the basis
functions are nothing but the magnetic multipole moments.
On the other hand, the momentum-space representation looks
quite different from the real space representation for the
odd-parity magnetic multipole order. This is because the parity
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TABLE II. List of magnetic multipoles up to rank-4. First and second columns show a rank and symbol of magnetic multipole, respectively.
Third column shows IR in the point group D4h. Fourth column shows a representation by local magnetic moment [Eq. (1)]. We also show
toroidal dipole moment Ti and magnetic monopole moment r · s, which are not represented by any linear combination of magnetic multipole
moment.

l Mlm IR Basis function

l = 1 M10 A2g ẑ

M+
11 Eg x̂

M−
11 Eg ŷ

l = 2 M20 A1u 2z ẑ − x x̂ − y ŷ

M+
21 Eu

√
3(x ẑ + zx̂)

M−
21 Eu

√
3(y ẑ + z ŷ)

M+
22 B1u

√
3(x x̂ − y ŷ)

M−
22 B2u

√
3(y x̂ + x ŷ)

Tx Eu z ŷ − y ẑ

Ty Eu x ẑ − zx̂

Tz A2u y x̂ − x ŷ

Monopole A1u x x̂ + y ŷ + z ẑ

l = 3 M30 A2g
3
2 (3z2 − r2) ẑ − 3z(x x̂ + y ŷ)

M+
31 Eg 2

√
6zx ẑ +

√
6

4 (5z2 − r2)x̂ −
√

6
2 x2 x̂ −

√
6

2 xy ŷ

M−
31 Eg 2

√
6yz ẑ +

√
6

4 (5z2 − r2) ŷ −
√

6
2 y2 ŷ −

√
6

2 xy x̂

M+
32 B2g

√
15
2 (x2 − y2) ẑ + √

15z(x x̂ − y ŷ)

M−
32 B1g

√
15xy ẑ + √

15z(y x̂ + x ŷ)

M+
33 Eg

3
√

10
4 (x2 − y2)x̂ − 3

√
10

2 xy ŷ

M−
33 Eg

3
√

10
4 (x2 − y2) ŷ + 3

√
10

2 xy x̂

l = 4 M40 A1u 2z(5z2 − 3r2) ẑ − 3
2 (5z2 − r2)(x x̂ + y ŷ)

M+
41 Eu

3
√

10
4 x(5z2 − r2) ẑ +

√
10
4 z(7z2 − 3r2)x̂ − 3

√
10

2 zx(x x̂ + y ŷ)

M−
41 Eu

3
√

10
4 y(5z2 − r2) ẑ +

√
10
4 z(7z2 − 3r2) ŷ − 3

√
10

2 yz(x x̂ + y ŷ)

M+
42 B1u 3

√
5z(x2 − y2) ẑ +

√
5

2 (7z2 − r2)(x x̂ − y ŷ) −
√

5
2 (x2 − y2)(x x̂ + y ŷ)

M−
42 B2u 6

√
5xyz ẑ +

√
5

2 (7z2 − r2)(y x̂ + x ŷ) − √
5xy(x x̂ + y ŷ)

M+
43 Eu

√
70
2 x(x2 − y2) ẑ −

√
70
4 x(x2 + y2) ẑ + 3

√
70

4 z(x2 − y2)x̂ − 3
√

70
2 xyz ŷ

M−
43 Eu

√
70
2 y(x2 − y2) ẑ +

√
70
4 y(x2 + y2) ẑ + 3

√
70

4 z(x2 − y2) ŷ + 3
√

70
2 xyzx̂

M+
44 A1u

√
35
4 (x2 + y2)(x x̂ + y ŷ) +

√
35
4 (x2 − y2)(x x̂ − y ŷ) − 3

√
35

2 xy(y x̂ + x ŷ)

M−
44 A2u

√
35
2 (x2 − y2)(y x̂ + x ŷ) + √

35xy(x x̂ − y ŷ)

under TR operation is opposite between r and k. It should be
noticed that the odd-parity basis functions in the momentum
space are “spin independent.” They indicate spin-independent
corrections to the energy spectrum, which are characteristic
features of odd-parity magnetic multipole states. Although
both TR and SI symmetries are broken, the combined PT
symmetry is preserved. Therefore, the Kramers degeneracy
at each momentum is ensured, and the deformation of band
structure has to be spin independent.

In the same manner, we can classify the electric multipole
order. The electric multipole moment is given by

Qlm = e
∑

i

r l
i

√
4π

2l + 1
Y ∗

lm(θi,φi). (6)

We introduce expressions in the Cartesian coordinates as

Q+
lm = (−1)m√

2
(Qlm + Q∗

lm),

Q−
lm = (−1)m

i
√

2
(Qlm − Q∗

lm), (7)

for 0 < l and 0 < m � l. Table IV shows the classification
of electric multipole order in tetragonal system based on the
point-group symmetry D4h. For example, basis functions of
B1u and B2u IRs in real space represent the electric octapole or-
der, which has been studied in Sr3Ru2O7 and a bilayer Rashba
system [2,7]. On the other hand, A2u and Eu IRs correspond
to the ferroelectric order, and A1u IR shows electric dotria-
contapole order. Electric multipole moment is invariant under
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TABLE III. The TR odd basis functions of IRs in D4h. Basis are represented both in real space and in momentum space. The totally
symmetric IR (A1g) is not shown.

IR Basis in real space Basis in momentum space

A2g M10 ẑ ẑ

M30 z(x x̂ + y ŷ),z2 ẑ kz(kx x̂ + ky ŷ),k2
z ẑ

B1g M−
32 xy ẑ,z(y x̂ + x ŷ) kxky ẑ,kz(ky x̂ + ky ŷ)

B2g M+
32 (x2 − y2) ẑ,z(x x̂ − y ŷ) (k2

x − k2
y) ẑ,kz(kx x̂ − ky ŷ)

Eg M±
11 [x̂, ŷ] [x̂, ŷ]

M±
31 [zx ẑ,yz ẑ],[z2 x̂,z2 ŷ] [kzkx ẑ,kykz ẑ],[k2

z x̂,k2
z ŷ]

[x2 x̂,y2 ŷ],[xy x̂,xy ŷ] [k2
x x̂,k2

y ŷ],[kxky x̂,kxky ŷ]

M±
33 [xy x̂,xy ŷ],[(x2 − y2)x̂,(x2 − y2) ŷ] [kxky x̂,kxky ŷ],[(k2

x − k2
y)x̂,(k2

x − k2
y) ŷ]

A1u M20 2z ẑ − x x̂ − y ŷ kxkykz(k2
x − k2

y)

Monopole x x̂ + y ŷ + z ẑ

M40 z3 ẑ,z2(x x̂ + y ŷ)

M+
44 (x2 + y2)(x x̂ + y ŷ),(x2 − y2)(x x̂ − y ŷ)

xy(y x̂ + x ŷ)

A2u Tz y x̂ − x ŷ kz

M−
44 (x2 − y2)(y x̂ + x ŷ),xy(x x̂ − y ŷ)

B1u M+
22 x x̂ − y ŷ kxkykz

M+
42 z(x2 − y2) ẑ

z2(x x̂ − y ŷ),(x2 − y2)(x x̂ + y ŷ)

B2u M−
22 y x̂ + x ŷ kz(k2

x − k2
y)

M−
42 xyz ẑ

z2(y x̂ + x ŷ),xy(x x̂ + y ŷ)

Eu M±
21 [x ẑ + zx̂,y ẑ + z ŷ] [kx,ky]

Tx,Ty [z ŷ − y ẑ,x ẑ − zx̂]

M±
41 [z2x ẑ,z2y ẑ],[z3 x̂,z3 ŷ],[zx(x x̂ + y ŷ),yz(x x̂ + y ŷ)]

M±
43 [x(x2 − y2) ẑ,y(x2 − y2) ẑ],[x(x2 + y2) ẑ,y(x2 + y2) ẑ]

[z(x2 − y2)x̂,z(x2 − y2) ŷ],[xyzx̂,xyz ŷ]

the TR operation, and therefore, the odd-parity electric mul-
tipole order parameter in k space has “spin-dependent” form
consistent with Fermi liquid theory by Fu [30]. For instance,
the electric octapole order is regarded as spin nematic order in
k space [2]. This is in sharp contrast to the spin-independent
form of odd-parity magnetic multipole order in k space.

III. MAGNETIC HEXADECAPOLE ORDER

Previous studies of multipole order have mainly focused on
even-parity multipole formed by localized electrons [1]. Then,
the local multipole is represented by total angular momentum
multiplets, which can be systematically treated with the aid
of Stevens’ operator-equivalent method [29,31,32]. With this
method, even-parity multipole moment operators are recast
by angular momentum operators with the use of the Wigner-
Eckart theorem. On the other hand, the expectation value of
odd-parity multipole moment operators vanishes when the
local basis has the SI parity. Therefore, the operator-equivalent
method cannot be used to evaluate odd-parity multipole
moments. Hence, we should adopt local basis with mixed
SI parity, which are formed by hybridization of even- and
odd-parity orbitals.

In BaMn2As2, the magnetic moment is formed mainly by
Mn d orbitals, and hybridization with As p orbitals gives

rise to the anisotropic magnetic charge distribution, namely,
magnetic multipole moments. The d-p hybridization leads to
the SI parity mixing. Hence, the odd-parity magnetic multipole
moments [Eq. (1)] are evaluated by calculating local magnetic
multipole moments (LMMMs) of Mn-As clusters [33]. Since
the magnetic unit cell of BaMn2As2 is the same as the crystal
unit cell, the unit cell contains two nonequivalent Mn-As
clusters shown in Fig. 2. Thus, we here evaluate LMMMs
on the two Mn-As clusters.

FIG. 2. Two nonequivalent Mn-As clusters in BaMn2As2. In the
AFM state, the magnetization is opposite between two clusters. Since
one cluster is transformed to the other under the PT operation,
the global PT symmetry is preserved. In the left figure, As atoms
surrounding Mn atoms are labeled by As(1)–As(4) for discussions.
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TABLE IV. The TR even basis functions of IRs in D4h. Bases are represented both in real space and momentum space. In the real-space
representation, electric multipole moments up to rank-4 are shown. The rank-5 dotriacontapole Q−

54 is also shown for A1u IR.

IR Basis in real space Basis in momentum space

A1g Q20 z2 k2
z

Q40 z4 k4
z

Q±
44 x4 − 6x2y2 + y4 k4

x − 6k2
xk

2
y + k4

y

xy(x2 − y2) kxky(k2
x − k2

y)

A2g Q−
44 xy(x2 − y2) kxky(k2

x − k2
y)

B1g Q+
22 x2 − y2 k2

x − k2
y

Q+
42 (x2 − y2)(7z2 − r2) (k2

x − k2
y)(7k2

z − k2)

B2g Q−
22 xy kxky

Q−
42 xy(7z2 − r2) kxky(7k2

z − k2)

Eg Q±
21 [zx,yz] [kzkx,kykz]

Q±
41 [zx(7z2 − 3r2),yz(7z2 − 3r2)] [kzkx(7k2

z − 3k2),kykz(7k2
z − 3k2)]

Q±
43 [zx(x2 − 3y2),yz(x2 − 3y2)] [kzkx(k2

x − 3k2
y),kykz(k2

x − 3k2
y)]

A1u (Q−
54) xyz(x2 − y2) kx x̂ + ky ŷ + kz ẑ

kz ẑ − kx x̂,kz ẑ − ky ŷ

A2u Q10 z ky x̂ − kx ŷ

Q30 z(5z2 − 3r2)

B1u Q−
32 xyz kx x̂ − ky ŷ

B2u Q+
32 z(x2 − y2) ky x̂ + kx ŷ

Eu Q±
11 [x,y] [kx ẑ,ky ẑ],[kz x̂,kz ŷ]

Q±
31 [x(5z2 − r2),y(5z2 − r2)]

Q±
33 [x(x2 − 3y2),y(3x2 − y2)]

In this section, we consider magnetic multipole moment
induced by spin angular momentum, for simplicity. With the
use of the linear combination of atomic orbitals method (LCAO
method), local basis is expressed by superposition of atomic
orbitals on Mn and As atoms. Then, a hybridized d-p orbital
mainly consists of Mn d orbital and contains As p orbitals [34].
With such hybrid local basis, we evaluate odd-parity magnetic
multipole moments.

A. Undoped BaMn2As2

Here, we calculate LMMMs of the Mn-As cluster in
undoped BaMn2As2. The formal valence of the Mn atom
is +2 with five 3d electrons and the spin configuration is
the completely high-spin state [35]. Thus, the orbital angular
momentum quenches in the Mn atom. The leading odd-parity
magnetic multipole moment comes from the observed z com-
ponent of spin magnetic moment [13,14]. Therefore, among
the candidates [Eqs. (4) and (5)] the magnetic hexadecapole
moment M+

42,z ≡ 3
√

5z(x2 − y2) ẑ is naturally the multipole
order parameter of BaMn2As2.

The expectation value of M+
42,z is given by contributions of

five electrons in the Mn-As cluster,

〈M+
42,z〉L = μB〈6

√
5z(x2 − y2)sz〉L

= μB

5∑
j=1

〈
ψ

j

dp

∣∣ 6
√

5z(x2 − y2)
∣∣ψ j

dp

〉 〈sz〉j , (8)

where the subscript 〈. . .〉L indicates average on the local basis
of the Mn-As cluster and we used ẑ = 2μBsz. Orbital wave
functions |ψ j

dp〉 represent five Mn 3d orbitals hybridized with
As 4p orbitals, and 〈sz〉j denotes spin polarization of j th
orbital (j = 1–5).

The two nonequivalent Mn-As clusters have the same
hexadecapole moment 〈M+

42,z〉L
since both the octapole electric

charge distribution 〈ψ j

dp| 6
√

5z(x2 − y2) |ψ j

dp〉 and the mag-
netic moment 〈sz〉j are opposite between the clusters. Thus,
the hexadecapole moment is a ferroic order parameter as we
expected. This is furthermore ensured by the symmetry; the
odd-parity magnetic multipole moment operators have the
even parity for the PT symmetry and hybrid d-p orbitals of two
nonequivalent Mn-As clusters are transformed to each other
under the PT operation. Therefore, the expectation value of
the hexadecapole moment M+

42,z is equivalent between the two
clusters.

Now, we evaluate the magnetic hexadecapole moment by
focusing on a Mn-As cluster with

∑5
j=1 〈sz〉j > 0 without loss

of generality. Considering quenched orbital angular momen-
tum, we approximate the hybrid d-p orbital by the hybrid
s-s orbital |ψss〉 for a rough estimation. In the s-s orbital,
the s orbitals of four As atoms, |s,As(i)〉, are perturbatively
hybridized with the s orbital of Mn atom |s,Mn〉. The As atoms
are labeled by the index i (see Fig. 2). Denoting the hopping
energy between Mn and As atoms as −t and the level splitting
as �dp < 0, and assuming |t/�dp| 
 1, we obtain the wave
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function of the hybrid orbital

|ψss〉 = |s,Mn〉 + t

�dp

4∑
i

|s,As(i)〉 . (9)

The hybridized component
∑

i |s,As(i)〉 is not an eigenstate of
the SI symmetry, indicating the local SI symmetry breaking in
BaMn2As2. This is an essential ingredient of the odd-parity
LMMMs. We calculate the hexadecapole moment up to
O(t/�dp) as

〈M+
42,z〉L = 〈ψss | 3

√
5z(x2 − y2) |ψss〉mz,

= 24
√

5 IEO
t

�dp

mz + O
(
t2

/
�2

dp

)
, (10)

where IEO = 〈s,As(1)| z(x2 − y2) |s,Mn〉 is a matrix element
of the electric octapole moment and mz = 2μB

∑5
j=1 〈sz〉j is

the total spin magnetic dipole moment.
We here adopt Slater-type orbitals [36,37], in which orbital

wave functions are approximated by those of hydrogenlike
atoms parametrized by effective principal quantum number
n∗, orbital and magnetic quantum numbers (l,m), and shielding
factor α:

ψn∗,l,m,α(r) = Nrn∗−1e−αrYlm(r̂), (11)

with N being a normalized factor. Effective parameters n∗
and α are determined by the Slater rule [36]. Real Slater-type
orbitals for l > 0 are represented by using the cubic harmonics
Z±

lm instead of Ylm. Using parameters

(n∗,l,m,α) = (3,0,0,3.52 Å
−1

) for |s,Mn〉,
(n∗,l,m,α) = (3.7,0,0,2.68 Å

−1
) for |s,As(1)〉, (12)

and position of the As(1) atom (x,y,z) = (a/2,0,c′) with
lattice parameters a = 4.15 Å and c′ = 1.49 Å [13,14], we

obtain IEO = 0.025 Å
3
. Then, the local magnetic hexadecapole

moment is evaluated as

〈M+
42,z〉L � −0.66 μBÅ

3
, (13)

for t/�dp = −0.1 and mz = 5μB.

B. Hole-doped BaMn2As2

Lightly hole-doped Ba1−xKxMn2As2 shows metallic be-
haviors, and doping hole carriers give the rigid band shift
in the band structure [20]. Then, the magnetic structure
remains to be the AFM state with a large magnetic moment
4.21μB for x = 0.05 [20,26]. Thus, the hexadecapole moment
〈M+

42,z〉 is robust in the hole-doped regime. On the other hand,
the hole doping changes the filling of Mn 3d orbitals and
partially restores the orbital angular momentum, implying
non-negligible effects of LS-coupling (spin-orbit coupling).
This results in anisotropic distribution of magnetic charge
in the xy plane and induces magnetic quadrupole moment
without suppressing the ẑ-collinear AFM order.

In a heavily hole-doped region, Ba1−xKxMn2As2 also
undergoes the ferromagnetic transition and the ferromagnetic
moment is aligned in the xy plane [21,23,24,38]. The x-ray
magnetic circular dichroism experiment identified that the
ferromagnetic moment arises from the As p orbitals and

FIG. 3. Sketch of pα and pβ orbitals in a Mn-As cluster. (a) The
pα orbital is directed to the xy plane, and (b) the pβ orbital consisting
of pz orbitals extends in the z direction.

coexists with the AFM moment of Mn atoms [38]. Although
the interplay of the magnetic hexadecapole order and the
ferromagnetic order would be an interesting subject, it is left
for a future study. In this paper, we focus on the G-type
AFM state, which realizes in the lightly hole-doped region
x < xc ∼ 0.19 [21], although we also show some numerical
results beyond this doping region.

ARPES study [39] and DFT+DMFT calculations [40] have
shown that the valence band of BaMn2As2 mainly consists of
Mn 3dx2−y2 and As 4pz orbitals. The doped holes occupy the
hybridized d-p orbital, whose wave function is obtained by
the LCAO method

∣∣ψdp,± 1
2

〉 = ∣∣dx2−y2 ,Mn,± 1
2

〉 + tα

�dp

∣∣pα,± 1
2

〉

+ tβ

�dp

∣∣pβ,± 1
2

〉 ± iλ

�1

∣∣dxy,Mn,± 1
2

〉

− iλ

2(�2 ∓ 2h)

∣∣dyz,Mn,∓ 1
2

〉

± λ

2(�2 ∓ 2h)

∣∣dzx,Mn,∓ 1
2

〉
, (14)

with tα (tβ) being the hopping parameter between the Mn
|dx2−y2〉 and As |pα〉 (|pβ〉) orbitals. Figure 3 illustrates the
pα and pβ orbitals, which are given by linear combinations
of p orbitals of four As atoms. The orbital wave functions are
explicitly written as

|pα〉 = |px,As(1)〉 − |py,As(2)〉 − |px,As(3)〉
+ |py,As(4)〉 , (15)

|pβ〉 = |pz,As(1)〉 + |pz,As(2)〉 + |pz,As(3)〉
+ |pz,As(4)〉 , (16)

which are compatible with the symmetry of the Mn dx2−y2

orbital. Energy levels of As p orbitals, Mn dxy orbital, and Mn
dyz(dzx) orbital from the level of Mn dx2−y2 orbital are denoted
by �dp, �1, and �2, respectively. The AFM molecular field
−hσz (h > 0 for the Mn-As cluster with mz > 0) has been
introduced for Mn d orbitals, and λ is the LS-coupling constant
which is generally small in 3d transition-metal ions.

In the hole-doped BaMn2As2, the LS-coupling induces the
local magnetic quadrupole moment M+

22 = μB2
√

3(xsx − ysy)
[Eq. (4)] which belongs to the same IR as the magnetic
hexadecapole moment M+

42. We here calculate the expectation
value of M+

22 as follows. First, the contribution of one hole in
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the hybrid d-p orbital |ψdp, 1
2 〉 is evaluated,

〈M+
22〉L = −μB〈2

√
3(xsx − ysy)〉L (17)

= −μB4
√

3
λ

�2 − 2h

(
Iα

tα

�dp

+ Iβ

tβ

�dp

)
, (18)

where

Iα = 〈px,As(1)| x |dzx,Mn〉 + 〈px,As(1)| y|dyz,Mn〉, (19)

Iβ = 〈pz,As(1)| x |dzx,Mn〉 + 〈pz,As(1)| y |dyz,Mn〉 . (20)

Assuming Slater-type orbitals with effective parameters

(n∗,l,m,α) = (3,2,±1,3.52 Å
−1

) (21)

for the Mn dyz and dzx orbitals, and

(n∗,l,m,α) = (3.7,1,±1(0),2.68 Å
−1

) (22)

for the As p orbitals, we obtain

Iα = −0.241 Å, Iβ = −0.0563 Å (23)

for the lattice constant of Ba1−xKxMn2As2 (x = 0.05), a =
4.16 Å, and c′ = 1.49 Å [26]. When we take tα/�dp =
tβ/�dp = −0.1 and λ/(�2 − 2h) = −0.01, the magnetic
quadrupole moment induced by one hole per Mn atom is
estimated as

〈M+
22〉L = 1.0×10−3 μB Å. (24)

Then, the magnetic quadrupole moment of hole-doped
Ba1−xKxMn2As2 is obtained as

〈M+
22〉L = x×5.0×10−4 μB Å. (25)

The magnitude of the magnetic quadrupole moment 〈M+
22〉L

is reduced by small factors λ/(� − 2h) and x. Therefore, the
magnetic hexadecapole moment remains to be the leading-
order parameter of hole-doped BaMn2As2.

C. Order parameter of odd-parity magnetic
multipole order in crystals

LMMMs specify microscopic distribution of magnetic
charge around magnetic atoms or clusters, as we have studied
in previous subsections. However, there are ambiguities in
the definition of macroscopic odd-parity multipole moment
in crystal systems. In order to avoid the ambiguity, we
here introduce a unique definition by removing an irrelevant
component which does not break the SI symmetry.

First, operators of multipole moment defined by Eq. (1)
may depend on the origin of coordinates. Although later this
ambiguity is resolved by subtracting the irrelevant component,
it is convenient to choose an inversion center as the origin.
Then, the magnetic unit cell is defined so that its center is
the inversion center. The inversion center is no longer an
inversion center in the AFM state because the SI symmetry is
spontaneously broken. However, it still remains to be an origin
of the PT operation preserved in the odd-parity magnetic
multipole state.

Second, there remains an ambiguity for the choice of an
inversion center and a magnetic unit cell. Actually, the crystal
structure of BaMn2As2 contains four nonequivalent inversion

FIG. 4. (a) A unit cell of BaMn2As2. The red points show the
inversion centers P1, P2, P3, and P4. (b)–(e) The magnetic unit cell
corresponding to each inversion center. Configuration of neighboring
Mn atoms is shown.

centers, namely, P1, P2, P3, and P4 in Fig. 4. Coordinates
of Mn atoms depend on the choice of inversion center and
corresponding unit cell. The magnetic multipole moment,
indeed, depends on the inversion center when it is simply
defined by the expectation value of Eq. (1) in the unit cell.
For instance, let us first choose the inversion center P1.
Coordinates originating from the inversion center (X,Y,Z) are
related to the coordinates (x,y,z) used in previous subsections
for Mn-As clusters; (X,Y,Z) = (x + a/2,y,z + c/4) for the
Mn(1) atom at (X,Y,Z) = (a/2,0,c/4). Then, the expectation
value of Z(X2 − Y 2)sz for electrons in the Mn-As cluster is
decomposed into LMMMs and evaluated as

〈Z(X2 − Y 2)sz〉Mn(1) = 〈z(x2 − y2)sz〉Mn(1) + a2c

16
〈sz〉Mn(1)

(26)

because the symmetry-adapted LMMM operators are only the
hexadecapole moment M+

42,z and the dipole moment M10 ∝ sz.
Summing up contributions from two Mn atoms in the unit cell,
we obtain the multipole moment

〈M+
42,z〉P1 = 2〈M+

42,z〉L + 3
√

5a2c

4
mz. (27)

Similarly, we obtain

〈M+
42,z〉P2 = 2〈M+

42,z〉L − 3
√

5a2c

4
mz, (28)

〈M+
42,z〉P3 = 2〈M+

42,z〉L, (29)

〈M+
42,z〉P4 = 2〈M+

42,z〉L, (30)

when we choose the inversion center P2, P3, and P4, respec-
tively. We here notice that the contribution from the local
magnetic dipole moment ± 3

√
5a2c
4 mz causes the ambiguity.

To resolve the ambiguity, we redefine the magnetic multi-
pole moment by difference from a reference state, following
procedures used for electric dipole moment [41,42], magnetic
monopole moment [43,44], and magnetic toroidal moment
[45,46]. For this purpose, we consider the virtual crystal
structure illustrated in Fig. 5. In the virtual crystal structure
[Fig. 5(a)], the As atoms lie in the same plane as Mn atoms
and Ba atoms have been removed. Then, the D4h symmetry
is preserved even in the AFM state since the Mn atoms
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FIG. 5. (a) Virtual crystal structure whose SI symmetry is
recovered in the AFM state. (b) Real crystal structure of BaMn2As2.

are inversion centers. However, the magnetic hexadecapole
moment defined by Eq. (1) remains finite for the inversion
center P1 and P2 due to the irrelevant terms ± 3

√
5a2c
4 mz.

Thus, we define the order parameter of odd-parity magnetic
multipole order 〈Mlm〉 by subtracting the irrelevant component

〈Mlm〉 = 〈Mlm〉� − 〈Mlm〉0
�, (31)

where � denotes an inversion center and 〈. . .〉0
� indicates the

expectation value in the virtual crystal structure, namely, the
reference state. Although the multipole moment 〈Mlm〉0

� in the
reference state depends on an inversion center, the odd-parity
magnetic multipole moment defined by difference from the
reference state is unique in the sense that it is independent of
the choice of inversion center and unit cell.

The local magnetic hexadecapole moment vanishes in
the virtual crystal, namely, 〈M+

42,z〉0

L
= 0, since the Mn-As

clusters preserve the local SI symmetry. In other words, the
macroscopic magnetic hexadecapole moment defined above is
given by the LMMM,

〈M+
42,z〉 = 2〈M+

42,z〉L. (32)

Similarly, we obtain

〈M+
22〉 = 2〈M+

22〉L (33)

for the magnetic quadrupole moment. Thus, the macroscopic
magnetic multipole moment in BaMn2As2 is given by the
LMMMs investigated in Secs. III A and III B. It is again
stressed that the local SI symmetry breaking in the crystal
structure plays an essential role for the odd-parity magnetic
multipole order.

The procedure used in this section can be applied to not only
BaMn2As2, but also to various odd-parity magnetic multipole
states. First, a magnetic and centrosymmetric crystal structure
is considered as a reference state. Second, an irrelevant compo-
nent which is finite in the centrosymmetric state is evaluated.
Then, the odd-parity magnetic multipole moment in real
crystals is uniquely defined by difference from the reference
state. The reference state is not uniquely determined in general.
However, it is reasonable to consider the virtual structure in
Fig. 5 for BaMn2As2 as a reference state which restores the
local SI symmetry of magnetic sites. Using this framework,
we are able to estimate odd-parity magnetic multipole moment
more precisely by first-principles calculations [43,44,47–49].
The first-principles study of Ba1−xKxMn2As2 is an important
future work.

For calculations of the multipole moment, additional care
is needed for the multivalued problem [41,44,45]. When
evaluating electric dipole moment by using the Berry phase
formulation [41], we may obtain the electric dipole moment
with the arbitrariness of neR, where n is an integer and
R is the minimal lattice vector along the polarization axis.
The physically meaningful dipole moment should be smaller
than the arbitrary term. Similar multivalued problem may also
occur in calculations of higher-order multipole moment. The
arbitrary term of magnetic hexadecapole moment, namely, the
quantum unit of magnetic hexadecapole moment �M+

42,z, is
roughly evaluated as

�M+
42,z ∼ a2c mz, (34)

which is in the same order as the irrelevant terms ± 3
√

5a2c
4 mz

in Eqs. (27) and (28). Our evaluation of the magnetic
hexadecapole moment 〈M+

42,z〉 ∼ 1 μB Å3 [Eqs. (13) and (32)]

is much smaller than the quantum unit �M+
42,z ∼ 102 μB Å3,

and therefore our calculation does not suffer the multivalued
problem.

IV. EFFECTIVE MODEL

In the following part of this paper, we show characteristic
properties induced by odd-parity magnetic multipole order.
For this purpose, we introduce a tight-binding Hamiltonian
for the valence band of BaMn2As2 mainly consisting of Mn
dx2−y2 orbital [39,40].

By projecting the five-orbital model to the valence band
(Appendix A), the effective Hamiltonian is obtained as

H = Hhop + HASOC + HAFM =
∑

k

c†kH (k)ck, (35)

H (k) =
(

ε(k) + [gA(k) − hA] · σ VAB(k)
VAB(k) ε(k) + [gB(k) − hB] · σ

)
, (36)

where σ = (σx,σy,σz) is the Pauli matrix and ck = (ck,A,+,ck,A,−,ck,B,+,ck,B,−)T is a vector representation of annihilation
operators labeled by momentum k, sublattice index τ = A, B, and spin σ = ±. The kinetic energy term is given by

Hhop =
∑
k,τ,σ

ε(k)c†k,τ,σ ck,τ,σ +
∑
k,σ

(VAB(k)c†k,A,σ ck,B,σ + H.c.), (37)
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where

ε(k) = −2t1(cos kx + cos ky) − 8t2 cos
kx

2
cos

ky

2
cos

kz

2
, (38)

VAB(k) = −4t̃1 cos
kx

2
cos

ky

2
− 2t̃2 cos

kz

2
(39)

are intrasublattice and intersublattice hopping energy, respec-
tively. The G-type AFM structure of BaMn2As2 is taken into
account by the molecular field term HAFM. Since the magnetic
moment is parallel to the z axis and changes its sign between
the A and B sublattices, the AFM molecular field is given by
hA = hẑ and hB = −hẑ.

The k-dependent Zeeman terms gA(B)(k) · σ originate
from the LS-coupling and the interorbital hybridization be-
tween the Mn dx2−y2 orbital and other Mn d orbitals, as we
show the derivation from the five-orbital model in Appendix
A. The PT symmetry preserved in the AFM state ensures the
staggered structure gA(k) = −gB(k) ≡ g(k). The g vector
g(k) is decomposed into the odd- and even-parity parts
g(k) = g′(k) + g′′(k). The odd-parity component represents
the ASOC term by

g′(k) =

⎛
⎜⎝

α1 sin ky + α2 cos kx

2 sin ky

2 cos kz

2

α1 sin kx + α2 sin kx

2 cos ky

2 cos kz

2

α3 sin kx

2 sin ky

2 sin kz

2

⎞
⎟⎠. (40)

This term arises from the local SI symmetry breaking of
Mn atoms and, therefore, all the coefficients α1, α2, and α3

are finite in both paramagnetic and magnetic hexadecapole
states. In contrast, the additional component g′′(k) denotes an
even-parity spin-orbit coupling, called as symmetric spin-orbit
coupling (SSOC). The derivation from the five-orbital model
gives the expression (see Appendix A)

g′′(k) =

⎛
⎜⎝

β sin kx

2 cos ky

2 sin kz

2

−β cos kx

2 sin ky

2 sin kz

2

0

⎞
⎟⎠. (41)

The SSOC term breaks the TR symmetry, although it breaks
neither the local nor global SI symmetry. Therefore, the SSOC
term disappears in the paramagnetic state. The broken TR
symmetry by the AFM order gives rise to the SSOC term.

Diagonalizing the Bloch Hamiltonian H (k), we obtain the
energy spectrum

Ek = ε(k) ±
√

VAB(k)2 + |g(k) − hẑ|2, (42)

with double degeneracy protected by the PT symmetry. In
the undoped system, the Fermi level lies in the gap of the two
bands. Then, the system shows insulating behaviors. Doping
hole carriers lower the Fermi level without reconstruction of
the band structure [20]. Then, the partially filled valence band
leads to metallic behaviors.

In the following sections, we investigate electromagnetic
responses resulting from the SI symmetry breaking. Then,
the SSOC term does not play an important role since it
does not break local or global SI symmetry, as discussed in
Appendix A. Thus, we set β = 0 for simplicity, and assume

the parameters t1 = −0.1, t2 = −0.05, t̃1 = 0.05, t̃2 = 0.01
for the kinetic energy term, h = 1 for the AFM molecular
field, and α1 = −0.005, α2 = 0.001, α3 = 0.01 for the ASOC
term, unless mentioned otherwise. The interlayer coupling
is moderate in BaMn2As2 compared with a related quasi-
two-dimensional compound LaMnAsO [40]. Thus, moderate
interlayer hopping integrals are assumed. We adopt the unit
for the lattice parameter a = c = 1.

V. MAGNETOELECTRIC EFFECT

A. Uniform magnetoelectric effect

In the previous sections, the AFM state of BaMn2As2 has
been identified as an odd-parity magnetic multipole state,
where the SI and TR symmetry are broken whereas the
combined PT symmetry is preserved. Then, the ME coupling
is allowed in a free-energy expansion in accordance with
group-theoretical discussions [50]. The resulting ME effect,
M = α̂E, that is, the electric-field-induced magnetization, has
been observed in experiments [10]. The symmetry argument
tells us that the ME response is attributed to rank-2 magnetic
multipole orders listed in Table II. Decomposing the ME
tensor α̂ = (αμν) into isotropic, antisymmetric, and traceless
symmetric terms, we have

α̂ = 1
3 (Trα̂)1̂ + 1

2 (α̂ − α̂T) + [
1
2 (α̂ + α̂T) − 1

3 (Trα̂)1̂
]
, (43)

corresponding to magnetic monopole moment
∑

i xi x̂i , mag-
netic toroidal dipole moment

∑
j,k εijkxj x̂k , and magnetic

quadrupole moment xi x̂j + xj x̂i and xi x̂i − xj x̂j for i �= j .
In accordance with the symmetry of magnetic quadrupole
moment M+

22 ∝ x x̂ − y ŷ, the ME effect characterized by the
ME tensor

α̂ =
⎛
⎝α 0 0

0 −α 0
0 0 0

⎞
⎠ (44)

is allowed in BaMn2As2.
To demonstrate the ME effect, we calculate the ME

coefficient by Kubo formula

αμν = egμBh̄

2iN

∑
k,p,q

[σμ(k)]pq[vν(k)]qp
Ep(k) − Eq(k) + iδ

f (Ep) − f (Eq)

Ep(k) − Eq(k)
,

(45)

where p and q label the band indices, N is the number
of unit cell, δ is a scattering rate, and f (E) is the Fermi
distribution function. [σμ(k)]

pq
and [vν(k)]qp are, respectively,

the band representation of spin operator σμ and velocity
operator vν(k) = ∂H (k)/∂kν .

We plot the ME coefficient as a function of the chemical
potential μ in Fig. 6. Our numerical result is consistent with
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FIG. 6. ME coefficients αxx (red triangles) and αyy (blue circles)
as a function of the chemical potential μ. We assume the temperature
T = 0.01 and the scattering rate δ = 0.01, and choose the unit
egμBh̄/2 = 1.

the symmetry argument. Only the ME coefficients αxx = −αyy

are finite, corresponding to the magnetic quadrupole moment
M+

22. Dark background in the figure represents the metallic
region where the chemical potential lies in the valence band
or conduction band. Otherwise, the chemical potential lies in
the gap, and the system is insulating. Interestingly, the ME
effect is significantly enhanced in the metallic region. The
magnitude of the magnetoelectric coupling in the insulating
phase (|αxx | = |αyy | ∼ 10−4) corresponds to ∼10−3 ps m−1

when we take |t1| = 100 meV. This magnetoelectricity is much
smaller than that of the prototypical magnetoelectric material
Cr2O3 (|α⊥| = |αxx | = |αyy | ∼ 10−1 ps m−1, |α‖| = |αzz| ∼
1 ps m−1) [51] because only a small magnetic quadrupole
moment is induced by the LS-coupling term. However,
precise estimation of the magnetoelectric coupling requires
more elaborate works. For instance, calculations based on the
multiorbital model, estimation of orbital magnetoelectricity
[52,53], and DFT calculations are desired.

B. Antiferromagnetic Edelstein effect

Next, we show the AFM Edelstein effect, namely, the AFM
spin polarization induced by the electric current. This charac-
teristic response of locally noncentrosymmetric systems [3] is
attracting recent interest for application to antiferromagnetic
spintronics [54–56].

The operator of AFM spin moment is defined as σ AF
μ = σμτz

with the Pauli matrix τ acting on the sublattice space.
The ASOC term is uniform between sublattices when it is
represented by the AFM spin operator

HASOC =
∑

k,τ,σ,σ ′
g(k) · σ AFc

†
k,τ,σ ck,τ,σ ′ . (46)

Hence, the AFM spin-momentum locking occurs in locally
noncentrosymmetric systems, that is analogous to the spin-
momentum locking in globally noncentrosymmetric systems.
The above representation of the ASOC term indicates the
staggered ME effect represented by

MAF = α̂AF E, (47)

-0.2
-0.15
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 0

 0.05
 0.1

 0.15
 0.2

-1.5 -1 -0.5  0  0.5  1  1.5  2
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FIG. 7. Staggered ME coefficient αAF
xy (= αAF

yx ) as a function of
the chemical potential μ in the AFM state (h = 1, red triangles)
and in the paramagnetic state (h = 0, blue circles). The shaded area
indicates the metallic region for h = 1. We assume T = 0.01 and
δ = 0.01 and adopt the unit egμBh̄/2 = 1.

in analogy to the Edelstein effect [57], that is, the spin
polarization due to the current-induced shift of Fermi surface.
Since the ASOC term contains an in-plane component, ∝
kxσ

AF
y + kyσ

AF
x , which is a basis function of the totally

symmetric A1g IR of the D4h point group, we have finite
staggered ME coefficients αAF

yx = αAF
xy . The ASOC term is

derived from only the local SI symmetry breaking and does not
require the TR symmetry breaking. Therefore, the staggered
ME effect occurs in both paramagnetic state and AFM state.

Replacing σμ with σ AF
μ in Eq. (45), we calculate the

staggered ME coefficient αAF
μν . Figure 7 shows numerical

results of αAF
yx = αAF

xy in the AFM state (h = 1) and the
paramagnetic state (h = 0). Although the staggered ME effect
is caused by the in-plane component of the ASOC term,
g′

x(k) and g′
y(k), this component is suppressed in the AFM

state (see Appendix A) since the spin polarization along
the z axis suppresses the spin-flipping process. Thus, we
assume the in-plane components in the paramagnetic state
α1(para)= −0.05 and α2(para)= 0.01, which are larger than
those in the AFM state. Indeed, the staggered ME coefficient
is smaller in the AFM state than in the paramagnetic state.

In contrast to the uniform ME effect, the staggered ME
effect is essentially induced by the electric current. The shift
of Fermi surface under the current results in the AFM spin
polarization, like in the Edelstein effect [57]. Thus, we call
Eq. (47) the AFM Edelstein effect.

The difference between the uniform ME response and
staggered ME response comes from the PT parity of spin
operators. The PT parity is even for the AFM spin moment
σ AF, while the uniform spin operator σ is PT odd. Since the
velocity operator v has even PT parity, the ME coefficient
αμν is purely determined by interband effects, whereas the
staggered ME coefficient αAF

μν by intraband effects. Thus,
αμν ∝ τ 0 while αAF

μν ∝ τ 1 with respect to the lifetime of
quasiparticles, indicating the electric-field-induced uniform
ME effect and the electric-current-induced AFM Edelstein
effect. Indeed, the latter does not occur in the insulating state. In
Appendix B, we prove the lemma for Kubo formula supporting
these discussions.
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FIG. 8. (a) The in-plane component of g vector [g′
x(k), g′

y(k)]
in the ASOC term. The momentum dependence on the kz = 0 plane
is shown by arrows. The electric field along the y direction shifts
the Fermi surface (circle with a solid line). (b) The k-dependent
AFM spin polarization on the Fermi surface. Summation for the
momentum leads to a macroscopic AFM spin polarization in the x

direction.

Here, we show a simplified expression of αAF
xy . The matrix

element of the velocity operator is obtained as

[vμ(k)]pq = ∂Ep(k)

∂kμ

δpq

+ [Ep(k) − Eq(k)]

〈
up(k)

∣∣∣∣ ∂uq(k)

∂kμ

〉
, (48)

where |up(k)〉 denotes Bloch states satisfying H (k) |up(k)〉 =
Ep(k) |up(k)〉. Summing up intraband contributions, we obtain

αAF
xy � egμBh̄

iN

∑
k,p

[
σ AF

x (k)
]
pp

iδ

∂Ep(k)

∂ky

∂f (E)

∂E

∣∣∣∣
Ep

= −egμBh̄

δN

∑
k,p

[
σ AF

x (k)
]
pp

∂f (Ep)

∂ky

. (49)

Because τ = 1/δ, we confirm αAF
xy ∝ τ 1. At low temperatures,

the staggered ME coefficient αAF
xy is determined by quasipar-

ticles near the Fermi surface. Since the AFM spin moment is
locked to momentum due to the ASOC term, the deformation
of Fermi surface represented by ∂f (E)/∂ky gives rise to the
finite AFM moment MAF

x = 〈Tr
∑

k σ AF
x (k)〉, as schematically

shown in Fig. 8.
The AFM Edelstein effect enables electrical switching

of AFM domain [54,55], pointing to the AFM spintronics
[56]. However, the seemingly AFM structure is classified
into the odd-parity magnetic multipole. In other words, the
“AFM domain” switched by the electric current is, indeed,
the domain of ferroic odd-parity magnetic multipole from the
viewpoint of multipole physics. Although it may be expected
that the magnetic hexadecapole moment of BaMn2As2 can
be switched by injecting an electric current, it is unlikely
at least in the linear response region. The effective AFM
Zeeman field driven by electric field is confined to the xy plane
and the AFM Edelstein effect cannot switch the z-collinear
AFM domains of BaMn2As2. However, a uniaxial strain
along the in-plane direction reduces the site symmetry of Mn
atoms and accordingly induces another AFM Edelstein effect

FIG. 9. The tetrahedral modulation of Fermi surface is shown
with the solid lines. Fermi surfaces in the (a) k[110] − kz plane and (b)
k[110] − kz plane are shown. k[110] and k[110] are momentum along the
[110] and [110] directions, respectively. The chemical potential is set
to μ = −0.8 and a large ASOC α3 = 0.3 is assumed for emphasizing
the tetrahedral modulation. Fermi surfaces for α3 = 0 are plotted with
the dashed lines for a comparison.

characterized by a finite coefficient αAF
zz . Then, the magnetic

hexadecapole moment may be switched by the electric current
along the z direction: M+

42 > 0 ↔ M+
42 < 0. Furthermore, the

electric current along the z direction induces the strain field
in the xy plane, as we show in Sec. VI. Therefore, the
nonlinear effect of the electric current gives the effective
AFM Zeeman field and may switch the magnetic hexadecapole
domain.

VI. CURRENT-INDUCED NEMATICITY

We here show a counterintuitive response in the metallic
magnetic multipole state. The electric current along the z axis
induces the nematicity in the xy plane. As we show in Table III,
the order parameter of odd-parity magnetic multipole order
represented in k space indicates spin-independent asymmetric
modulation of the band structure, which has been demonstrated
in several models [3,4,6,8]. In BaMn2As2, the order parameter
of the B1u IR is kxkykz in k space. The corresponding cubic
asymmetry in the energy spectrum results from the coupling
of the AFM molecular field and the z-axis component of the
ASOC term, which is, indeed, −hg′

3(k) ∝ kxkykz, in the long-
wavelength limit. This term induces a tetrahedral modulation
of Fermi surfaces as shown in Fig. 9. The same modulation
also arises from the coupling between the ASOC and SSOC
terms, g′(k) · g′′(k), although this term is negligible as we
discussed in Appendix A.

The electric current along the z axis induces finite expec-
tation value of kz. Then, the tetrahedral modulation leads to
kxkykz → kxky〈kz〉, indicating the nematicity in the xy plane
resulting from the nematic modulation of Fermi surface. This
is an intuitive explanation of the current-induced nematicity
shown below.

The modulation of Fermi surface may be quantified by the
weighted density operator nf [58]:

nf = 1

N

∑
k,α

fkc
†
k,αck,α, (50)
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FIG. 10. The tetrahedral modulation of Fermi surface 〈nT〉.
Parameters are T = 0.01 and δ = 0.01. The shaded area indicates
the metallic region. 〈nT〉 is finite in the presence of a Fermi surface.

where fk is the weighting function and the index α specifies
the internal degree of freedom such as spin and sublattice.
For example, fk = cos kx − cos ky represents the dx2−y2 -wave
modulation and, then, the spontaneous ordering of 〈nf 〉 is
called the dx2−y2 -wave Pomeranchuk instability. The tetrahe-
dral modulation of kxkykz type in BaMn2As2 is given by the
following weighted density operator:

nT = 1

N

∑
k,τ,σ

Tkc
†
k,τ,σ ck,τ,σ , (51)

where

Tk = sin
kx

2
sin

ky

2
sin

kz

2
. (52)

As we have discussed, the expectation value of nT can be
regarded as an order parameter of B1u magnetic multipole
order in the metallic state. In Fig. 10, we plot 〈nT〉 in the AFM
state, which is indeed finite in the metallic region. The sign of
the tetrahedral modulation is naturally opposite between the
upper and lower bands because of the sign ± of the energy
spectrum [Eq. (42)].

When we look at the Fermi surface on a kz = constant
plane, the diagonal modulation kxky appears. However, the
kxky modulation is opposite between the kz = c plane and the
kz = −c plane and, therefore, the summation for kz results
in vanishing in-plane nematic order in the equilibrium state.
Now, we notice that the applied electric field perpendicular to
the xy plane causes the imbalance between kz = c and −c,
which gives rise to the diagonal nematicity in the stationary
state. A schematic illustration is shown in Fig. 11.

To investigate the current-induced nematic order, we define
a nematic operator nD as follows [59]:

nD = 1

N

∑
k,σ

Dkc
†
k,A,σ ck,B,σ + H.c., (53)

with

Dk = sin
kx

2
sin

ky

2
. (54)

FIG. 11. Schematic figure for the mechanism of current-induced
nematicity. (a) The tetrahedral modulation of a Fermi surface is
illustrated. The diagonal nematicity of kxky type is canceled out by
the kz summation. (b) The electric field along the z direction breaks
the balance between the kz > 0 region and kz < 0 region, giving rise
to the kxky-diagonal nematic order.

The current-induced nematicity represented by

〈nD〉 = χDEz (55)

is calculated by using Kubo formula

χD = −ieh̄

N

∑
k,μ.ν

[nD(k)]μν[vz(k)]νμ

Eμ(k)−Eν(k) + iδ

f (Eμ)−f (Eν)

Eμ(k)−Eν(k)
, (56)

where nD(k) is the band representation of nD.
Figure 12 shows the numerical result of nematic suscepti-

bility χD. It is indeed shown that the current-induced nematic
order occurs in the metallic region. Since the nematic operator
nD is PT even, the nematic susceptibility χD is determined
by intraband contributions as αAF

μν is. Thus, the nematicity
is essentially “current induced” and it does not occur in the
insulating state. This means that the current-induced nematic
order is a response characterizing the odd-parity magnetic
multipole order in itinerant systems.

By using the lemma proved in Appendix B, the nematic
susceptibility to electric field is obtained as

χD � −eh̄

δV

∑
k,p

[nD(k)]pp

∂f (Ep)

∂kz

. (57)
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FIG. 12. The nematic susceptibility to the electric field. Parame-
ters are T = 0.01 and δ = 0.01, and we take the unit eh̄ = 1.
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FIG. 13. Sketch of the current-induced structural transition. The
electric field along the z axis induces the electronic nematicity in
the xy plane, which leads to the tetragonal-orthorhombic structural
transition through electron-lattice couplings.

Thus, χD ∝ τ 1 as expected. Note that the nematic susceptibil-
ity appears with the same sign between the upper and lower
bands, in contrast to the tetrahedral modulation (Fig. 10). This
is because the nematic operator is defined by the intersublattice
hopping. By using operators for bonding and antibonding
orbitals [60]

bk,σ = 1√
2

(ck,A,σ + ck,B,σ ) for bonding orbital,

ak,σ = 1√
2

(ck,A,σ − ck,B,σ ) for antibonding orbital, (58)

the nematic operator is recast to

nD = 1

N

∑
k,σ

Dk(b†k,σ bk,σ − a
†
k,σ ak,σ ). (59)

Owing to the negative sign in front of a
†
k,σ ak,σ , the translation

of Fermi surface by electric current induces the nematicity
with the same sign in the upper band and the lower band.

Although we have discussed an electronic nematic order so
far, the nematicity induces a structural deformation through
electron-lattice couplings. Thus, the electric current along
the z axis induces the lattice structural deformation in the
xy plane illustrated in Fig. 13. The structural nematic order
which has been observed in Fe-based 122 compounds [15–17]
is essentially different from the current-induced nematic
order proposed by this work. In BaFe2As2, the orthorhombic
transition spontaneously occurs at low temperatures. On the
other hand, in the odd-parity magnetic multipole state of
BaMn2As2, the nematicity is induced by the external electric
current. Furthermore, the SI symmetry is not broken in
the orthorhombic stripe AFM state of BaFe2As2, while the
spontaneous SI symmetry breaking plays an essential role in
BaMn2As2. As expected from an intuitive explanation for the
current-induced nematic order, the electric current along the x

axis (y axis) also induces the structural transition of yz type
(zx type).

The structural deformation driven by the electric field can
be regarded as a (inverse) piezoelectric effect. For insulators,

a piezoelectric-coupling constant is given by

eijk = ∂Pi

∂εjk

∣∣∣∣
E=0

, (60)

where P is an electric dipole moment and εjk is a strain tensor.
Alternatively, it is recast

sij =
∑

k

ekijEk, (61)

where sij is a stress tensor and we assume εij = 0. The D2d

symmetry allows piezoelectric couplings

exyz = exzy = eyxz = eyzx,

ezxy = ezyx, (62)

and ezxy and ezyx represent the stress in the [110] direction
or the [110] direction induced by the electric field along
the [001] direction. This piezoelectric effect is similar to
the current-induced nematic order studied in this work.
However, there are significant differences in their mechanism,
symmetry, and manifestation. In insulators, the piezoelectric
deformation is mainly caused by ionic displacements induced
by electric field. Then, the polar rank-3 tensor eijk has the
even parity under the TR operation [61]. On the other hand,
the piezoelectricity we propose, namely, the current-induced
nematicity, is characteristic of metallic systems, and then the
“piezoelectric” tensor ẽijk has the odd parity under the TR
operation [62]. In other words, the direction of the strain,
the [110] direction, or the [110] direction is reversed by
applying the TR operation. Therefore, the inverse piezoelectric
effect is switchable by changing the AFM domain. Thus, the
metallic magnetic hexadecapole state may be called “magne-
topiezoelectric metal.” Interestingly, hole-doped BaMn2As2

realizes such an exotic state which may be useful for device
applications.

We have confirmed that the conventional piezoelectricity
does not occur in the magnetopiezoelectric metal from the
viewpoint of symmetry. Both of eijk and ẽijk are polar
tensors, and require the SI symmetry breaking. The TR
even piezoelectric tensor eijk is forbidden in the magnetic
hexadecapole state since the PT symmetry is preserved.

Then, the electric field does not directly couple to the
strain, but indirectly couples through the electric current. The
response is represented by the same form as Eq. (61), although
the response tensor is replaced by the TR odd one ẽijk .

Recently, a related phenomenon has been proposed by
Ref. [63]. The authors have revealed the electric current
generation by a time-dependent strain in metallic systems
where both of SI symmetry and TR symmetry are broken. This
is a dynamical and inverse response of the current-induced
nematic order which we reveal in this work.

VII. SUMMARY AND DISCUSSION

In this paper, we investigated the odd-parity magnetic
multipole order in BaMn2As2 and clarified characteristic
responses. The obtained results are summarized below.

First, we have classified the magnetic multipole order
on the basis of the IRs of point-group symmetry, similar
to the classification of unconventional superconductivity by
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Sigrist and Ueda [27]. The symmetry argument indicates the
odd-parity magnetic multipole order in the AFM state of
BaMn2As2, which belongs to the B1u IR of D4h point group.
Possible multipole moments are magnetic quadrupole moment
M+

22 and magnetic hexadecapole moment M+
42.

Next, the microscopic analysis of seemingly conventional
collinear G-type AFM state in undoped BaMn2As2 and
hole-doped Ba1−xKxMn2As2 reveals the leading magnetic
hexadecapole order. In the hole-doped metallic system, the
orbital angular momentum of Mn 3d electrons is partially
restored, and then the LS-coupling induces the magnetic
quadrupole moment M+

22 as an admixed odd-parity magnetic
order parameter. The microscopic study implies that the local
SI symmetry breaking at magnetic sites plays an essential
role for the odd-parity magnetic multipole order. Furthermore,
we propose a definition of macroscopic order parameter of
odd-parity magnetic multipole order, in which ambiguities due
to the choice of unit cell are removed.

Then, we have introduced an effective Hamiltonian and
shown electromagnetic responses induced by the odd-parity
magnetic multipole order. The ME effect occurs in accordance
with the existence of the magnetic quadrupole moment. The
AFM Edelstein effect has also been shown, and the electrical
switching of magnetic multipole moment has been discussed.
Interestingly, the metallic odd-parity magnetic multipole state,
where both of TR and SI symmetry are spontaneously
broken, shows an asymmetric modulation of Fermi surface.
The tetrahedral modulation of kxkykz type occurs in doped
BaMn2As2, and induces a counterintuitive current-induced
nematic order. The in-plane nematic order is induced by
the out-of-plane electric current. Thus, the itinerant magnetic
hexadecapole state is identified as magnetopiezoelectric metal.
These exotic phenomena are derived from the ASOC term
arising from local SI symmetry breaking.

Although odd-parity multipole order has been discussed
for only a few crystalline materials so far, a variety of
magnetic compounds may be identified as odd-parity magnetic
multipole state. Indeed, we have revealed that a seemingly
conventional AFM state of BaMn2As2 is identified as the
magnetic hexadecapole state. This work is a proposal of
magnetic hexadecapole order, although magnetic monopole,
toroidal dipole, and magnetic quadrupole compounds have
been studied [10,46,64,65]. From our analysis of BaMn2As2,
we immediately notice that many other compounds show
the magnetic hexadecapole order with the magnetic structure
similar to BaMn2As2. For instance, we identify other Mn-
based 122 systems [BaMn2Pn2 (Pn=P, Bi)] [66,67], Cr-based
122 systems [RCr2Si2 (R=Ho, Er, Tb) and AeCr2As2 (Ae=Ba,
Sr)] [68–71], Mn-based 112 systems [XMnBi2 (X=Ca, Sr, Eu)]
[72,73], Mn-based 111 systems [KMnPn (Pn=As, Sb, Bi)]
[74,75], and Mn-based 1111 systems [LaMnPO and RMnAsO
(R=La, Nd)] [76,77] as magnetic hexadecapole compounds.
The local SI symmetry breaking of magnetic sites and
staggered alignment of magnetic moment are satisfactory
condition for the odd-parity magnetic multipole order. This
condition may be satisfied in various magnetic systems
we have not noticed. More elaborate study of odd-parity
multipole order will refine understanding of spontaneous
parity violation and resulting exotic phenomena in condensed
matter.
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APPENDIX A: DERIVATION OF THE EFFECTIVE MODEL

Five-orbital tight-binding Hamiltonian for Mn 3d orbitals
is represented by

H = Heven + Hodd + HLS + HCEF + HAFM, (A1)

where Heven and Hodd are hopping terms with even and odd
parity under the SI operation, respectively. The LS-coupling
term is written as

HLS = λ
∑
i,τ

l i,τ · si,τ , (A2)

where λ is the coupling strength, l (s) is orbital (spin) angular
momentum operator, and the labels i and τ indicate the site
and sublattice index, respectively. The crystalline-electric-field
term HCEF which mainly arises from the ligand field due to As
atoms (Fig. 2) gives rise to the level splitting of Mn d orbitals.
The d levels are classified by the local point group D2d of Mn
sites,

dz2︸︷︷︸
A1

+ dxy︸︷︷︸
B1

+ dx2−y2︸ ︷︷ ︸
B2

+ dyz,dzx︸ ︷︷ ︸
E

, (A3)

where the IR of the point group is indicated for each d level.
We here neglect electron correlation effects in the AFM state
and take into account the molecular field term

HAFM =
∑
i,τ

−2hτzs
z
i,τ , (A4)

where τ is the Pauli matrix acting on the sublattice space.
Now, we derive the single-band Hamiltonian for the valence

band. Because the LS-coupling is small in 3d electron systems,
the Russell-Saunders picture is appropriate. The crystalline
electric field is much larger than the LS-coupling. Therefore,
we can perturbatively treat the LS-coupling term. Then, the
eigenstate of atomic Hamiltonian HCEF + HLS + HAFM for
mainly dx2−y2 orbital is obtained as

|σz = ±,τz〉 = |dx2−y2 ,σz,τz〉 + iλσz

�1
|dxy,σz,τz〉

− iλ

2(�2 − 2hσzτz)
|dyz, − σz,τz〉

+ λσz

2(�2 − 2hσzτz)
|dzx, − σz,τz〉 , (A5)

where s = 1
2σ , and �1 (�2) is the energy level of dxy orbital

(dyz and dzx orbitals) from the level of dx2−y2 orbital.
Projecting the five-orbital model [Eq. (A1)] to the Hilbert

space spanned by |σz,τz〉, we obtain the projected Hamiltonian
as Eq. (35). The coupling constants of the ASOC term and the
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SSOC term for the A sublattice, gA · σ , are obtained as

α1 = 2tzx,1λ�2

�2
2 − 4h2

, (A6)

α2 = 4
(
t

(1)
zx,2 − t

(2)
zx,2

)
λ�2

�2
2 − 4h2

, (A7)

α3 = 16txy,3λ

�1
, (A8)

β = −8
(
t

(1)
zx,2 + t

(2)
zx,2

)
λh

�2
2 − 4h2

. (A9)

The hopping integrals are written as

− tzx,1 = 〈dzx,(a,0,0)|Hkin |dx2−y2 ,(0,0,0)〉 , (A10)

−t
(1)
zx,2 = 〈

dzx,
(

a
2 , a

2 , c
2

)∣∣Hkin|dx2−y2 ,(0,0,0)〉, (A11)

−t
(2)
zx,2 = 〈

dzx,
(−a

2 ,−a
2 ,−c

2

)∣∣Hkin |dx2−y2 ,(0,0,0)〉 , (A12)

−txy,3 = 〈
dxy,

(
a
2 , a

2 , c
2

)∣∣Hkin |dx2−y2 ,(0,0,0)〉 , (A13)

where Hkin = Heven + Hodd, |dγ ,(x,y,z)〉 denotes the orbital
wave function of Mn 3dγ orbital on the A sublattice, and
(x,y,z) are the Cartesian coordinates.

The entanglement of spin and orbital due to the LS
coupling results in the k-dependent spin-orbit coupling terms.
According to Eqs. (A6)–(A9), the in-plane components of the
g vector originate from the hybridization of |dx2−y2 ,σz〉 with
|dzx(dyz), − σz〉. Therefore, the coupling constants specifying
the in-plane component, namely, α1, α2, and β, are suppressed
by the large AFM molecular field. On the other hand, the
out-of-plane component of the ASOC term, g′

z(k)σz, is robust
against the AFM order.

The SSOC term g′′(k) · σ is induced by the AFM order,
although it disappears in the paramagnetic state. This term does
not play an essential role for the electromagnetic responses
studied in this paper. Because the SSOC term remains finite in
the reference state shown in Fig. 5(a), it does not induce the
ME effect characteristic of the odd-parity magnetic multipole
state. From Eq. (42), we notice that the coupling between the
ASOC term and the SSOC term also induces the tetrahedral
modulation of the band structure, which is given by

g′(k) · g′′(k)

= 2α1β

(
sin ky sin

kx

2
cos

ky

2
− sin kx sin

ky

2
cos

kx

2

)
sin

kz

2
.

(A14)

Although the current-induced nematicity studied in Sec. VI
also arises from this term, it is a higher-order correction
with respect to the LS-coupling constant λ. Since the LS
coupling is much smaller than the AFM molecular field
and the crystalline electric field, Eq. (A14) is negligi-
ble compared with the leading-order term proportional to
hα3. Therefore, we neglect the SSOC term in Secs. V
and VI.

APPENDIX B: LEMMA FOR KUBO FORMULA

Electromagnetic responses in the linear response region
are generally given by Kubo formula. When the Hamiltonian
is represented by a quadratic form of one-body operators,
the response function for uniform and static perturbation is
obtained as a simple form

χAB = C
∑
k,p,q

[A(k)]pq[B(k)]qp
Ep(k) − Eq(k) + iδ

f (Ep) − f (Eq)

Ep(k) − Eq(k)
, (B1)

where C is a constant factor, p and q are band indices, [A(k)]pq

and [B(k)]qp are band representation of uniform operators A

and B, respectively. The band energy is denoted by Ep(k), δ is
a constant scattering rate, and f (E) is the Fermi distribution
function. For instance, the electric conductivity tensor σμν is
obtained by assigning the current operators jμ and jν to A and
B, respectively.

Here, we consider the Hamiltonian which preserves the
PT symmetry. The PT symmetric system has at least
double degeneracy at each momentum k (Kramers pair), and
single-particle states are labeled by σz = ± with Pauli matrix
acting on the degenerate Hilbert space. The Bloch states of
the Kramers pair are transformed to each other by the PT

operation

PT |n,k,σ 〉 = (iσ2)σ ′σ |n,k,σ ′〉 , (B2)

where |n,k,σ 〉 is denoted by the band index n, crystal
momentum k, and (pseudo)spin σ . The band index p (and
q) is specified by the combination of n and σ (n′ and σ ′). The
intraband contributions to the response function (B1) come
from pairs (p,q) with n = n′. Thus, intraband contributions
are regarded as intra-Kramers pair contributions. On the
other hand, interband contributions are given by bands with
nonequivalent energy n �= n′.

Now, we show a lemma about the relation between the PT

parity of A and B and the response function:
(i) When the product of PT parity of operators A and B is

odd, the response function χAB is determined by the interband
contributions.

(ii) When the product of PT parity is even, the response
function is given by the intraband contributions.

To prove the lemma, we consider two Kramers pairs
protected by the PT symmetry: |n,k,σ 〉, |m,k,σ 〉. By inserting
the PT operator the matrix element [A(k)]pq for (p,q) =
[(n,σ ),(m,σ ′)] is transformed as

[A(k)](n,σ ),(m,σ ′) (B3)

= [Ã(k)](m,σ ′′),(n,σ ′′′)(iσ2)†σ ′σ ′′(iσ2)σ ′′′σ (B4)

= [A(k)](m,σ ′′),(n,σ ′′′)(iσ2)†σ ′σ ′′(iσ2)σ ′′′σ (−1)PA, (B5)

where Ã = (PT )A(PT )−1 and PA denotes the PT parity of
the Hermitian operator A. Here, we use (PT )k = k and the
anti-Hermitian property of PT operator

〈φ| A |ψ〉 = 〈ψ̃ | (PT )A†(PT )−1 |φ̃〉 , (B6)

|φ̃〉 = PT |φ〉 , |ψ̃〉 = PT |ψ〉 . (B7)

By using the relation (B5), the summation for the band index
in Eq. (B1) is simplified.
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First, the intra-Kramers pair contributions [p,q = (n,σ ),
(n,σ ′)] to the response function are given by

χ
(intra)
AB

=
∑
n,k

C

iδ

∂f (E)

∂E

∣∣∣∣
En(k)

∑
σ,σ ′

[A(k)](n,σ ),(n,σ ′)[B(k)](n,σ ′),(n,σ ).

(B8)

The right-hand side is transformed by

∑
σ,σ ′

[A(k)](n,σ ),(n,σ ′)[B(k)](n,σ ′),(n,σ ) (B9)

=
∑
σ,σ ′

[A(k)](n,σ ′),(n,σ )[B(k)](n,σ ),(n,σ ′)(−1)PAB , (B10)

where PAB = PA + PB . Hence, we obtain

χ
(intra)
AB = (−1)PAB χ

(intra)
AB . (B11)

Similarly, the inter-Kramers pair contributions [p,q =
(n,σ ),(m,σ ′) with n �= m] are simplified as follows. We divide
the inter-Kramers pair contributions

χ
(inter)
AB = χ

(inter,odd)
AB + χ

(inter,even)
AB , (B12)

with

χ
(inter,odd)
AB =

∑
n,m,k

α
f (En) − f (Em)

�nm

�nm

�2
nm + δ2

×
∑
σ,σ ′

[A(k)](n,σ ),(m,σ ′)[B(k)](m,σ ′),(n,σ ), (B13)

χ
(inter,even)
AB =

∑
n,m,k

α
f (En) − f (Em)

�nm

−iδ

�2
nm + δ2

×
∑
σ,σ ′

[A(k)](n,σ ),(m,σ ′)[B(k)](m,σ ′),(n,σ ), (B14)

and �nm ≡ En(k) − Em(k). Then, we obtain

χ
(inter,odd)
AB = −(−1)PAB χ

(inter,odd)
AB , (B15)

χ
(inter,even)
AB = (−1)PAB χ

(inter,even)
AB . (B16)

An arbitrary scattering rate δ is set to zero for interband
contributions, as usual. Thus, we have

χ
(inter)
AB = −(−1)PAB χ

(inter)
AB . (B17)

Equations (B11) and (B17) clarify the relation between
the combined PT parity of A and B and the response
function.

χ
(intra)
AB = 0 for odd PAB, (B18)

χ
(inter)
AB = 0 for even PAB. (B19)

Thus, the response function is given by the intraband con-
tributions for even PAB , while it is given by the interband
contributions for odd PAB . This is the lemma which is proved in
this section. Our results in Secs. V and VI have been discussed
on the basis of the lemma.

The scaling with respect to the scattering rate is also
obtained from the proof

χAB ∝ δ−1 for even PAB, (B20)

χAB ∝ 1 for odd PAB. (B21)

The response function χAB for even PAB originates from the
deformation of Fermi surface and, therefore, disappears in the
insulating state lacking Fermi surface. On the other hand, for
odd PAB , the response function comes from the deformation
of wave function. Then, a finite response function may be
obtained even in the insulating state.

The lemma is an extension of Onsager’s reciprocity relation.
It is straightforward to prove other relations for response
functions, for instance ensured by TR symmetry.

APPENDIX C: NEMATIC OPERATORS

In this paper, we adopt the nematic operator nD in Eq. (53).
However, the nematic operator quantifying the deformation of
Fermi surface is not unique. Indeed, we may consider other
nematic operators

nD1 = 1

N

∑
k,τ,σ D′

kc
†
k,τ,σ ck,τ,σ , (C1)

nD2 = 1

N

∑
k,τ,σ D′′

kc
†
k,τ,σ ck,τ,σ , (C2)

with weighting functions D′
k = sin kx sin ky and D′′

k =
sin (kx/2) sin (ky/2) cos (kz/2). These nematic operators cor-
respond to the next-nearest-neighbor intralayer hopping and
nearest-neighbor interlayer hopping, respectively. The nematic
order parameters 〈nD1〉 and 〈nD2〉 belong to the same IR
(B2g) of the D4h point group as 〈nD〉. Hence, we do not have
any unique definition for the nematic operator. In this paper,
we adopt nD corresponding to the nearest-neighbor Mn-Mn
hopping. In fact, the nematic susceptibility defined for the
nematic operator nD shows larger value than those for nD1

and nD2.
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