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We study the quantum Ising model in D dimensions with the equation-of-motion technique and the Majorana
representation for spins. The decoupling scheme used for the Green’s functions is based on the hierarchy of
correlations in position space. To lowest order, this method reproduces the well-known mean field phase diagram
and critical exponents. When correlations between spins are included, we show how the appearance of thermal
fluctuations and magnons strongly affects the physical properties. In one dimension and for B = 0 we demonstrate
that, to first order in correlations, thermal fluctuations completely destroy the ordered phase. For nonvanishing
transverse field we show that the model exhibits different behavior than its classical counterpart, especially near
the quantum critical point. We discuss the connection with the Dyson’s equation formalism and the explicit form
of the self-energies.
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I. INTRODUCTION

The transverse Ising model corresponds to one of the most
studied systems in quantum physics. One reason is the large
number of physical effects that can be described within this
model: ferromagnetic/paramagnetic (FM/PM) transitions [1],
spin-glass phases [2,3], frustration [4], many-body localization
[5], etc. Aside from its theoretical interest, it also models a
large variety of real systems, such as interacting magnetic
molecules [6,7], coupled superconducting circuits, and many
others whose low-energy description consists of coupled two-
level systems. In addition, the understanding of the Ising sys-
tem is very important for quantum computation; for example,
finding the ground state of the spin-glass phase corresponds
to an NP problem [8], which is typically used to benchmark
quantum annealers [9,10]. Furthermore, the two-dimensional
(2D) Ising model in a transverse field corresponds to a
universal Hamiltonian [11] which can be used to effectively
describe many other models. Related to all the previous
interests, recent studies on the dynamical properties of the
Ising model [12,13] or on the effect of decoherence [14–16]
show how the physics is even richer than previously thought.

The equation-of-motion technique in combination with the
hierarchy of correlations represent a useful nonperturbative
approach to understand the consequences of correlations in
many-body system [17–20]. When it is used to describe
real-space correlations, it corresponds to the well-known 1/Z
expansion, Z being the coordination number of the lattice;
however, it can also be generalized to, e.g., correlations
between momentum-space modes, providing an alternative
scaling which can improve the convergence under some
circumstances [21]. The main idea is to separate the correlation
functions into uncorrelated and correlated parts; here, the first
part describes the single-particle physics, while the second
corresponds to collective excitation effects. The usefulness of
this separation becomes clear when one finds a scaling for the
correlated part, as a function of the physical parameters. This
allows to organize terms hierarchically, in terms of decreasing
contributions to the correlation functions.

In this work, we analyze the transverse field Ising model in
D dimensions, using the hierarchy of correlations in position

space. We discuss the advantages and limitations of the method
by comparing with some well-established results, and show
that, as expected by the increase of the coordination number
with D, the scaling of real spatial correlations improves with
the dimension of the system. We also discuss the critical
exponents and the properties of the phase transitions in this
model.

The work is organized as follows: In Sec. I we introduce the
Majorana representation and the basic idea behind a hierarchy
of correlations. In Sec. II we discuss the uncorrelated solution
of the quantum Ising model and discuss its advantages and
limitations. In Sec. III we include the effect of correlations
in absence of a transverse field, which allows for a simpler
discussion of the method, and a direct comparison with well-
known results for the classical Ising model. In Sec. IV we
include the effect of correlations in the quantum Ising model
and discuss its properties.

II. METHOD

The hierarchy of correlations can be easily implemented
in terms of double-time Green’s functions, however, the
particular exchange properties of spins may lead to many
different descriptions (one can use a mapping to bosonic,
fermionic, or hard-core boson models). Here, we consider a
description in terms of fermionic Green’s functions to avoid the
ω = 0 pole problem [19], in combination with the Majorana
representation for spins [22,23]. This allows to directly work
with fermionic Green’s functions and operators, unifying the
formalism and simplifying some of the calculations. The
Majorana representation of a spin �Sn at site n is given by

Sα
n = − i

2
εαβγ ηβ

nηγ
n , (1)

where ηα
n corresponds to a Majorana particle at site n with

internal degree of freedom α = x,y,z, and εαβγ is the Levi-
Civita symbol. The algebra of Majorana particles is character-

ized by {ηα
n ,η

β
m} = δα,βδn,m, (ηβ

n )
2 = 1

2 , (ηβ
n )

† = η
β
n , and one

advantage is that it reproduces the SU(2) algebra, preserving
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the rotational symmetry (which does not happen with, e.g.,
the hard-core boson representation). As an example, the
magnetization along the z axis simply corresponds to 〈Sz

n〉 =
−i〈ηx

nη
y
n〉. Note that another advantage of this representation

is that it is local, which makes simple the interpretation of the
results in the original language of spins.

To set up the hierarchy of correlations in position space,
one needs to find the scaling properties of spatial correlations
between spins. For this we shall follow a previous derivation
based on the monogamy property of entanglement [21].
Consider the Ising model in a transverse field Hamiltonian

H = −B
∑

i

Sx
i −

∑
i,j>i

Vi,j S
z
i S

z
j , (2)

where the first term corresponds to the coupling to a transverse
magnetic field B, and Vi,j corresponds to the spin-spin inter-
action (because the mapping to Majorana fermions is local,
this discussion can be done in the spin or Majorana fermion
language). The large anisotropy in the spin-spin interaction is
usually present in real experiments due to the crystal-field
magnetization. Applying the Majorana representation, we
obtain the next Hamiltonian:

H = iB
∑

i

η
y

i η
z
i +

∑
i,j>i

Vi,j η
x
i η

y

i η
x
j η

y

j . (3)

For the study of physical properties of the system we define
the next double-time Green’s function

Gα,β
n,m(t,t ′) = −i

〈
ηα

n (t); ηβ
m(t ′)

〉
(4)

where 〈. . .〉 corresponds to the statistical average with respect
to a thermal density matrix ρ̂ = e−βĤ at temperature T = β−1,
and ; indicates that we can use either the time-ordered,
retarded, or advanced Green’s function, as they all fulfill
the same equation of motion. The temperature is usually
related with the Boltzmann distribution of a Markovian phonon
bath that is in equilibrium with the system via spin-phonon
coupling, which for simplicity we do not include in our
description. We calculate the Green’s function from the
Heisenberg equation of motion i∂tO = [H,O], which after
a Fourier transformation to frequency domain reads as

ωGα,β
n,m(ω) = δn,m

2π
δα,β + iBεxαθG

θ,β
n,m(ω)

+ εzαθ

∑
i �=n

Vn,iG
xyθ,β

iin,m (ω), (5)

where G
xyμ,β

iin,m (t,t ′) = −i〈ηx
i (t)ηy

i (t)ημ
n (t); ηβ

m(t ′)〉. Equation
(5) is the central object of this work, as the Majorana double-
time Green’s function characterizes the order parameter 〈Sz

n〉,
and differentiates between the FM and the PM phases. To find
the scaling properties of correlations and obtain a decoupling
scheme for higher correlation functions, let us consider the
diagonal part of the Green’s function (n = m), which is related
with the onsite magnetization. The four-point function G

xyα,β

iin,n ,
proportional to the reduced density matrix ρi,n, can then be
separated into its uncorrelated and correlated parts according
to the general decomposition ρi,n = ρiρn + ρC

i,n. This allows

to rewrite the equation of motion as

ωGα,β
n,n (ω) = δα,β

2π
+ iBεxαθG

θ,β
n,n (ω)

+ εzαθ

∑
i �=n

Vn,i

〈
ηx

i η
y

i

〉
Gθ,β

n,n (ω)

+ εzαθ

∑
i �=n

Vn,iGxyθ,β

iin,n (ω), (6)

where G
α,β
n,n ∝ ρn and Gαδγ,β

iin,n ∝ ρC
n,i correspond to the uncorre-

lated and correlated parts, respectively. If the system is strongly
correlated, the entanglement monogamy implies that there is
an upper bound to the amount of entanglement that a set
of spins can share, i.e., we cannot correlate the set with an
extra spin unless the entanglement in the initial set is reduced.
In a system with dominant nearest-neighbor interaction, one
would expect that each spin is mainly entangled with its nearest
neighbors; then, if we have to reduce the entanglement between
them to include an extra spin, it must decrease as ρC

i,n ∼ Z−1;
otherwise, we would violate the entanglement monogamy.
Finally, it can be shown that the scaling ρC

i,n ∼ Z−1 implies
Vi,j ∼ Z−1 by calculating the equation of motion for the
reduced density matrix. The meaning of the Z−1 scaling is that
contributions due to entanglement between spins must scale
inversely with the coordination number. Finally, once we have
fixed the scaling properties of correlations ρC

i,n ∼ Z−1 and
Vi,j ∼ Z−1, we can organize the different terms in the equation
of motion hierarchically and find their solution. It is important
to stress that the assumption of a strongly correlated phase
allows to derive an upper bound to the scaling of correlations;
however, if the phase is weakly correlated, one would expect
an even smaller contribution from the correlated part.

To conclude this section, we discuss some general prop-
erties of the quantum Ising model in equilibrium at T = 0,
which can be used to check our results: (i) the transverse
magnetization 〈Sy

i 〉 = 0 to all orders of correlations, which
can be proved from the calculation of the equation of
motion ∂t 〈Sz

i 〉 = 0; (ii) the two-point correlation function
〈Sz

i S
y

j 〉 = 0 to all orders, according to the equation of motion
∂t 〈Sx

i 〉 = 0. Also, let us include the Fourier transform to k
space of Eq. (6), which will be used in the last sections:

ωG
α,β

k (ω) = N
δ(k)δα,β

2π
+ iBεxαθG

θ,β

k (ω)

+ εzαθ

1

N

∑
q

Vq
〈
ηx

qηy
q

〉
G

θ,β

k−q(ω)

+ εzαθ

1

N

∑
q

VqGxyθ,β

q,k−q(ω). (7)

In the next section, we will show that one can simplify the
second line, by assuming spatially homogeneous magneti-
zation 〈ηx

qη
y
q〉 = 〈ηxηy〉iNδ(q) = iMzNδ(q) (this choice is

discussed in the next section, but should hold for ferromagnetic
interaction and periodic boundary conditions).

III. UNCORRELATED SOLUTION

To characterize the ground-state properties we are inter-
ested in the magnetization 〈Sz

n〉, which is related with the
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Majorana Green’s function G
y,x
n,n(t,t ′). If we neglect all terms

proportional to Z−1, we find that the equation of motion, to
lowest order, reduces to

ωḠα,β
n,n = δα,β

2π
+ iεxαθBḠθ,β

n,n

+ εzαθ

∑
i �=n

Vn,i

〈
ηx

i η
y

i

〉
Ḡθ,β

n,n , (8)

where the bar on Ḡ
α,β
n,n indicates the lowest-order contribution

to the Green’s function G
α,β
n,n , in powers of 1/Z . Note that the

Z−1 scaling coming from Vn,i gets compensated by the sum
over Z neighbors, and all terms in the equation are of order
one. The solution is easily found to be

Ḡy,x
n,n = −

∑
i �=n Vn,i

〈
ηx

i η
y

i

〉
2π

(
ω2 − ω2

n

) , (9)

where the poles of the Green’s function are at ±ωn =
±

√
B2 − (

∑
i �=n Vn,i〈ηx

i η
y

i 〉)2
. Then, the finite-temperature,

onsite magnetization can be obtained from the equal-time
correlator [17]:

〈
ηx

nη
y
n

〉 = i

∫
Ḡ

y,x
n,n(ω + iε) − Ḡ

y,x
n,n(ω − iε)

eβω + 1
dω

=
∑

i �=n Vn,i

〈
ηx

i η
y

i

〉
2ωn

tanh
( ωn

2T

)
. (10)

Clearly, this is a complicated self-consistency equation, as the
magnetization at site n couples to the magnetization at the
sites connected by Vn,i . Hence, the solution clearly depends
on the boundary condition and on the details of the interaction.
Assuming periodic boundary conditions and ferromagnetic
interaction, one can see that the solution that minimizes
the average energy 〈H 〉 corresponds to homogeneous mag-
netization. Hence, we drop the subindex n and rewrite the
equation in terms of the uncorrelated, average magnetization
M̄z = −i

∑
n〈ηx

nη
y
n〉/N :

M̄z = M̄zV0

2ω0
tanh

( ω0

2T

)
, (11)

where ω0 =
√

B2 + V 2
0 M̄2

z and Vk = ∑
x eik·xVx. Similarly,

the calculation of the transverse magnetization results in

M̄x = B

2ω0
tanh

( ω0

2T

)
, (12)

M̄y = 0. (13)

These equations reproduce the well-known mean field self-
consistency equations of the Ising model [24], and the phase
diagram can be determined from their solution. We consider
a 1D chain (Z = 2), a square lattice (Z = 4), and a cubic
lattice (Z = 6), and plot in Fig. 1 (solid line) the value of
the magnetization as a function of the transverse field at
T = 0. It shows that, for vanishing transverse field, all spins
are aligned in parallel, minimizing the mean field energy
per spin 〈H 〉/N = −M̄2

z V0. As the transverse field in-
creases, quantum fluctuations |↑〉 ↔ |↓〉 are produced, and
for B > V0/2 the longitudinal magnetization vanishes. This
is the hallmark of the paramagnetic/ferromagnetic transition.

Mx

Mz

FIG. 1. The solid lines correspond to the uncorrelated magneti-
zation, as a function of the transverse field B/V for T = 0, where
we have rescaled the field to B → B/D to match the critical point
in different dimensions. In dotted, dotted-dashed, and dashed lines
we plot the magnetization including correlations to lowest order, as
a function of external field, for D = 1, 2 and 3, respectively. The
correlated solution in 1D shows large deviations from M̄x around
the critical point B � Bc due to large correlations, however, they are
reduced as D increases. Importantly, the critical point characterized
by Mz is unchanged by correlations, in agreement with the exact
solution of the transverse Ising model in 1D.

Figure 2 (solid line) corresponds to the finite-temperature
phase diagram for the FM/PM phase transition, where now
the temperature produces thermal fluctuations, destroying the
ferromagnetic phase at the Curie temperature Tc. From the
uncorrelated results, one finds the critical points expected from
the mean field solution of the Ising model: Bc(T = 0) = V0/2
and Tc(B = 0) = V0/4, where ZV = V0. Note that in absence
of correlations, the lattice dimension does not affect the result
(just Z is present), which usually leads to violations of the
no-go theorems for quantum phase transitions in 1D and
2D [25,26]. For example, this happens in the 1D classical

T

V

FIG. 2. The solid (dashed) line corresponds to the uncorrelated
(correlated to lowest order) phase diagram as a function of the
transverse field B/V and temperature T/V for a spin chain in
arbitrary dimension (we rescale T → T/D and V → V/D to make
the critical lines coincide in absence of correlations). Shaded area
corresponds to the ferromagnetic phase. We have omitted the phase
diagram including correlations for the 2D and the 3D cases, as they
are almost coincident with the mean field result. This is in agreement
with the decreasing role of correlations in higher dimensions.
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Ising model (B = 0 in the present Hamiltonian), where it is
known that the ferromagnetic phase is destroyed by thermal
fluctuations. We will see in the next section that the addition
of interspin correlations in the equation of motion allows
to capture this feature. For the 1D quantum Ising model,
one can exactly solve the equations using the Wigner-Jordan
transformation, and this allows us to compare our results with
the exact solution. In this case, the T = 0 critical point is
already reproduced by the uncorrelated solution, although the
quasiparticle spectrum and critical properties are not [27].

It is worth to stress that we have highly simplified the
mean field solution by assuming ferromagnetic interaction
and periodic boundary conditions in Eq. (10). In general, the
mean field solution can be very powerful and it would capture
interesting effects, as for example the dimerization induced by
antiferromagnetic interaction, or frustration for some specific
boundary conditions.

Critical properties in absence of correlations

It is known that near a quantum critical point, the system’s
properties can be characterized solely by their critical expo-
nents [28] and that this feature leads to the important concept
of universality classes. Here, we discuss some of the critical
properties of the hierarchy in absence of correlations. Although
all mean field theories are characterized by the same critical
exponents, independently of the system’s dimension, we will
first show how one can obtain their value from the previous
results, and then in the next sections, compare with the case
when interspin correlations are included.

In absence of correlations, we can use the self-consistency
equation [Eq. (11)] to calculate the critical exponent β near
Tc and Bc: in the FM phase and near the critical temperature
we have t,M̄z � 1, where t = (Tc − T )/Tc is the reduced
temperature. Then, the magnetization can be approximated as
(B = 0)

M̄z = 1

2
tanh

(
2M̄z

1 − t

)
� M̄z

1 − t
− 1

6

(
2M̄z

1 − t

)3

+ O
(
M̄5

z

)
,

(14)

where we have used the series expansion tanh (x) � x − x3

3 +
O(x5). The solutions to lowest order in t are

M̄z = 0, M̄z = ±
√

3t

2
(15)

which imply that the critical exponent for the order parameter
near Tc is βt = 1

2 . If in a similar manner we analyze the
critical behavior near Bc, as a function of the reduced field
b = (Bc − B)/Bc. We find

M̄2
z = b

2
− b2

4
� b

2
(16)

and the solutions for the magnetization are

M̄z = 0, M̄z = ±
√

b

2
(17)

with the corresponding critical exponent βb = 1
2 . Note that we

differentiate the critical exponent near Bc and Tc because the
first corresponds to a quantum critical point, while the second

to a classical one. As expected for mean field solutions, both
relevant parameters have identical critical exponents β = 1

2 .
The anomalous dimension η and the correlation length ξ must
be obtained from the correlated part of the two-point function
〈Sz

kS
z
k′ 〉C , which vanishes at this order of the hierarchy: this

is in contrast with some refined calculations of the mean field
solution, where the fluctuation-dissipation theorem is used,
giving a nonvanishing correlated part [29]. Equivalently, this
corresponds to the difference between Landau and Ginzburg-
Landau theory. We will show in the next section that this is
captured adding first-order perturbations to the uncorrelated
solution.

IV. CORRELATIONS IN ABSENCE
OF TRANSVERSE FIELD

Now, we consider the next order in the hierarchy of
correlations, and include O(Z−1) terms. We expect that the
corrections due to correlations will become more important
as we approach the phase boundary, as it is known that at the
phase boundary, the system becomes critical and interspin
correlations diverge. Furthermore, as Z changes with the
dimension, we would expect that the scaling of corrections
due to correlations is worse in the 1D case, while 2D and 3D
should display smaller contributions.

Now, the term Gxyμ,β

iin,n that was neglected in absence of
correlations in Eq. (6) contributes and must be included.
We calculate the equation of motion for the correlated part
of the four-point function G

xyα,β
ppn,n = −i〈ηx

pη
y
pηα

n ; ηβ
n 〉 in the

Appendix. This is done by calculating the equation of motion
for the four-point function, removing the uncorrelated part
〈ηx

pη
y
p〉Gα,β

n,n , and neglecting terms of O(Z−2) or higher. The
solution for the four-point function, including the transverse
field, can be obtained analytically, however, it is too long to
be explicitly written here. For simplicity, let us first consider
the model in absence of a transverse field (B = 0). In this case,
the solution for the correlated part highly simplifies, and one
finds that the Fourier transform of Gxyμ,β

iin,n is

Gxyα,β

k,k′ = −ω�
α,β

k,k′ + εzαθ iV0Mz�
θ,β

k,k′

ω2 − V 2
0 M2

z

, (18)

where

�
α,β

k,k′ = εzαθ

(
1

4
− M2

z

)
V−kG

θ,β

k+k′

− εzαθ

N

∑
q

Vq
〈
ηx

kη
y

kηx
qηy

q

〉
C
G

θ,β

k′−q. (19)

At this point, the simplest approximation that one can make is
to substitute the Green’s functions G

θ,β

k in �
α,β

k,k′ by its uncor-

related solution Ḡ
θ,β

k . Then, one can solve the self-consistency
equation for the equal-time correlator 〈ηx

kη
y

kηx
k′η

y

k′ 〉C and find〈
Sz

kS
z
k′
〉
C

= −〈
ηx

kη
y

kηx
k′η

y

k′
〉
C

= Nδk,−k′Vk′
(

1
4 − M̄2

z

)
4T cosh2

(
V0M̄z

2T

) − Vk′
. (20)

As expected in absence of the transverse field (i.e., quantum
fluctuations), the correlation function 〈Sz

kS
x
k′ 〉C vanishes. On
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Uncorr.

1D

2D

3D

0 0.25 0.5 0.75

1
2

1
4

0

− 1
4

T/V

Mz

FIG. 3. Numerical calculation of the average magnetization
including lowest-order correlations, as a function of T for D = 1,2,3
(red, blue, and green, respectively). In D = 1 we obtain an unphysical
remnant magnetization, which is cured by including feedback (Fig. 4).
For D � 2 the discontinuity is washed out and the corrections smaller.
The critical point has been rescaled to Tc → Tc/D, to make it
coincident for all cases.

the other hand, longitudinal correlations 〈Sz
kS

z
k′ 〉C vanish at

T = 0, where the exact Z2 ground state of the system is given
by a product state of polarized spins along z, as well as for
T → ∞, where the ground state corresponds to an incoherent
set of decoupled spins. The transition mechanism between
the two limits corresponds to a competition between thermal
fluctuations and spin-spin interactions. It is interesting the
appearance of a mass term in Eq. (20) due to the solution of
the self-consistency equation, which is proportional to T − Tc

(just by expanding Vk in powers of k and setting V0 = 4Tc);
this is very similar to the mass term obtained in φ4 theory
when the Hubbard-Stratonovich transformation is applied to
the Ising model.

From Eq. (7) it is clear that the magnetization will now
include corrections due to interspin correlations. Inserting
Eq. (20) into Eq. (7), we find

Mz = M̄z −
(

1

4
− M̄2

z

)
1

N

∑
q

|Vq|2

2T
tanh

(
V0M̄z

2T

)
4T cosh2

(
V0M̄z

2T

) − Vq

,

(21)

where M̄z is the average magnetization, previously obtained in
absence of correlations. The sign of the correction term shows
that interspin correlations mostly act against the formation of
ferromagnetic order, and as in 1D these corrections will be
larger, we expect that the FM phase should be significantly
reduced. Its numerical calculation for different dimensions is
shown in Fig. 3 [the divergence due to a vanishing denominator
in Eq. (21) is automatically cured by the input of the mean
field values M̄z]. It shows that due to thermal fluctuations,
the ferromagnetic phase shrinks down for all cases, and in
1D it changes sign close to Tc. This result is unphysical
and it is produced due to the poor scaling of correlations
in 1D, where Z = 2. As we approach the critical point,
correlations between spins increase, and contributions from
Z−n terms, with n > 2, become important. The fact that in
1D we observe a stronger influence of correlations is also
related with the fact that the ferromagnetic phase in 1D should

be destroyed by the thermal fluctuations at arbitrary T �= 0
and the two main sources of this failure are as follows: (1)
the use of the uncorrelated Green’s functions in Eq. (18),
neglecting the feedback of the magnetization in the interspin
correlations, and (2) higher n-point functions will become
increasingly dominant according to renormalization group
arguments. The first issue can be easily fixed by rewriting
the equation of motion as a Dyson’s equation, as we show
next. The implementation of a renormalization group analysis
will be performed in future publications.

To include back-reaction between the renormalized magne-
tization and the interspin correlations, we insert Eq. (18) into
Eq. (7). As the magnetization is spatially homogeneous, the
equation of motion can be written as

ωG
α,β

0 = δα,β

2π
+ εzαθ iMzV0G

θ,β

0

+χ
ωG

α,β

0 + εzαθ iV0MzG
θ,β

0

ω2 − V 2
0 M2

z

, (22)

where we have defined

χ = 1

N

∑
q

|Vq|2
[

1

4
− M2

z − 1

N

〈
ηx

qηy
qηx

−qη
y
−q

〉
C

]
(23)

and G
α,β

0 = G
α,β

k=0/N . This can be written in matrix form as
follows:

ωĜ = δ̂

2π
+ Ĥ0 · Ĝ + �̂(ω) · Ĝ (24)

and if we define the uncorrelated Green’s function matrix as
Ĝ(0) = [ω − Ĥ0]

−1
, we find the usual Dyson-type equation:

Ĝ = Ĝ(0) · δ̂

2π
+ Ĝ(0) · �̂(ω) · Ĝ (25)

with frequency-dependent self-energy

�̂(ω) = χ
σ̂0ω − σ̂yV0Mz

ω2 − V 2
0 M2

z

(26)

being δ̂ = (δx,β,δy,β )T , σy = (0 −i
i 0 ), and σ̂0 the identity

matrix. The solution for the Green’s function can be obtained
by direct matrix inversion:

Ĝ = [ω − Ĥ0 − �̂(ω)]−1 · δ̂

2π
. (27)

We can now compare the full solution [Eq. (27)] with the one
obtained in Eq. (21). It is equivalent to the substitution of Ĝ by
Ĝ(0) on the right-hand side of Eq. (24), and then equivalent to
first-order perturbation over the mean field value. This explains
the breakdown for the magnetization as one approaches the
phase boundary in Fig. 3.

In Eq. (27), back-reaction between G andG is now included,
and although the formal solution seems simple, the calculation
of the self-energy can be quite complicated. The reason is
that it contains terms proportional to 〈ηx

qη
y
qηx

−qη
y
−q〉C , which

must be determined self-consistently with Mz. As the purpose
of this paper is to discuss the application of the hierarchy
of correlations to general spin systems, and not to fully
characterize the Ising model (for which a large number of
accurate results is already available), we will only analyze
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the full solution for the 1D case, proving that the suppression
of the ferromagnetic phase is captured in very simple terms.
Results in higher dimensions should be even more accurate,
which shows the power of this approach.

As we will discuss below for the general case, one of
the advantages of the Ising model with B = 0 is that the
frequency dependence of the self-energy can be pulled out of
the integral over q. This allows to exactly calculate the poles of
the Green’s function when interspin correlations are included.
In the presence of correlations, the poles obtained in absence of
correlations separate in pairs, and their splitting is proportional
to the strength of correlations ω = ±V0Mz ± √

χ . We expect
that the addition of higher spin correlations will induce new
poles as well, approaching a continuum in the real axis, as it
is expected in the thermodynamic limit.

Before we fully solve the self-consistency equation, let
us consider a slightly easier calculation, which also provides
some insight into the effect of correlations in the Ising model.
This consists in approximating the statistical average in the
self-energy 〈ηx

qη
y
qηx

−qη
y
−q〉C by its lowest-order expression

[Eq. (20)]:

χ =
(

1

4
− M2

z

)
1

N

∑
q

4T cosh2
(

V0Mz

2T

)|Vq|2
4T cosh2

(
V0Mz

2T

) − V−q
. (28)

In this case, one neglects the self-consistency equation for
〈ηx

qη
y
qηx

−qη
y
−q〉C and just Mz is determined self-consistently.

This solution corresponds to what one would expect from the
random phase approximation (RPA). The explicit calculation
of Eq. (28) diverges when 4T cosh2 (V0Mz

2T
) < V0; this is an

instability inherent to the RPA calculation, indicating that
the ground state is unstable with respect to these collective
excitations [30] (because thermal excitations will shift the
phase boundary or even destroy the ferromagnetic phase).
Generally, the divergence is corrected by the addition of
the collective mode contributions to the self-energy, and in
our case, it will be cured by including the self-consistency
equation for 〈ηx

qη
y
qηx

−qη
y
−q〉C , instead of using its lowest-order

approximation.
Now, to obtain the full solution we calculate Mz from the

Green’s function in Eq. (27), and χ from Eq. (18) with G
α,β

0
from Eq. (27). After some simple manipulations one finds

Mz =
1
2 sinh

(
V0Mz

T

)
cosh

(
V0Mz

T

) + cosh
(√

χ

T

) , (29)

χ =
(

1

4
− M2

z

)
1

N

∑
q

m|Vq|2
m − Vq

V0

(30)

with m = 2
√

χ [cosh (MzV0

T
) + cosh (

√
χ

T
)]/V0 sinh (

√
χ

T
).

Equations (29) and (30) are one of the main results. They
correspond to the generalization of the mean field equation
for the magnetization, now including the effect of interspin
correlations. They are valid in arbitrary dimension, and both
reduce to the mean field case if χ → 0. It is important to
note that Eq. (30) has a divergence, however, it is different
than the RPA one previously obtained, and basically restricts
χ to positive values. This is physically meaningful because
χ corresponds to the integral of 〈Sz

kS
z
−k〉C over the whole

Mz

E

FIG. 4. Full solutions to the self-consistency equations and
average energy as a function of T/V for the 1D classical Ising model.

Brillouin zone, which is always positive because they tend to
be aligned. The positivity of χ also makes the poles of the
Green’s function to be real valued. Finally, we also include
the calculation of the average energy per spin (details of
the calculation in the Appendix):

E0 = −V0M
2
z −

1
2

√
χ sinh

(√
χ

T

)
cosh

(
V0Mz

T

) + cosh
(√

χ

T

) . (31)

The second term shows that interspin correlations always
reduce the energy and stabilize the system. Now, we par-
ticularize the previous expressions to 1D and study the fate
of the ferromagnetic phase when correlations are included.
The self-consistency equation in the continuum limit for χ

[Eq. (30)] can be calculated analytically by contour integration
in the complex plane, leading to [Vq = V0 cos (q)]

χ1D =
(

1
4 − M2

z

)
m2V 2

0

m2 − 1 + m
√

m2 − 1
. (32)

Figure 4 shows the solution to the self-consistency equations
(29) and (30). We find that the phase with Mz = 0 is the
one that persists in the presence of correlations, to arbitrary
low temperature. We also plot the ground-state energy as a
function of temperature, and it shows that as the temperature
decreases, interspin correlations increase and the energy of
the paramagnetic ground state is reduced. Interestingly, the
self-consistency equations also have a solution corresponding
to a first-order transition for T ∼ 0.25V , but its energy is
higher than the one for Mz = 0.

These solutions to the self-consistency equations fully
characterize the Green’s functions in 1D. Higher-dimensional
cases can be solved in a similar way, with the difference that
one does not have an analytical expression for the integral in
Eq. (30) and numerical methods must be used. Note that the
addition of a longitudinal field Bz is straightforward, and this
calculation can easily be generalized.

Critical exponents

Finally, we analyze the effect of correlations on the critical
exponents. As the phase transition is absent in 1D, one must
consider D � 2 to discuss the critical exponents. This is a
straightforward numerical calculation which requires to solve
the self-consistency equations (30) and (29). However, it does
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FIG. 5. Correlation length ξ (T ) to lowest order in correlations,
as a function of the inverse temperature β, in units of V . At the Curie
temperature, the correlation length diverges with critical exponent
ν = 1

2 .

not provide a clear picture of the effect of correlations, and
for this reason, we will discuss the lowest-order solutions
only, which can be done analytically. To lowest order, we
can consider Eq. (20) to describe interspin correlations. In
the long-wavelength limit of this expression, the dominant
contribution is

〈
Sz

kS
z
−k

〉
C

∝ 4Tc

(
1
4 − M̄2

z

)
4T cosh2

(
2M̄z

Tc

T

) − 4Tc + V k2
, (33)

where k = |k| and we have renamed V0 = 4Tc. The Fourier

transform of Eq. (33) is proportional to e
− |x|

ξ , which corre-
sponds to exponential decay with correlation length

ξ (T ) = 1

2

√
V

T cosh2
(
2M̄z

Tc

T

) − Tc

. (34)

In Fig. 5 we plot the temperature dependence of the correlation
length for the Ising model in different dimensions. In all cases,
we find a divergence at the critical temperature Tc, and a
decrease in ξ as one moves away from the critical point. To
estimate the critical behavior of ξ near Tc, we expand in powers
of the reduced temperature t , and to lowest order we find

ξ = 1

2

√
V

Tct
→ ν = 1/2. (35)

This is the critical exponent of Ginzburg-Landau theory, which
is expected because we assumed the lowest-order correction
in the self-energy, corresponding to first-order perturbation
[Eq. (20)]. Similarly, the anomalous dimension η can be
obtained from the correlated part of the two-point function
at T = Tc, which according to scaling arguments [29] must be
proportional to 〈SzSz〉Ck�1 ∝ kη−2. We find from Eq. (33)〈

Sz
kS

z
−k

〉
C

∝ k−2 → η = 0, (36)

meaning that the scaling of fields is not anomalous and
agreeing with the expectations from Ginzburg-Landau theory.
If we calculate the critical exponent βt from Eq. (21),
we find βt = 1

2 . This critical exponent has not changed
because we added correlations perturbatively, however, the
numerical calculation, including the feedback between the

k

k

FIG. 6. Poles of the Green’s function vs k obtained from the
uncorrelated (dashed, red line) and correlated (solid, blue line)
solution in 1D. We have chosen B/V = 0.9 and Z = 2 for the plot.
At the critical point, the the gap closes.

interspin correlations and the magnetization, should display
nonperturbative corrections. Nevertheless, in the next section
we will show that even at this level, we can find some
interesting differences between the quantum and the classical
critical points.

V. CORRELATIONS IN THE QUANTUM ISING MODEL

In this section, we include the transverse field B and
compare with the previous results. The solutions for the
correlation functions Gxyα,β

k,k′ are obtained analytically, but
their expressions are quite complicated. Hence, we will
discuss their general properties and then analyze in detail
two different approximations: the perturbative solution over
the whole phase diagram and the nonperturbative solution
within the paramagnetic phase. In this last case B > Bc

and Mz = −i〈ηxηy〉 = 0, highly simplifying the expressions.
Importantly, the T = 0 limit will allow us to compare the
properties of the classical and quantum critical points.

In general, we find that due to the transverse field B,
the correlation functions Gxyα,β

k,k′ display new collective ex-
citations called magnons, with dispersion relationship ω̂k =√

B2 + V 2
0 M2

z − BMxVk (1D case shown in Fig. 6). The
dependence on the transverse magnetization Mx makes that,
at the critical point Bc = V0/2, the gap closes displaying
linear dispersion around k � 0. This is related with the scale
invariance of the system at low energies, when B is tuned to
the critical value. As in the previous section, we can write the
corresponding Dyson’s equation

ωĜ = δ̂

2π
+ Ĥ0 · Ĝ + �̂ · Ĝ + �̂0, (37)

where now Ĝ = (Gx,β

0 G
y,β

0 G
z,β

0 )T , δ̂ = (δx,βδy,βδz,β )T , and

Ĥ0 = i

⎛
⎝ 0 MzV0 0

−MzV0 0 B

0 −B 0

⎞
⎠. (38)

The appearance of two different self-energy contributions �̂

and �̂0 (homogeneous and inhomogeneous terms, respec-
tively) happens because the solutions to Gxyα,β

q,−q contain terms
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SzSz

SxSz

FIG. 7. Correlated part of the spin-spin correlation functions
〈Sα

k S
β

−k〉 vs k in 1D (lowest-order correction). We have cho-
sen T = 0 and different values for the transverse field B/V =
0.75, 0.99, and 1.25 (dashed, solid, and dotted lines, respectively).
Correlations increase as we approach the critical point from both
phases, and at the critical point, the system becomes scale invariant
and correlations diverge at k = 0.

proportional to G
α,β
n,n and G

xyz,β
nnn,n, respectively (actually, the

Green’s function G
xyz,β
nnn,n is closely related with the � field

defined in Ref. [22]). Fortunately, G
xyz,β
nnn,n can be calculated

exactly from its equation of motion, and gives

Gxyz,β
nnn,n = i

2πω
(Mxδx,β + Myδy,β + Mzδz,β ). (39)

Therefore, �̂0 contributes to the source term δ̂, in addition
to the previously discussed change in the quasiparticle pole
coming from �̂. The detailed form of the self-energies
is complicated, and for practical purposes they must be
manipulated numerically.

We first consider the lowest-order solution by making the
substitution �̂ · Ĝ → �̂ · Ĝ0 in Eq. (37). In Fig. 1 we plot
the T = 0 magnetization versus the transverse field. As in
the previous section, the corrections to the magnetization
in absence of correlations are larger in low dimensions,
however, the corrections are smaller for the T = 0 line, and
the magnetization in 1D does not drop to negative values
close to the critical point. In Fig. 2 we plot the full phase
diagram, where one can see that thermal fluctuations affect
more drastically to the phase diagram, especially as one
approaches the classical critical point Tc. Interspin correlations
at this order show that, within the ferromagnetic phase and for

B �= 0, the crossed correlation function 〈Sx
kSz

k′ 〉C �= 0. This is
what one would expect, as B introduces quantum fluctuations
and M̄x,z are both finite. In Fig. 7 we plot the interspin
correlation functions in 1D as the transverse magnetic field
increases, crossing the critical point. It shows that correlations
increase as one approaches the phase boundary, diverging for
k = 0 at the critical point. We do not show the 2D or 3D
case in this plot, as the results are qualitatively the same (we
find the same divergence at k = 0 for B = Bc, and a slightly
different behavior at large k). The difference in sign between
the longitudinal and the transverse correlations happens be-
cause the longitudinal tries to align the spins parallel, while the
transverse acts in opposition, trying to break the ferromagnetic
order.

Finally, we consider the solution for the paramagnetic
phase, by assuming B > Bc and Mz = 0. This allows us to find
compact analytical expressions and gain some insight into the
main differences between the classical and the quantum Ising
models. The first advantage of considering the paramagnetic
phase is that the Green’s function G

x,β

0 decouples from the
rest, reducing the matrix dimension. The Dyson’s equation is
in this case

Ĝ = 1

2π
Ĝ(0) + Ĝ(0) · �̂(ω) · Ĝ, (40)

where Ĝ = (Gy,β

0 G
z,β

0 )T , �̂(ω) = λ(ω)(1 0
0 0), and

λ(ω) = ω

N

∑
q

|Vq|2
1
4 − 1

N

〈
ηx

qη
y
qηx

−qη
y
−q

〉
C

ω2 − B2 + MxBVq
. (41)

One important difference between the self-energy in the
previous section [Eq. (26)] and Eq. (41) is that, in this case,
the noncommutativity of the interaction and transverse field
terms in the Hamiltonian, mix the integral over q and the ω

dependence. Then, the pole structure for the Green’s function
will depend on this integral and, in consequence, on the
properties of the interaction Vq and the dimension of the
system. A full solution requires to determine 〈Sz

kS
z
k′ 〉C and

solve self-consistently for the magnetization and λ(ω). This is
why the full solution is significantly more complicated with
the transverse field.

If we consider Eq. (41), one can separate its real and
complex parts λ(ω ± iη) = λr (ω) ∓ iλi(ω), being

λr (ω) = PV
ω

N

∑
q

|Vq|2
1
4 + 1

N

〈
Sz

qS
z
−q

〉
C

2
√

B2 − BMxVq

(
1

ω − √
B2 − BMxVq

− 1

ω + √
B2 − BMxVq

)
, (42)

λi(ω) = π
ω

N

∑
q

∣∣Vq
∣∣2

1
4 + 1

N

〈
Sz

qS
z
−q

〉
C

2
√

B2 − BMxVq
[δ(ω −

√
B2 − BMxVq) − δ(ω +

√
B2 − BMxVq)], (43)

where PV indicates the principal value. Then, one can calculate the formal solution to Eq. (40) by direct matrix inversion:

G
z,y

0 (ω) = −iB

2π [ω2 − B2 − ωλ(ω)]
(44)
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which is a function of the self-energy. As the full solution
requires to complement the Green’s function with the self-
consistency equation for Mx , we must obtain its corresponding
spectral density:

J z,y(ω) = i(eβω + 1)−1
[
G

z,y

0 (ω + iη) − G
z,y

0 (ω − iη)
]

= 1

π

−i(eβω + 1)−1Bγ (ω)

[ω2 − B2 − m(ω)]2 + γ (ω)2 , (45)

where we have redefined the the complex and real parts in terms
of the damping γ (ω) = ωλi(ω) and quasiparticle mass m(ω) =
ωλr (ω), respectively. Then, the self-consistency equation for
Mx corresponds to

iMx =
∫ ∞

−∞
J z,y(ω)dω. (46)

To fully characterize the self-energy in Eqs. (42) and (43), one
needs to obtain an expression for 〈Sz

qS
z
−q〉C from the solution

of Gxyx,y
q,−q . An integral form of the solution is not very difficult

to obtain because the corresponding spectral density can be
defined in terms of Gz,y and the contributions from the poles
at ±√

B2 − BMxVq. Then, Eqs. (42) and (43) and the self-
consistency equation for Mx form a closed set of equations that
fully characterize the paramagnetic phase. The solution needs
to be obtained by numerical means, however, one can see from
Eq. (45) that the two initial quasiparticle poles at ω = ±B are
now smeared out by interactions to a Lorentzian shape, and
for γ,m → 0 one recovers the uncorrelated self-consistency
equation. The complex part of the self-energy γ produces
damping and the real part m produces a shift in the quasiparticle
energy. If the damping is small [γ (ω) � 1] and the spectral
function has maximums at ω = E±, with m(ω) and γ (ω) slow
varying functions around them, we can define the quasiparticle
dispersion by solving

E2
± − B2 − m(E±) = 0. (47)

This corresponds to approximate quasiparticles (magnons),
slightly damped by interactions and with excitation
energies E±.

To estimate the effect of interactions in the paramagnetic
phase, without solving the full self-consistency equations,
we can proceed in a slightly simpler way if we insert the
uncorrelated Green’s function Ĝ(0) on the right-hand side of
Eq. (40) and solve the self-consistency equation for T = 0.
One finds the next solution〈

Sz
kS

z
k′
〉
C

= −〈
ηx

kη
y

kηx
k′η

y

k′
〉
C

= Vk

8

Nδk,−k′

B − Vk
2 +

√
B2 − BMxVk

. (48)

Equation (48) corresponds to the lowest-order solution for
the spin-spin correlation and is valid within the paramagnetic
region of the phase diagram. As expected to lowest order,
the divergence happens at the uncorrelated critical point Bc =
V0/2 (which is correct in 1D, and therefore should not display
the instability previously found for the RPA, due to the shift
of the Curie temperature); however, this divergence shows an
important difference with the one obtained in the classical Ising
model [Eq. (20)]: the noncommutativity of the interaction and

transverse field terms in the Hamiltonian produce the square-
root term in the denominator of Eq. (48), which modifies the
scaling properties near the critical point. To see this explicitly,
we consider the long-wavelength limit of Eq. (48), as a function
of the reduced field b = (B − Bc)/Bc:〈

Sz
kS

z
−k

〉
C

= 1/4

b + V k2

2Bc
+ √

b + 1
√

b + V k2

2Bc

. (49)

Near b ∼ 0, a change in the behavior of interspin correlations

from (b + V k2

2Bc
)
−1

to (b + V k2

2Bc
)
−1/2

will happen for k2 ∼
2bBc/V . The Fourier transform to position space is in this
case proportional to the Bessel function of the second kind
K0(

√
Zb|r|), which displays the required asymptotic behavior

for interspin correlations ∼e
√
Zb|r| at large distances. The

difference will be relevant when the distance is of the order of
the inverse correlation length |r| ∼ √

b only. The correlation
length near the critical point scales as ξ ∼ b−1/2, and we
obtain the critical exponent ν = 1

2 , as in the model without
transverse field; however, the anomalous dimension obtained
at the critical point is〈

Sz
kS

z
−k

〉
C

∼ 1√
k2

→ η = 1. (50)

This shows that with this method, the perturbative solution
over the uncorrelated solution already captures a difference
in the anomalous dimension between the phase transition
driven by quantum fluctuations and the one driven by thermal
fluctuations. Unfortunately, we cannot derive an analytical
formula for the scaling of the magnetization near Bc because
Eq. (48) applies to the PM phase only, where the order
parameter vanishes.

Now, one can insert Eq. (48) into Eq. (41). As previously
discussed, this approximation can fail when correlations are
strong and induce an instability of the critical point. However,
in this case we know that the T = 0 critical point in 1D is
correct, and therefore the approximation should be reliable.
One obtains

λ(ω) = ω

2π

∫ π

−π

(Vq

2

)2
(B + �q)dq(

B − Vq

2 + �q

)(
ω2 − �2

q

) , (51)

where �q = √
B2 − BMxVq and we have taken the continuum

limit. Adding an infinitesimal complex part ω → ω ± iε the
self-energy can then be calculated by contour integral methods.
However, one must notice that the square-root dependence
introduces branch cuts which need to be accounted for. Hence,
as we are mostly interested in the frequency dependence, and
the condition B > Bc removes any divergences coming from
B − Vq

2 + �q , the final expression, to lowest order in B/V for

the integrand V 2
q (B + �q)/(B − Vq

2 + �q), should be a good
approximation far from the critical point. The self-energy is
then approximated by

λ(ω) � ω
B2 − ω2

4B2M2
x

− ω(B2 − ω2)2sign(B − |ω|)
4B2M2

x

√
(B2 − ω2)2 − 4B2V 2M2

x

.

(52)

Equation (52) displays a rich structure as a function of
frequency. The spectral density changes from the two initial
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poles ω = ±B obtained in absence of correlations, to a
combination of isolated poles and a continuum density of
states, once the correlations are added. Also, at the large field
fixed point B � V , the self-energy tends to zero and the two
poles found in absence of correlations are recovered, as one
would expect. This final result fully characterizes the solution
for Ĝ(ω), and shows how different approximations can be
used on the hierarchy of correlations to obtain nonperturbative,
analytical results.

VI. CONCLUSIONS

We have studied the Ising model using the equation-of-
motion technique and a decoupling scheme based on the
scaling of spatial correlations between spins. We have shown
that this method allows for a general approach to spin systems,
which is not restricted to Ising models only. Furthermore, a
similar approach would apply for the case of fermionic and
bosonic systems as well. For the case of spin systems, the
formalism is especially simple in terms of double-time Green’s
functions and Majorana fermions, but it can be applied to
different spin representations such as the Holstein-Primakoff,
hard-core bosons, fermionic, etc., without any difficulties.
One of the advantages is that it allows to discuss systems in
different dimensions and with a large variety of interactions.
The only changes will be in the scaling properties of the
hierarchy (its convergence) and the numerical integration in
the self-consistency equations. Importantly, the double-time
formalism can be applied to out-of-time correlators as well
[31], which expands the possibilities of this method to study
dynamical properties as well.

Regarding the specific models studied in this work, our
results show that the Ising model in absence of a transverse
field can be solved exactly to Z−1 order. This already provides

interesting results, even in 1D where we expect the hierarchy
to be less accurate due to the small coordination number. We
demonstrate the absence of a phase transition in 1D, and predict
the value of the spin-spin correlation function 〈Sz

qS
z
−q〉C and

of the energy of the ground state E0 (Fig. 4). Importantly,
Eqs. (29)–(31) correspond to a generalization of the widely
used mean field equations for the magnetization, now including
two-body correlations. They are valid in arbitrary dimension
and allow to characterize the phase diagram and the critical
exponents. In addition, we have also shown how one can
recover the well-known Ginzburg-Landau critical exponents
from the perturbative solution to lowest order.

When the transverse field is nonvanishing, the equations
of motion for the Green’s functions still can be solved
analytically, but their self-consistency equations are more
complicated and require numerical approaches. In general, one
finds the appearance of dispersive collective modes (magnons)
and branch cuts in the spectrum. An interesting difference,
that appears to lowest order in perturbations, is that the critical
exponent η �= 0 at the quantum critical point. This stresses
the difference with other methods that would just give the
mean field value η = 0. We have shown that interactions in
the quantum Ising model lead, in general, to a complicated
expression for the self-energy including damping, and that
the quasiparticle picture becomes just an approximate one.
To show this explicitly, we have approximated the behavior
of the self-energy within the paramagnetic phase; it shows a
rich behavior as a function of frequency, where discrete and
continuum excitations are present.
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APPENDIX A: CORRELATED PART OF THE FOUR-POINT FUNCTION

Here, we include the details for the calculation of the four-point function G
xyα,β
ppn,n(t,t ′) = −i〈ηx

p(t)ηy
p(t)ηα

n (t); ηβ
n (t ′)〉. The

general equation of motion for p �= n is

ωGμνα,β
ppn,n = 1

2π

〈{
ημ

pην
pηα

n ,ηβ
n

}〉 + i
〈[
H,ημ

pην
pηα

n

]
; ηβ

n

〉
. (A1)

As we are interested in the correlated part of the Green’s function, we must remove the equation of motion for the uncorrelated
part Gμνα,β

ppn,n = G
μνα,β
ppn,n − 〈ημ

pην
p〉Gα,β

n,n :

ωGμνα,β
ppn,n = εxαθ iB

(
Gμνθ,β

ppn,n − 〈
ημ

pην
p

〉
Gθ,β

n,n

) + iB
(
εxμθG

θνα,β
ppn,n + εxνθG

μθα,β
ppn,n

)
+ εzαθ

∑
i �=n

Vn,i

(
G

μνxyθ,β

ppiin,n − 〈
ημ

pην
p

〉
G

xyθ,β

iin,n

) +
∑
i �=p

Vp,i

(
εzμθG

xyθνα,β

iippn,n + εzνθG
xyμθα,β

iippn,n

)
. (A2)

Then, we make use of the conservation law ∂t 〈ημ
pην

p〉 = 0 and expand in correlations (neglecting Z−2 order terms), finding

ωGμνα,β
ppn,n = iB

(
εxαθGμνθ,β

ppn,n + εxμθGθνα,β
ppn,n + εxνθGμθα,β

ppn,n

) + εzαθ

∑
i �=n,p

Vn,i

(〈
ημ

pην
pηx

i η
y

i

〉
C
Gθ,β

n,n + 〈
ηx

i η
y

i

〉
Gμνθ,β

ppn,n

)

+ εzαθVn,p

(〈
ημ

pην
pηx

pηy
p

〉 − 〈
ημ

pην
p

〉〈
ηx

pηy
p

〉)
Gθ,β

n,n + εzμθ

∑
i �=p,n

Vp,i

(〈
ηx

i η
y

i

〉
Gθνα,β

ppn,n + 〈
ηθ

pην
p

〉
Gxyα,β

iin,n

)

+ εzνθ

∑
i �=p,n

Vp,i

(〈
ηx

i η
y

i

〉
Gμθα,β

ppn,n + 〈
ημ

pηθ
p

〉
Gxyα,β

iin,n

) + Vp,n

(
εzμθ

〈
ηθ

pην
p

〉 + εzνθ

〈
ημ

pηθ
p

〉)(
Gxyα,β

nnn,n − 〈
ηx

nη
y
n

〉
Gα,β

n,n

)
. (A3)
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Importantly, if we make use of the properties of the transverse Ising model 〈Sy

i 〉 = 0 and 〈Sz
i S

y

j 〉 = 0, we can simplify the different

concrete cases. Also, the Green’s function G
xyα,β
nnn,n appears in the equation of motion, but fortunately it can be calculated exactly:

Gxyz,β
nnn,n = 1

2πω

(
δx,β

〈
ηy

nη
z
n

〉 − δy,β

〈
ηx

nη
z
n

〉 + δz,β

〈
ηx

nη
y
n

〉)
. (A4)

APPENDIX B: CLASSICAL ISING MODEL

The full equation of motion in momentum space is given by

ωG
α,β

k = N

2π
δ(k)δα,β + iBεxαμG

μ,β

k + εzαμiMzV0G
μ,β

k + εzαμ

1

N

∑
q

VqGxyμ,β

q,k−q . (B1)

Neglecting the transverse term and writing the different components in matrix form we find(
ω −iMzV0

iMzV0 ω

)(
G

x,β

k

G
y,β

k

)
= N

δk,0

2π

(
δx,β

δy,β

)
+ 1

N

∑
q

Vq

(
Gxyy,β

q,k−q

−Gxyx,β

q,k−q

)
. (B2)

Solving the equation of motion for the correlated part and assuming that the magnetization is homogeneous we find

Gxyx,β

k,k′ = Vk′
Nδk,−k′

(
1
4 − M2

z

) − 〈
ηx

kη
y

kηx
k′η

y

k′
〉
C

ω2 − V 2
0 M2

z

(
iV0MzG

x,β

0 − ωG
y,β

0

)
,

Gxyy,β

k,k′ = Vk′
Nδk,−k′

(
1
4 − M2

z

) − 〈
ηx

kη
y

kηx
k′η

y

k′
〉
C

ω2 − V 2
0 M2

z

(
iV0MzG

y,β

0 + ωG
x,β

0

)
,

where G
α,β

k = G
α,β

0 δ(k)/N . Then, we can rewrite the initial equation of motion as

(ω − Ĥ0)Ĝ = δ̂

2π
+ �̂(ω) · Ĝ (B3)

being Ĝ = (G
x,β

0

G
y,β

0
), δ̂ = (δx,β

δy,β
), Ĥ0 = ( 0 iMzV0

−iMzV0 0 ), Ĝ(0) = (ω − Ĥ0)
−1 · δ̂, and

�̂(ω) = λ(ω)

(
ω iV0Mz

−iV0Mz ω

)
, (B4)

λ(ω) = 1

N

∑
q

|Vq|2
1
4 − M2

z − 1
N

〈
ηx

qη
y
qηx

−qη
y
−q

〉
C

ω2 − V 2
0 M2

z

= χ

ω2 − V 2
0 M2

z

, (B5)

where χ = 1
N

∑
q |Vq|2[ 1

4 − M2
z − 1

N
〈ηx

qη
y
qηx

−qη
y
−q〉C]. Note that this previous expression indicates that a full solution requires

to calculate χ later on, in a self-consistent way. The solution for the Green’s function is easily found to be

Ĝ = (ω − Ĥ0 − �̂(ω))−1 · δ̂

2π
(B6)

with poles at

ωi = ±MzV0 ± √
χ. (B7)

Then, we calculate the self-consistency equations for the magnetization and the interspin correlations. For the magnetization we
find

Mz = 1

2

sinh
(

MzV0

T

)
cosh

(
MzV0

T

) + cosh
(√

χ

T

) . (B8)

To correctly determine χ we need to first find a self-consistency equation for 〈ηx
qη

y
qηx

−qη
y
−q〉C , which is obtained from the

expression for Gxyx,y
q,−q . We find

−〈
ηx

qηy
qηx

−qη
y
−q

〉
C

= V−q
N

(
1
4 − M2

z

) − 〈
ηx

qη
y
qηx

−qη
y
−q

〉
C

2
√

χ
[

cosh
(

MzV0

T

) + cosh
(√

χ

T

)] sinh

(√
χ

T

)

which corresponds to

〈
ηx

qηy
qηx

−qη
y
−q

〉
C

= − N
(

1
4 − M2

z

)
V−q sinh

(√
χ

T

)
2
√

χ
[

cosh
(

MzV0

T

) + cosh
(√

χ

T

)] − V−q sinh
(√

χ

T

) . (B9)
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Note that it nicely agrees with the lowest-order, perturbative solution 〈ηx
qη

y
qηx

−qη
y
−q〉c = −N( 1

4 −M2
z )V−q

4T cosh2 ( V0Mz
2T

)−V−q

if we expand

to linear order in χ . To finally obtain the self-consistency equation for χ , we insert the previous result into χ =
1
N

∑
q |Vq|2[ 1

4 − M2
z − 1

N
〈ηx

qη
y
qηx

−qη
y
−q〉C], and get

χ =
(

1

4
− M2

z

)
1

N

∑
q

2
√

χ
[

cosh
(

MzV0

T

) + cosh
(√

χ

T

)]|Vq|2

2
√

χ
[

cosh
(

MzV0

T

) + cosh
(√

χ

T

)] − V−q sinh
(√

χ

T

) (B10)

which correctly agrees with the RPA result to linear order in χ . In the 1D case, one can obtain an exact expression for the integral∫ π

−π

dq

2π

cos2 (q)

m − cos (q)
= mθ (m − 1)

m2 − 1 + m
√

m2 − 1
− mθ (1 − m),

where we have computed its value for m > 1 by contour integral in the complex plane, and to extend the result to m < 1, we
have “regularized” the integral by calculating its principal value, deforming the unit circle around the poles. The final result is

χ
1D=

(
1

4
− M2

z

)
V 2

0 m2

(
θ (m − 1)

m2 − 1 + m
√

m2 − 1
− θ (1 − m)

)
(B11)

being m = 2
√

χ
cosh ( MzV0

T
)+cosh (

√
χ

T
)

V0 sinh (
√

χ

T
)

. The last important result is the calculation of the average energy, which in case of different

possible solutions will determine the ground state. The energy per spin of the ground state is

E0

N
= 〈H 〉

N
= − 1

N

∑
i,j>i

Vi,j

〈
Sz

i S
z
j

〉
. (B12)

In the Majorana representation, the energy per spin becomes

E0

N
= 1

N

∑
i,j>i

Vi,j

〈
ηx

i η
y

i η
x
j η

y

j

〉
(B13)

= V0〈ηxηy〉2 + 1

N

∑
q

Vq
〈
ηx

qηy
qηx

−qη
y
−q

〉
c
, (B14)

where in the second line we have separated into uncorrelated and correlated parts, and assumed homogeneous magnetization. The
magnetization is obtained from the solution of the self-consistency equation, and the last term can be related with the two-point
function as

E0

N
= V0〈ηxηy〉2 + i

∫ ∞

−∞

ωG
y,y

0 (ω ± iη) + iV0MzG
x,y

0 (ω ± iη)

eβω + 1
dω (B15)

resulting in

E0

N
= −V0M

2
z − 1

2

√
χ sinh

(√
χ

T

)
cosh

(
MzV0

T

) + cosh
(√

χ

T

) . (B16)
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