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Consistent microscopic analysis of spin pumping effects
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We present a consistent microscopic study of spin pumping effects for both metallic and insulating
ferromagnets. As for the metallic case, we present a simple quantum mechanical picture of the effect as due to
the electron spin flip as a result of a nonadiabatic (off-diagonal) spin gauge field. The effect of interface spin-orbit
interaction is briefly discussed. We also carry out a field-theoretic calculation to discuss on equal footing the spin
current generation and torque effects such as an enhanced Gilbert damping constant and a shift of precession
frequency both in metallic and insulating cases. For thick ferromagnetic metals, our study reproduces the results of
previous theories such as the correspondence between the dc component of the spin current and the enhancement
of the damping. For thin metals and insulators, the relation turns out to be modified. For the insulating case,
driven locally by interface sd exchange interaction due to magnetic proximity effect, the physical mechanism is
distinct from the metallic case. Further study of the proximity effect and interface spin-orbit interaction would
be crucial to interpret experimental results in particular for insulators.

DOI: 10.1103/PhysRevB.96.064423

I. INTRODUCTION

Spin current generation is of a fundamental importance in
spintronics. A dynamic method using magnetization preces-
sion induced by an applied magnetic field, called the spin
pumping effect, turns out to be particularly useful [1] and is
widely used in a junction of a ferromagnet (F) and a normal
metal (N) (Fig. 1). The generated spin current density (in unit
of A/m2) has two independent components, proportional to ṅ
and n × ṅ, where n is a unit vector describing the direction of
localized spin, and thus is represented phenomenologically as

j s = e

4π
(Arn × ṅ + Aiṅ), (1)

where e is the elementally electric charge and Ar and Ai are
phenomenological constants having unit of 1/m2. The spin
pumping effect was theoretically formulated by Tserkovnyak
et al. [2] by use of the scattering matrix approach [3]. This
approach, widely applied in mesoscopic physics, describes
transport phenomena in terms of transmission and reflection
amplitudes (scattering matrix), and provides a quantum me-
chanical picture of the phenomena without calculating explic-
itly the amplitudes. Tserkovnyak et al. applied the scattering
matrix formulation of general adiabatic pumping [4,5] to the
spin-polarized case. The spin pumping effect was described in
Ref. [2] in terms of spin-dependent transmission and reflection
coefficients at the FN interface, and it was demonstrated that
the two parameters, Ar and Ai, are the real and the imaginary
parts of a complex parameter called the spin mixing conduc-
tance. The spin mixing conductance, which is represented by
transmission and reflection coefficients, turned out to be a
convenient parameter for discussing spin current generation
and other effects like the inverse spin-Hall effect. Nevertheless,
the scattering approach hides the microscopic physical picture
of what is going on, as the scattering coefficients are not
fundamental material parameters but are composite quantities

of the Fermi wave vector, the electron effective mass, and the
interface properties.

The effects of a slowly varying potential are described in
a physically straightforward and clear manner by the use of
a unitary transformation that represents the time dependence
(see Sec. II A for details). The laboratory frame wave function
under a time-dependent potential |ψ(t)〉 is written in terms of
a static ground state (“rotated-frame” wave function) |φ〉 and a
unitary matrix U (t) as |ψ(t)〉 = U (t)|φ〉. The time derivative
∂t is then replaced by a covariant derivative ∂t + (U−1∂tU ),
and the effects of time dependence are represented by (the time
component of) an effective gauge field,A ≡ −i(U−1∂tU ) [see
Eq. (12)]. In the same manner as the electromagnetic gauge
field, the effective gauge field generates a current if spatial
inhomogeneity is present (like in junctions), and this is the
physical origin of the pumping effect in metals.

It should be noted that the effective gauge field that drives
spin current is a nonadiabatic one, off-diagonal in spin, and
not the adiabatic gauge field that induces spin Berry’s phase,
the spin motive force, and spin transfer effects. Nevertheless,
the pumping efficiency can be calculated within an adiabatic
pumping scheme, as shall be discussed in Sec. II C.

In the perturbative regime or in insulators, a simple picture
instead of an effective gauge field can be presented. Let
us focus on the case driven by an sd exchange interaction,
Jsd n(t) · σ , where Jsd is a coupling constant and σ is the
electron spin. Considering the second-order effect of the
sd exchange interaction, the electron wave function has a
contribution of a time-dependent amplitude

U(t1,t2) = (Jsd )2(n(t1) · σ )(n(t2) · σ )

= (Jsd )2{(n(t1) · n(t2)) + i[n(t1) × n(t2)] · σ }, (2)

where t1 and t2 are the times of the interactions. The first
term on the right-hand side, representing the amplitude for
charge degrees of freedom, is neglected. The spin contribution
vanishes for a static spin configuration, as is natural, while for
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FIG. 1. Spin pumping effect in a junction of ferromagnet (F)
and normal metal (N). Dynamic magnetization n(t) generates a spin
current js through the interface.

the slowly varying case, it reads

U(t1,t2) � −i(t1 − t2)(Jsd )2(n × ṅ)(t1) · σ . (3)

As a result of this amplitude, spin accumulation and spin
current is induced proportional to n × ṅ. This fact indicates
that n × ṅ plays a role of an effective scalar potential or voltage
in electromagnetism, as we shall demonstrate in Sec. VII B for
insulators. [The factor of time difference is written in terms of
a derivative with respect to energy or angular frequency in a
rigorous derivation. See, for example, Eqs. (E6) and (E9).]
The essence of the spin pumping effect is therefore the
noncommutativity of spin operators. The above picture in the
perturbative regime naturally leads to the effective gauge field
picture in the strong-coupling limit [6].

The same scenario applies for cases of spatial variation of
spin, and an equilibrium spin current proportional to n × ∇in
emerges, where i denotes the direction of spatial variation [7].
The spin pumping effect is therefore the time analog of the
equilibrium spin current induced by vector spin chirality.
Moreover, a charge current emerges from the third-order
process from the identity [6]

tr[(n1 · σ )(n2 · σ )(n3 · σ )] = 2in1 · (n2 × n3), (4)

and this factor, a scalar spin chirality, is the analog of the spin
Berry phase in the perturbative regime. The spin pumping
effect, spin Berry’s phase, and the spin motive force have the
same physical root, namely, the noncommutative spin algebra.

From the scattering matrix theory view point, the cases
of metallic and insulating ferromagnet make no difference
since what the conduction electrons in the normal metal see
is the interface. From the physical viewpoint, such treatment
appears too crude. Unlike the metallic case discussed above, in
the case of an insulator ferromagnet, the coupling between the
magnetization and the conduction electron in a normal metal
occurs due to a magnetic proximity effect at the interface,
as is experimentally indicated [8]. Thus the spin pumping
by an insulator ferromagnet is a locally induced perturbative
effect rather than a transport induced by a driving force due
to a generalized gauge field. We therefore need to apply
different approaches for the two cases. In the insulating
case, one may think that a magnon spin current is generated
inside the ferromagnet because the magnons couple to an
effective gauge field [9] similarly to the electrons in metallic
case. This is not, however, true, because the gauge field for
magnons is Abelian [U(1)], and has no off-diagonal “spin-
flip” component. Although the scattering matrix approach
apparently seems to apply to both metallic and insulating cases,

it would be instructive to present in this paper a consistent
microscopic description of the effects to see the different
physics governing the two cases.

A. Brief overview of theories and scope of the paper

Before carrying out calculations, let us overview the history
of theoretical studies of the spin pumping effect. Spin current
generation in a metallic junction was originally discussed by
Silsbee et al. [10] before Tserkovnyak et al. It was shown there
that dynamic magnetization induces spin accumulation at the
interface, resulting in a diffusive flow of spins in the normal
metal. Although at that time the experimental interest was
focused on the interface spin accumulation, which enhances
the signal of conduction electron spin resonance, it would be
fair to say that Silsbee et al. pointed out the “spin pumping
effect”.

In Ref. [2], the spin pumping effect was originally argued
in the context of enhancement of Gilbert damping in an
FN junction, which had been a hot issue after the study by
Berger [11], who studied the case of FNF junctions based on
a quantum mechanical argument. Berger discussed that when
a normal metal is attached to a ferromagnet, the damping of
the ferromagnet is enhanced as a result of spin polarization
formed in the normal metal, and the effect was experimentally
confirmed by Mizukami et al. [12]. Tserkovnyak et al. pointed
out that the effect can be interpreted as the counteraction
of spin current generation, because the spin current injected
into the normal metal indicates emergence of a torque for
the ferromagnet. In fact, the equation of motion for the
magnetization of ferromagnet reads

ṅ = −γ B × n − αn × ṅ − a3

eSd
j s, (5)

where γ is the gyromagnetic ratio, α is the Gilbert damping
coefficient, d is the thickness of the ferromagnet, S is the
magnitude of localized spin, and a is the lattice constant. The
spin current of Eq. (1) thus indicates that the gyromagnetic
ratio and the Gilbert damping coefficient are modified by the
spin pumping effect to be [2]

α̃ = α + a3

4πSd
Ar,

γ̃ = γ

(
1 + a3

4πSd
Ai

)−1

. (6)

The spin pumping effect is therefore detected by measuring
the effective damping constant and gyromagnetic ratio. For-
mula (6) is, however, based on a naive picture neglecting the
position dependence of the damping torque and the relation
between the pumped spin current amplitude and damping, or
γ would not be so simple in reality (see Sec. V).

The issue of damping in an FN junction was formu-
lated based on linear-response theory by Simanek and
Heinirch [13,14]. They showed that the damping coefficient is
given by the first-order derivative with respect to the angular
frequency ω of the imaginary part of the spin correlation
function and argued that the damping effect is consistent with
Tserkovnyak’s spin pumping effect. Recently, a microscopic
formulation of spin pumping effect in metallic junctions was
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provided by Chen and Zhang [15] and one of the authors of
Ref. [16] by use of the Green’s functions, and a transparent
microscopic picture of pumping effect was provided. The
scattering representation and the Green’s function one are
related [15] because the asymptotic behaviors of the Green’s
functions at long distance are governed by the transmission
coefficient [17]. In the study of Ref. [16], the uniform
ferromagnet was treated as a dot having only two degrees of
freedom of spin. Such simplification neglects the dependence
on electron wave vectors in ferromagnets and thus cannot
discuss the case of inhomogeneous magnetization or position
dependence of spin damping.

The aim of this paper is to provide a microscopic and
consistent theoretical formulation of spin pumping effect for
metallic and insulating ferromagnets. We do not rely on
the scattering approach. Instead, we provide an elementary
quantum mechanical argument to demonstrate that spin current
generation is a natural consequence of magnetization dynam-
ics (Sec. II). Based on the formulation, the effect of interface
spin-orbit interaction is discussed in Sec. III. We also provide
a rigorous formulation based on the field-theoretic approach
employed in Ref. [16] in Sec. IV. We also reproduce within
the same framework Berger’s result [11] that the spin pumping
effect is equivalent to the enhancement of the spin damping
(Sec. V). The effect of inhomogeneous magnetization is briefly
discussed in Sec. VI.

The case of insulating ferromagnet is studied in Sec. VII
assuming that the pumping is induced by an interface ex-
change interaction between the magnetization and conduction
electrons in a normal metal, namely, by the magnetic proximity
effect [8]. The interaction is treated perturbatively similarly to
Refs. [18,19]. The dominant contribution to the spin current,
the one linear in the interface exchange interaction, turns out
to be proportional to ṅ, while the one proportional to n × ṅ is
weaker if the proximity effect is weak.

The contribution from the magnons, magnetization fluc-
tuations, is also studied. As has been argued [9], a gauge
field for magnons emerges from magnetization dynamics. It
is, however, an adiabatic one, diagonal in spin, which acts as a
chemical potential for magnons, giving rise only to adiabatic
spin polarization proportional to n. This is in sharp contrast
to the metallic case, where electrons are directly driven by
the spin-flip component of the spin gauge field, resulting in
perpendicular spin accumulation, i.e., along ṅ and n × ṅ.
The excitation in a ferromagnet when the magnetization is
time-dependent is therefore different for the metallic and
the insulating cases. We show that a magnon excitation
nevertheless generates perpendicular spin current, n × ṅ, in
the normal metal as a result of annihilation and creation at the
interface, which in turn flips the electron spin. The result of the
magnon-driven contribution agrees with the one in the previous
study [20] carried out in the context of thermally driven
spin pumping (“spin Seebeck” effect). It is demonstrated
that the magnon-induced spin current depends linearly on the
temperature at high temperature compared to magnon energy.
The amplitude of magnon-driven spin current provides the
magnitude of the magnetic proximity effect.

In our analysis, we calculate consistently the pumped spin
current and change of the Gilbert damping and resonant
frequency and obtain the relations among them. It is shown

that the spin mixing conductance scenario saying that the
magnitude of spin current proportional to n × ṅ is given by
the enhancement factor of the Gilbert damping constant [2],
applies only in the case of thick ferromagnetic metals. For the
thin metallic and insulator cases, different relations hold (see
Sec. VIII).

II. QUANTUM MECHANICAL DESCRIPTION
OF METALLIC CASE

In this section, we derive the spin current generated by
the magnetization dynamics of a metallic ferromagnet by a
quantum mechanical argument. It is sometimes useful for
intuitive understanding, although the description may lack
clearness as it cannot handle many-particle aspects like particle
distributions. In Sec. IV, we formulate the problem in the
field-theoretic language.

A. Electrons in ferromagnet with dynamic magnetization

The model we consider is a junction of a metallic fer-
romagnet (F) and a normal metal (N). The magnetization
(or localized spins) in the ferromagnet is treated as spatially
uniform but changing with time slowly. As a result of strong
sd exchange interaction, the conduction electron’s spin follows
instantaneous directions of localized spins, i.e., the system is
in the adiabatic limit. The quantum mechanical Hamiltonian
for the ferromagnet is

HF = − ∇2

2m
− εF − Mn(t) · σ , (7)

where m is the electron mass, σ is a vector of Pauli matrices,
M represents the energy splitting due to the sd exchange
interaction, and n(t) is a time-dependent unit vector denoting
the localized spin direction. The energy is measured from the
Fermi energy εF .

As a result of the sd exchange interaction, the electron’s
spin wave function is given by [21]

|n〉 ≡ cos
θ

2
|↑〉 + sin

θ

2
eiφ|↓〉, (8)

where |↑〉 and |↓〉 represent the spin-up and -down states,
respectively, and (θ,φ) are polar coordinates for n. To treat
slowly varying localized spins, we switch to a rotated frame
where the spin direction is defined with respect to an instan-
taneous direction n [7]. This corresponds to diagonalizing the
Hamiltonian at each time by introducing a unitary matrix U (t)
as

|n(t)〉 ≡ U (t)|↑〉, (9)

where

U (t) =
(

cos θ
2 sin θ

2 e−iφ

sin θ
2 eiφ − cos θ

2

)
, (10)

where states are in vector representation, i.e., |↑〉 = (1
0) and

|↓〉 = (0
1). In the rotated frame, the Hamiltonian is diagonalized

as (in the momentum representation)

H̃F ≡ U−1HFU = εk − Mσz, (11)
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FIG. 2. Unitary transformation U for conduction electrons in a
ferromagnet converts the original Hamiltonian HF into a diagonalized
uniformly spin-polarized Hamiltonian H̃F and an interaction with a
spin gauge field, As,t · σ .

where εk ≡ k2

2m
− εF is the kinetic energy in the momentum

representation (Fig. 2). In general, when a state |ψ〉 for a
time-dependent Hamiltonian H (t), satisfying the Schrödinger
equation i ∂

∂t
|ψ〉 = H (t)|ψ〉, is written in terms of a state |ψ〉

connected by a unitary transformation |φ〉 ≡ U−1|ψ〉, the new
state satisfies a modified Schrödinger equation:(

i
∂

∂t
+ iU−1 ∂

∂t
U

)
|φ〉 = H̃ |φ〉, (12)

where H̃ ≡ U−1HU . Namely, there arises a gauge field
−iU−1 ∂

∂t
U in the new frame |φ〉. In the present case of

dynamic localized spin, the gauge field has three components
(suffix t denotes the time component):

As,t ≡ −iU−1 ∂

∂t
U ≡ As,t · σ , (13)

explicitly given as [7]

As,t = 1

2

⎛⎜⎝−∂tθ sin φ − sin θ cos φ∂tφ

∂tθ cos φ − sin θ sin φ∂tφ

(1 − cos θ )∂tφ

⎞⎟⎠. (14)

Including the gauge field in the Hamiltonian, the effective
Hamiltonian in the rotated frame reads

H̃ eff
F ≡ H̃F +As,t · σ =

(
εk − M − Az

s,t A−
s,t

A+
s,t εk + M + Az

s,t

)
,

(15)

where A±
s,t ≡ Ax

s,t ± iAy
s,t . We see that the adiabatic (z)

component of the gauge field, Az
s,t , acts as a spin-dependent

chemical potential (spin chemical potential) generated by
dynamic magnetization, while the nonadiabatic (x and y)
components cause spin mixing. In the case of the uniform
magnetization we consider, the mixing is between the electrons
with different spin ↑ and ↓ but with the same wave vector k,
because the gauge field A±

s,t carries no momentum. This leads
to a mixing of states having an excitation energy of M as
shown in Fig. 3. In low-energy transport effects, what matters
are the electrons at the Fermi energy; the wave vector k should
be chosen as kF+ and kF−, the Fermi wave vectors for ↑ and
↓ electrons, respectively. (Effects of finite momentum transfer
are discussed in Sec. VI.)

Hamiltonian (15) is diagonalized to obtain energy eigenval-
ues of ε̃kσ = εk − σ

√
(M + Az

s,t )
2 + |A⊥

s,t |2 , where |A⊥
s,t |2 ≡

A+
s,tA−

s,t and σ = ± represents spin (↑ and ↓ correspond to +
and −, respectively). We are interested in the adiabatic limit,

FIG. 3. For uniform magnetization, the nonadiabatic components
of the gauge field A±

s,t induce a spin flip conserving the momentum.

and so the lowest order contribution, namely, the first order, in
the perpendicular component A⊥

s,t , is sufficient. In the present
rotated-frame approach, the gauge field is treated as a static
potential, since it already includes the time derivative to the
linear order [see Eq. (14)]. Moreover, the adiabatic component
of the gauge field, Az

s,t , is neglected, as it modifies the spin
pumping only at the second order of the time derivative. The
energy eigenvalues εkσ � εk − σM are thus unaffected by the
gauge field, while the eigenstates to the linear order read

|k↑〉F ≡ |k↑〉 − A+
s,t

M
|k↓〉,

(16)

|k↓〉F ≡ |k↓〉 + A−
s,t

M
|k↑〉,

corresponding to the energy of εk+ and εk−, respectively. For
low-energy transport, the states that we need to consider are
the following two, having spin-dependent Fermi wave vectors
kFσ for σ = ↑,↓, namely,

∣∣kF↑↑〉F = ∣∣kF↑↑〉− A+
s,t

M

∣∣kF↑↓〉,
∣∣kF↓↓〉F = ∣∣kF↓↓〉+ A−

s,t

M

∣∣kF↓↑〉. (17)

B. Spin current induced in the normal metal

The spin pumping effect is now studied by taking account
of the interface hopping effects on the states of Eq. (17) to the
linear order. The interface hopping amplitude of electrons in
F to N with spin σ is denoted by t̃σ and the amplitude from N
to F is t̃∗σ . We assume that the spin dependence of the electron
state in F is governed by the relative angle to the magnetization
vector, and hence the spin σ is the one in the rotated frame.
Assuming, moreover, that there is no spin-flip scattering at
the interface, the amplitude t̃σ is diagonal in spin. (Interface
spin-orbit interaction is considered in Sec. III.) The spin-wave
function formed in the N region at the interface as a result of
the state in F [Eq. (17)] is then

|kF ↑〉N ≡ t̃ |kF ↑〉 = t̃↑|kF ↑〉 − t̃↓
A+

s,t

M
|kF ↓〉

|kF ↓〉N ≡ t̃ |kF ↓〉 = t̃↓|kF ↓〉 + t̃↑
A−

s,t

M
|kF ↑〉, (18)
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where kF is the Fermi wave vector of an N electron. The spin
density induced in N region at the interface is therefore

s̃(N) = 1
2 (N〈kF ↑|σ |kF ↑〉Nν↑ + N〈kF ↓|σ |kF ↓〉Nν↓), (19)

where νσ is the spin-dependent density of states of F electrons
at the Fermi energy. It reads

s̃(N) = 1

2

∑
σ

νσ Tσσ ẑ − ν↑ − ν↓
M

(Re[T↑↓]A⊥
s,t

+ Im[T↑↓]( ẑ × A⊥
s,t )), (20)

where A⊥
s,t = (Ax

s,t ,A
y
s,t ,0) = As,t − ẑAz

s,t is the transverse
(nonadiabatic) components of spin gauge field and

Tσσ ′ ≡ t̃∗σ t̃σ ′ . (21)

The spin density of Eq. (20) is in the rotated frame. The spin
polarization in the laboratory frame is obtained by a rotation
matrix Rij , defined by

U−1σiU ≡ Rij σj , (22)

as

s
(N)
i = Rij s̃

(N)
j . (23)

Explicitly, Rij = 2mimj − δij , where m ≡
(sin θ

2 cos φ, sin θ
2 sin φ, cos θ

2 ) [7]. Using

Rij (A⊥
s,t )j = − 1

2 (n × ṅ)i ,
(24)

Rij ( ẑ × A⊥
s,t )j = − 1

2 ṅi ,

and Riz = ni , the induced interface spin density is finally
obtained as

s(N) = ζ s
0 n + Re[ζ s](n × ṅ) + Im[ζ s]ṅ, (25)

where

ζ s
0 ≡ 1

2

∑
σ

νσ Tσσ , ζ s ≡ ν↑ − ν↓
2M

T↑↓. (26)

Since the N electrons contributing to induced spin density
are those at the Fermi energy, the spin current is simply
proportional to the induced spin density as j s

N = kF

m
s(N),

resulting in

j (N)
s = kF

m
ζ s

0 n + kF

m
Re[ζ s](n × ṅ) + kF

m
Im[ζ s]ṅ. (27)

This is the result of spin current at the interface. The
pumping efficiency is determined by the product of hopping
amplitudes t↑ and t∗↓. The spin mixing conductance defined in
Ref. [2] corresponds to T↑↓. In the scattering approach [2]
based on adiabatic pumping theory [3–5], the expression
for the spin mixing conductance in terms of scattering
matrix element is exact as for the adiabatic contribution. Our
result (27), in contrast, is a perturbative one valid to the second
order in the hopping amplitude. To take full account of the
hopping in the self-energy is possible numerically in a field
theoretical approach.

In bulk systems without spin-orbit interaction and magnetic
field, the hopping amplitudes tσ are chosen as real, while at
interfaces, this is not the case because inversion symmetry
is broken. Nevertheless, in metallic junctions such as Cu/Co,
Cr/Fe, and Au/Fe, first-principles calculations indicate that

t
n(t)

(a) 2M

t
n(t)

(b)

FIG. 4. Schematic figures of electron energy ε under precessing
localized spin n(t) in the adiabatic limit (a) and with nonadiabaticity
(b). Top figures represent energy levels with separation of 2M in
the rotated frame. In the perfectly adiabatic case (a), the electron
state keeps the minimum energy state as n(t) changes. Spin pumping
does not occur in this limit. Case (b) is with nonadiabaticity taken
into account, where temporal change of localized spin ṅ induces a
perpendicular spin polarization along n × ṅ. This nonadiabatic effect
is represented by the nonadiabatic gauge field A±

s,t and causes spin
flip in the rotated frame, leading to a high-energy state (shown in red)
and spin current generation.

the imaginary part of spin mixing conductance (our ζ s) is
smaller than the real part by 1–2 orders of magnitude [22,23].
A large spin current proportional to ṅ would therefore suggest
existence of strong interface spin-orbit interaction, as shall be
discussed in Sec. III.

C. Adiabatic or nonadiabatic?

In our approach, the spin pumping effect at the linear
order in time derivative is mapped to a static problem of spin
polarization formed by a static spin-mixing potential in the
rotated frame as was mentioned in Ref. [16]. The rotated-frame
approach employed here provides a clear physical picture, as
it grasps the low-energy dynamics in a mathematically proper
manner. In this approach, it is clearly seen that pumping of
spin current arises as a result of off-diagonal components of
the spin gauge field that causes electron spin flip.

If so, is spin pumping an adiabatic effect or nonadiabatic
one? Conventional adiabatic processes are those where the
system under a time-dependent external field remains to be the
lowest energy state at each time [Fig. 4(a)]. In the spintronics
context, an electron passing through a thick domain wall seems
to be in the adiabatic limit in this sense; the electron spin
keeps the lowest energy state by rotating it according to the
magnetization profile at each spatial point [7] (see Table I). In
contrast, as is seen from the above analysis, the spin pumping
effect does not arise in the same adiabatic limit; it is induced
by the nonadiabatic (off-diagonal) spin gauge field A±

s,t , which
changes electron spin state in the local rotated frame with a
cost of sd exchange energy [Fig. 4(b)]. For the spin pumping
effect, therefore, nonadiabaticity is essential, as indicated also
in a recent full counting statistics analysis [24].

In spite of this fact, the spin pumping effect appears to be
treated within an adiabatic pumping theory [3–5]. In fact, a
nonadiabatic gauge field serves just as a driving field for spin
current, while the pumping efficiency is determined solely by
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TABLE I. Comparison of electron transmission through a domain wall and spin pumping effect. In
the figures, large arrows represent the localized spins, n, as a function of position x or time t , and the
electron spin is denoted by a small arrow with a circle. A nonadiabatic spin polarization δs induced by the
nonadiabatic gauge field A±

s,μ is essential in both cases (represented by yellow arrows).

the static (adiabatic) response of the system. This feature is the
same as the linear response theory; the response function to an
external field can be calculated within an equilibrium scheme,
although the system is out of equilibrium as a result of the
external field. Such separation of a driving field and a response
function is possible only by a microscopic formulation, and
has not been clearly identified in theories so far.

A careful microscopic description indicates that a nonadi-
abaticity is essential even in the spin transfer effect. In fact,
an electron spin injected into a domain wall along x direction
gets polarized along n × ∇xn as a result of a nonadiabatic
gauge field [7,25]. This nonequilibrium spin polarization is
perpendicular to the wall plane, and thus induces a translational
motion of the wall. This is the physical mechanism of spin
transfer effect. At the same time, the spin transfer effect can be
discussed phenomenologically using the conservation law of
angular momentum [26]. One should not forget, however, that
nonadiabaticity is implicitly assumed because spin rotation is
caused only by a perpendicular component. Physically, the spin
pumping effect is essentially the same as electron transmission
through the domain wall if we replace a spatial coordinate
x and the time, as summarized in Table I. In the case of a
domain wall, including the nonadiabatic gauge field to the
next order leads to consideration of domain wall resistance
and nonadiabatic β torque [27–29], while such a nonadiabatic
regime has not been explored in the context of pumping.

III. EFFECTS OF INTERFACE SPIN-ORBIT
INTERACTION

In this section, we discuss the effect of spin-orbit interaction
at the interface, which modifies hopping amplitude t̃σ . We
particularly focus on that linear in the wave vector, namely the
interaction represented in the continuum representation by a
Hamiltonian

Hso = a2δ(x)
∑
ij

γij kiσj , (28)

where γij is a coefficient having the unit of energy representing
the spin-orbit interaction, a is the lattice constant, and the

interface is chosen as at x = 0. Assuming that spin-orbit
interaction is weaker than the sd exchange interaction in F,
we carry out a unitary transformation to diagonalize the sd

interaction to obtain

Hso = a2δ(x)
∑
ij

γ̃ij kiσj , (29)

where γ̃ij ≡ ∑
l γilRlj , with Rij being a rotation matrix

defined by Eq. (22). This spin-orbit interaction modifies the
diagonal hopping amplitude t̃i in the direction i at the interface
to become a complex as

t̃i = t̃0
i − i

∑
j

γ̃ij σj . (30)

(In this section, we denote the total hopping amplitude
including the interface spin-orbit interaction by t̃ and the
one without by t̃0.) We consider the hopping amplitude
perpendicular to the interface, i.e., along the x direction, and
suppress the suffix i representing the direction. In the matrix
representation for spin, the hopping amplitude is

t̃(≡ t̃x) =
(

t̃↑ t̃↑↓
t̃↓↑ t̃↓

)
, (31)

where

t̃↑ = t̃0
↑ − iγ̃xz, t̃↓ = t̃0

↓ + iγ̃xz,

t̃↑↓ = i(γ̃xx + iγ̃xy), t̃↓↑ = i(γ̃xx − iγ̃xy). (32)

Let us discuss how the spin pumping effect discussed in
Sec. II B is modified when the hopping amplitude is a matrix
of Eq. (31). The spin pumping efficiency is written as in
Eqs. (21) and (26). In the absence of spin-orbit interaction, the
hopping amplitude t̃ is chosen as real, and thus the contribution
proportional to n × ṅ in Eq. (27) is dominant. The spin-orbit
interaction enhances the other contribution proportional to ṅ
because it gives rise to an imaginary part. Moreover, it leads to
spin mixing at the interface, modifying the spin accumulation
formed in the N region at the interface.
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The electron states in the N region at the interface are now
given instead of Eq. (18) by the following two states (choosing
the basis as (|kF ↑〉

|kF ↓〉)):

|kF↑〉N ≡ t̃ |kF↑↑〉F =
⎛⎝̃t↑ − t̃↑↓

A+
s,t

M

t̃↓↑ − t̃↓
A+

s,t

M

⎞⎠,

|kF↓〉N ≡ t̃ |kF↓↓〉F =
⎛⎝̃t↑↓ + t̃↑

A−
s,t

M

t̃↓ + t̃↓↑
A−

s,t

M

⎞⎠. (33)

The pumped (i.e., linear in the gauge field) spin density for
these two states are

N〈kF ↑|σ |kF ↑〉N = − 2

M

⎛⎜⎝A⊥
s,tRe[T tot

↑↓ ] + ( ẑ × A⊥
s,t )Im[T tot

↑↓ ]

+Re[(̃t↑↓)∗̃t↓↑]

⎛⎜⎝ Ax
s,t

−Ay
s,t

0

⎞⎟⎠
+ Im[(̃t↑↓)∗̃t↓↑]

⎛⎝Ay
s,t

Ax
s,t
0

⎞⎠⎞⎠
− ẑ

(
Ax

s,tRe[(̃t↑)∗̃t↑↓ − t̃↓ (̃t↓↑)∗]

−Ay
s,t Im[(̃t↑)∗̃t↑↓ − t̃↓(̃t↓↑)∗]

)
, (34)

N〈kF ↓|σ |kF ↓〉N = 2

M

⎛⎜⎝A⊥
s,tRe[T tot

↑↓ ] + ( ẑ × A⊥
s,t )Im[T tot

↑↓ ]

+ Re[(̃t↑↓)∗̃t↓↑]

⎛⎜⎝ Ax
s,t

−Ay
s,t

0

⎞⎟⎠
+ Im[(̃t↑↓)∗̃t↓↑]

⎛⎝Ay
s,t

Ax
s,t
0

⎞⎠⎞⎠
+ ẑ

(
Ax

s,tRe[(̃t↑)∗̃t↑↓ − t̃↓ (̃t↓↑)∗]

−Ay
s,t Im[(̃t↑)∗̃t↑↓ − t̃↓(̃t↓↑)∗]

)
. (35)

We here focus on the linear effect of interface spin-
orbit interaction and neglect the spin polarization along the
magnetization direction, n. The expression for the pumped
spin current then agrees with Eq. (27) with the amplitude ζ s

written in terms of hopping including the interface spin orbit,

T↑↓ = ((t̃0
↑)∗ + i(γ̃xz)

∗)(t̃0
↓ + iγ̃xz). (36)

In metallic junctions of Cu/Co, Cr/Fe, and Au/Fe, Im[T↑↓] is
orders of magnitude smaller than Re[T↑↓] [22,23], suggesting
that the imaginary part of bare hopping amplitude t̃0

σ is small.
According to Eq. (36), large Im[T↑↓] is expected if strong
interface spin-orbit interaction exist. If the imaginary part of

t̃0
σ is neglected, we obtain (using γ̃xz = niγxi)

Im[ζ s] = ν↑ − ν↓
2M

(t̃0
↑ + t̃0

↓)γxini . (37)

The measurement of the amplitude of the spin current is
proportional to ṅ, thus, it works as a probe for the interface
spin-orbit interaction strength γxi .

Let us discuss some examples. Of recent particular interest
is the interface Rashba interaction, represented by the anti-
symmetric coefficient

γ
(R)
ij = εijkα

R
k , (38)

where αR is a vector representing the Rashba field. In the
case of an interface, αR is perpendicular to the interface, i.e.,
αR ‖ x̂. Therefore the interface Rashba interaction leads to
γ

(R)
xj = 0 and does not modify the spin pumping effect at the

linear order. (It contributes at the second order as discussed
in Ref. [15].) In other words, the vector coupling between the
wave vector and spin in the form of k × σ exists only along
the x direction, and does not affect the interface hopping (i.e.,
does not include kx).

In contrast, a scalar coupling η(D)(k · σ ) (η(D) is a coef-
ficient), called the Dirac type spin-orbit interaction, leads to
γ

(D)
ij = η(D)δij . The spin current along ṅ then reads

j ṅ
s = η(D) kF (ν↑ − ν↓)

2mM
(t̃0

↑ + t̃0
↓)nx ṅ. (39)

For the case of in-plane easy axis along the z di-
rection and magnetization precession given by n(t) =
(sin θ cos ωt, sin θ sin ωt, cos θ ), where θ is the precession
angle and ω is the angular frequency, we expect to have a
dc spin current along the y direction, as nx ṅ = −ω

2 sin2 θ ŷ
(nx ṅ denotes time average).

Recently, spin pumping effects are discussed including
a phenomenological “spin-memory loss” parameter δsml, to
represent the interface spin-flip rate [30,31]. The parameter
corresponds roughly to δsml = |̃t↑↓|2/(|̃t↑|2 + |̃t↓|2) in our
scheme [see Eq. (31)].

IV. FIELD THEORETIC DESCRIPTION
OF METALLIC CASE

Here we present a field-theoretic description of the spin
pumping effect of a metallic ferromagnet. The many-body
approach has an advantage of taking into account the particle
distributions automatically. Moreover, it describes the propa-
gation of particle density in terms of the Green’s functions,
and thus is suitable for studying spatial propagation as well
as for intuitive understanding of transport phenomena. All the
transport coefficients are determined by material constants.

The formalism presented here is essentially the same as
in Ref. [16], but treats ferromagnets of finite size and takes
account of electron states with different wave vectors. Interface
spin-orbit interaction is not considered here.

Conduction electrons in ferromagnetic and normal metals
are denoted by field operators d, d† and c, c†, respectively.
These operators are vectors with two spin components, i.e.,
d ≡ (d↑,d↓). The Hamiltonian describing the F and N electrons
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t

rr1
r2

Ga
N

Gr
N

r4

r3G<

(a)

rr1
r2

Ga
N

Gr
N

Σ<

(b)

t

Ga
N

Gr
NG<

(c)

r

FIG. 5. (a) Schematic diagrammatic representations of the lesser Green’s function for an N electron connecting the same position r ,
G<

N(r,r) � Gr
N�<

N Ga
N representing the propagation of electron density. It is decomposed into a propagation of N electrons from r to the

interface at r2, then hopping to r4 in the F side, a propagation inside F, followed by a hopping to N side (to r1) and propagation back to r .
[Position labels are as in Eqs. (43) and (44).] (b): The self-energy �<

N represents all the effects of the ferromagnet. (c) Standard Feynman
diagram representation of lesser Green’s function for N at r , Eqs. (46) and (44).

is HF + HN, where

HF ≡
∫

F
d3rd†

(
− ∇2

2m
− εF − Mn(t) · σ

)
d,

HN ≡
∫

N
d3rc†

(
− ∇2

2m
− εF

)
c. (40)

We set the Fermi energies for the ferromagnet and the normal
metal equal. The hopping through the interface is described by
the Hamiltonian

HI ≡
∫

IF

d3r

∫
IN

d3r ′(c†(r ′)t(r ′,r,t)d(r)

+ d†(r)t∗(r ′,r,t)c(r ′)), (41)

where t(r ′,r,t) represents the hopping amplitude of electrons
from r in the ferromagnetic regime to a site r ′ in the normal
region and the integrals are over the interface (denoted by IF

and IN for F and N regions, respectively). The hopping ampli-
tude is generally a matrix that depends on the magnetization
direction n(t), and thus depends on time t . Hopping is treated
as energy conserving. Assuming a sharp interface at x = 0,
the momentum perpendicular to the interface is not conserved
on hopping.

We are interested in the spin current in the normal region,
given by

jα
s,i(r,t) = − 1

4m
(∇(r) − ∇(r ′))i tr[σαG<

N(r,t,r ′,t)|r ′=r , (42)

where G<
N(r,t,r ′,t ′) ≡ i〈c(r,t)c†(r ′,t ′)〉 denotes the lesser

Green’s function for the normal region. It is calculated from
the Dyson’s equation for the path-ordered Green’s function
defined for a complex time along a complex contour C:

GN(r,t,r ′,t ′) = gN(r−r ′,t−t ′) +
∫

c

dt1

∫
c

dt2

∫
d3r1

×
∫

d3r2gN(r−r1,t−t1)

×�N(r1,t1,r2,t2)GN(r2,t2,r ′,t ′), (43)

where g<
N denotes the Green’s function without interface

hopping and �N(r1,t1,r2,t2) is the self-energy for N elec-
trons, given by the contour-ordered Green’s function in the

ferromagnet as

�N(r1,t1,r2,t2) ≡
∫

IF

d3r3

∫
IF

d3r4t(r1,r3,t1)

×G(r3,t1,r4,t2)t∗(r2,r4,t2). (44)

Here, r1 and r2 are coordinates at the interface IN in N region
and r3 and r4 are those in IF for F. G is the contour-ordered
Green’s function for F electrons in the laboratory frame
including the effect of spin gauge field. We denote the Green’s
functions of F electrons by G and g without suffix and those
of N electrons with suffix N. The lesser component of the
normal metal Green’s function is obtained from Eq. (43) as
(suppressing the time and space coordinates)

G<
N = (

1 + Gr
N�r

N

)
g<

N

(
1 + �a

NGa
N

)+ Gr
N�<

N Ga
N. (45)

For pumping effects, the last term on the right-hand side is
essential, as it contains the information of excitations in F
region [16]. We thus consider the second term only,

G<
N � Gr

N�<
N Ga

N, (46)

and neglect the spin dependence of the normal region Green’s
functions, Gr

N and Ga
N. The contribution is diagrammatically

shown in Fig. 5.

A. Rotated frame

To solve for the Green’s function in the ferromagnet, it is
convenient to use the rotated frame we used in Sec. II A. In the
field representation, the unitary transformation is represented
as [Fig. 6(c)]

d = Ud̃, c = Uc̃, (47)

F N

d c

t

t∗

(a) F N

d c

Ut

t∗U−1

(b) F N

d c

t

t∗

(c)

FIG. 6. Unitary transformation U of F electrons converts the
original system with field operator d [shown as (a)] to the rotated
one with field operator d̃ ≡ U−1d (b). The hopping amplitude for
representation in (b) is modified by U . If N electrons are also rotated
as c̃ ≡ U−1c, hopping becomes t̃ ≡ U−1tU , while the N electron spin
rotates with time, as shown as (c).
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where U is the same 2 × 2 matrix defined in Eq. (10). We
rotate N electrons as well as F electrons, to simplify the
following expressions. The hopping interaction Hamiltonian
reads

HI =
∫

IF

d3r

∫
IN

d3r ′(c̃†(r ′)t̃(r ′,r)d̃(r)

+ d̃†(r)t̃∗(r ′,r)c̃(r ′)), (48)

where

t̃(r ′,r) ≡ U †(t)t(r ′,r,t)U (t) (49)

is the hopping amplitude in the rotated frame. The rotated am-
plitude (neglecting interface spin-orbit interaction) is diagonal
in spin:

t̃ =
(

t̃↑ 0
0 t̃↓

)
. (50)

Including the interaction with a spin gauge field, the Hamil-
tonian for F and N electrons in the momentum representation
is

HF + HN =
∑

k

d̃
†
k

(
εk − M − Az

s,t A−
s,t

A+
s,t εk + M + Az

s,t

)
d̃k

+
∑

k

ε
(N)
k c̃

†
k c̃k. (51)

As for the hopping, we consider the case the interface is
atomically sharp. The hopping Hamiltonian is then written
in the momentum space as

HI =
∑
kk′

(c̃†(k)t̃(k,k′)d̃(k′) + d̃†(k′)t̃∗(k,k′)c̃(k)), (52)

where k = (kx,ky,kz), k′ = (k′
x,ky,kz), choosing the interface

as the plane of x = 0. Namely, the wave vectors parallel to the
interface are conserved while kx and k′

x are uncorrelated.

B. Spin polarization and current in N

Pumped spin current in N is calculated by using Eqs. (42)
and (46). The lesser component of the self-energy connecting
Green’s functions with wave vectors k and k′ is written using
Eq. (44) as (in the matrix notation)

�<
N (k,k′) =

∑
k′′

t̃(k,k′′)G<(k′′)t̃∗(k′′,k′). (53)

The lesser Green’s function in F in the rotated frame is
calculated including the spin gauge field (a driving field of spin
pumping) to the linear order by use of the Dyson’s equation

G< = g< + gr(As,t · σ )g< + g<(As,t · σ )ga, (54)

where gα (α =< ,r,a) represents Green’s functions without
a spin gauge field. The lesser Green’s function satisfies
for static case g< = F (ga − gr), where F ≡ (f↑ 0

0 f↓) is the
spin-dependent Fermi distribution function. We thus obtain
the Green’s function at the linear order, written as δG<,

as [16]

δG< = gr[As,t · σ ,F ]ga + gaF (As,t · σ )ga

− gr(As,t · σ )Fgr. (55)

The last two terms of the right-hand side are rapidly oscillating
as a function of position and are neglected. The commutator
is calculated as (sign ± denotes spin ↑ and ↓)

[As,t · σ ,F ] = (f+ − f−)
∑
±

(±)A±
s,t σ∓. (56)

The self-energy linear in the spin gauge field is thus

�<
N (k,k′) =

∑
±

σ∓
∑

k′′
(fk′′± − fk′′∓)A±

s,t t̃∓(k,k′′)

× t̃∗±(k′′,k′)gr
∓(k′′,ω)ga

±(k′′,ω). (57)

The spin polarization of an N electron therefore reads (diagram
shown in Fig. 7)

−itr[σ±G<
N(r,t,r ′,t)]

= −i
∑
kk′k′′

eik·re−ik′ ·r ′
gr

N(k,ω)ga
N(k′,ω)(fk′′± − fk′′∓)

×A±
s,t t̃∓(k,k′′)t̃∗±(k′′,k′)gr

∓(k′′,ω)ga
±(k′′,ω). (58)

We assume that the dependence of N Green’s functions on
ω is weak and use

∑
k eik·rgr

N(k,ω) = −iπνNeikF xe−|x|/� ≡
gr

N(r), where � is the elastic mean free path, νN and kF are the
density of states at the Fermi energy and Fermi wave vector,
respectively, whose ω dependencies are neglected. (For an
infinitely wide interface, the Green’s function becomes one
dimensional.) As a result of summation over wave vectors, the
product of hopping amplitudes t̃∓(k,k′′)t̃∗±(k′′,k′) is replaced
by the average over the Fermi surface, t̃∓ t̃∗± ≡ T±∓, i.e.,

t̃∓(k,k′′)t̃∗±(k′′,k′) → T±∓. (59)

The spin polarization of N electrons induced by magnetization
dynamics (the spin gauge field) is therefore obtained in the
rotated frame as [with correlation function χ± defined in
Eq. (A5)]

s̃
(N)
± (r,t) = −∣∣gr

N(r)
∣∣2 ∑

±
A±

s,tχ±T±∓, (60)

A±
s,t

gr
∓

ga
±

s̃
(N)
±

gr
N

ga
N

t̃∓

t̃∗±

FIG. 7. Feynman diagram for electron spin density of normal
metal driven by the spin gauge field of ferromagnetic metal As. The
spin current is represented by the same diagram but with spin current
vertex.
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or using χ∗
+ = χ−,

s̃(N)(r,t) = −2
∣∣gr

N(r)
∣∣2[A⊥

s,tRe[χ+T+−]

+ ( ẑ × A⊥
s,t )Im[χ+T+−]]. (61)

In the laboratory frame, we have (using s
(N)
i = Rij s̃

(N)
j )

s(N)(r,t) = ∣∣gr
N(r)

∣∣2[Re[χ+T+−](n × ṅ) + Im[χ+T+−]ṅ].

(62)

The spin current induced in N region is similarly given by
(neglecting the contribution proportional to n)

j s(r,t) = kF

m

∣∣gr
N(r)

∣∣2[Re[χ+T+−](n × ṅ) + Im[χ+T+−]ṅ]

= e−|x|/�(Re[ζ s](n × ṅ) + Im[ζ s]ṅ), (63)

where

ζ s ≡ π2 kF ν2
N

2mM
(n+ − n−)T+−. (64)

The coefficient ζ s is essentially the same as the one in Eq. (27)
derived by a quantum mechanical argument, as the quantum
mechanical dimensionless hopping amplitude corresponds to
νN t̃ of the field representation.

For a 3d ferromagnet, we may estimate the spin current
by approximating roughly M ∼ 1/νN ∼ εF ∼ 1 eV and nσ ∼
kF

3. The hopping amplitude |T+−| in the metallic case would
be of order of εF . The spin current density then is of the order of
(including electric charge e and recovering h̄) js ∼ e h̄kF

m
hh̄ω
εF

∼
5 × 1011 A/m2 if the precession frequency is 10 GHz.

V. SPIN ACCUMULATION IN FERROMAGNET

The spin current pumping is equivalent to the increase
of spin damping due to magnetization precession, as was
discussed in Refs. [2,11]. In this section, we confirm this fact by
calculating the torque by evaluating the spin polarization of the
conduction electron spin in F region. (The spin accumulation
without taking into account an interface is calculated in
Appendix A.)

There are several ways to evaluate the damping of magneti-
zation. One way is to calculate the spin-flip probability of the
electron as in Ref. [11], which leads to damping of localized
spin in the presence of strong sd exchange interaction. The
second is to estimate the torque on the electron by use of the
equation of motion [32]. The relation between the damping
and spin current generation is clearly seen in this approach.
In fact, the total torque acting on conduction electrons is (h̄
times) the time derivative of the electron spin density,

ds
dt

= i(〈[H,d†]σd〉 + 〈d†σ [H,d]〉). (65)

At the interface, the right-hand side arises from the interface
hopping. Using the hopping Hamiltonian of Eq. (41), we have

ds
dt

∣∣∣∣
interface

= i(〈c†tσd〉 − 〈d†σ t†c〉), (66)

as the interface contribution. As is natural, the right-hand
side agrees with the definition of the spin current passing
through the interface. Evaluating the right-hand side, we obtain

in general a term proportional to n × ṅ, which gives the
Gilbert damping, and a term proportional to ṅ, which gives
a renormalization of the magnetization. In contrast, away
from the interface, the commutator [H,d] arises from the
kinetic term H0 ≡ ∫

d3r
|∇d|2

2m
describing electron propagation,

resulting in

dsα

dt
= i(〈[H0,d

†]σd〉 + 〈d†σ [H,d]〉)
= ∇ · jα

s , (67)

where jα
s (r) ≡ −i

2m
(∇r − ∇r ′)〈d†(r ′)σαd(r)〉|r ′=r is the spin

current. Away from the interface, the damping therefore occurs
if the spin current has a source or a sink at the site of interest.

Here we use the third approach and estimate the torque
on the localized spin by calculating the spin polarization
of electrons as was done in Refs. [7,33]. The electron spin
polarization at position r in the ferromagnet at time t is
s(F)(r,t) ≡ 〈d†σd〉, which reads in the rotated frame s(F)

α =
Rαβ s̃

(F)
β , where

s̃
(F)
β (r,t) = −itr[σβG<(r,r,t,t)], (68)

where G<
σσ ′(r,r ′,t,t ′) ≡ i〈d̃†

σ ′ d̃σ 〉 is the lesser Green’s function
in F region, which is a matrix in spin space (σ,σ ′ = ±).
We are interested in the effect of the N region arising from
the hopping. We must note that the hopping interaction of
Eq. (48) is not convenient for integrating out N electrons,
since the c̃ electrons’ spins are time-dependent as a result of a
unitary transformation U (t). We thus use the following form
[Fig. 6(b)],

HI =
∫

IF

d3r

∫
IN

d3r ′(c†(r ′)Ut̃(r ′,r)d̃(r)

+ d̃†(r)t̃∗(r ′,r)U †c(r ′)), (69)

namely, the hopping amplitude between d̃ and c electrons
includes the unitary matrix U .

Let us briefly argue in the rotated frame why the effect
of damping arising from the interface. In the totally rotated
frame of Fig. 6(c), the spin of an F electron is static, while
that of N electron varies with time. When an F electron hops
to N region and comes back, therefore, the electron spin gets
rotated with the amount depending on the time it stayed in N
region. This effect is in fact represented by a retardation effect
of the matrices U and U−1 in Eq. (69). If the off-diagonal
nature of U and U−1 is neglected, the interface effects are all
spin-conserving and do not induce damping for F electrons
(see Appendix B).

The spin density is calculated by evaluating the lesser
Green’s function in F. Including the effect of interface in terms
of self-energy, it reads

G<(r,t,r ′,t) = gr�rga + gr�<ga + g<�aga, (70)

where the self-energy of an F electron arising from the hopping
to N region reads (r1 and r2 are in F and a = r,a, <)

�a(r1,r2,t1,t2) =
∫

IN

d3r ′
1

∫
IN

d3r ′
2 t̃(r1,r ′

1)U−1(t1)

× ga
N(r ′

1,r
′
2,t1 − t2)U (t2)t̃†(r2,r ′

2). (71)
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t̃U−1

gN

Ut̃∗

σ

g t̃

gN

t̃∗

σ

g As,t

s̃(F) = =

FIG. 8. Diagrammatic representation of the spin accumulation in
a ferromagnetic metal induced as a result of coupling to the normal
metal [Eqs. (68) and (C1)]. Conduction electron Green’s functions in
a ferromagnet and normal metal are denoted by g and gN, respectively.
Time-dependent matrix U (t), defined by Eq. (10), represents the effect
of dynamic magnetization. Expanding U and U−1 with respect to the
slow time dependence of magnetization, we obtain a gauge field
representation, see Eq. (C3).

Expanding to the linear order in the spin gauge field arising
from the time dependence of unitary matrix U , we obtain

G<(r,t,r ′,t) = 2πiνNa2
∫

dω

2π
f ′

N(ω)gr(r,ω)

×t̃As,t t̃
†ga(−r,ω). (72)

(Diagrammatic representation of the contribution is in Fig. 8.
For calculation detail, see Appendix C). For damping, off-
diagonal contributions,A±

s,t , are obviously essential. The result
of the spin density in F in the rotated frame, Eq. (68), is
therefore

s̃(F)
α (r,t) = 2πiνNa2

∫
dω

2π
f ′

N(ω)Aβ
s,t tr[σαgr(r,ω)

× t̃σβ t̃†ga(−r,ω)]

= 2πiνNa2
∫

dω

2π
f ′

N(ω)Aβ
s,t

∑
kk′

ei(k−k′)·r

× tr[σαgr(k,ω)t̃σβ t̃†ga(k′,ω)]. (73)

Evaluating the trace in spin space, we obtain

s̃(F)(r,t) = −νN[A⊥
s,t γ1(r) + ( ẑ × A⊥

s,t )γ2(r)], (74)

where

γ1(r) ≡
∑

σ

t̃−σ t̃†σ gr
−σ (r)ga

σ (−r),

γ2(r) ≡
∑

σ

(−iσ )t̃−σ t̃†σ gr
−σ (r)ga

σ (−r). (75)

We consider an interface with infinite area and consider spin
accumulation averaged over the plane parallel to the interface.
The wave vectors contributing are then those with finite kx

but with ky = kz = 0 and the Green’s function becomes one-
dimensional-like:∑

k

eik·rgr
σ (k) = im

kFσ

eikFσ |x|e−|x|/(2�σ ), (76)

where �σ ≡ vFσ τσ (vFσ ≡ kFσ /m) is the electron mean free
path for spin σ . The induced spin density in the ferromagnet

is finally obtained from Eq. (74) as

s(F)(r,t) = m2νNa2

2kF+kF−

∑
σ

[(n × ṅ)Tσ,−σ e−iσ (kF+−kF−)x

+ ṅ(−iσ )Tσ,−σ e−iσ (kF+−kF−)x]

= m2νNa2

2kF+kF−

∑
σ

{(n × ṅ)[Re[T↑,↓] cos((kF+ − kF−)

× x) + Im[T↑,↓] sin((kF+ − kF−)x)]

+ ṅ[Im[T↑,↓] cos((kF+ − kF−)x)

− Re[T↑,↓] sin((kF+ − kF−)x)]} (77)

and the torque on the localized spin −Mn × s(F) is

τ (r,t) = −m2νNa2M

2kF+kF−

∑
σ

{−ṅ[Re[T↑,↓] cos((kF+ − kF−)x)

+ Im[T↑,↓] sin((kF+ − kF−)x)]

+ (n × ṅ)[Im[T↑,↓] cos((kF+ − kF−)x)

− Re[T↑,↓] sin((kF+ − kF−)x)]}. (78)

A. Enhanced damping and spin renormalization
of ferromagnetic metal

The total induced spin accumulation density in a ferromag-
net is

s(F) ≡ 1

d

∫ 0

−d

dxs(F)(x)

= 1

M
{(n × ṅ)[−Im[δ](1 − cos d̃) + Re[δ] sin d̃]

+ ṅ[Re[δ](1 − cos d̃) + Im[δ] sin d̃]}, (79)

where d̃ ≡ (kF+ − kF−)d, d is the thickness of the ferromagnet
and

δ ≡ m2νNa2M

kF+kF−(kF+ − kF−)d
T↑,↓. (80)

As a result of this induced electron spin density, s(F), the
equation of motion for the averaged magnetization is modified
to be [11]

ṅ = −αn × ṅ − γ B × n − Mn × s(F), (81)

where B is the external magnetic field.
Let us first discuss the thick ferromagnet case, d �

|kF+ − kF−|−1, where the oscillating part with respect
to d̃ is neglected. The spin density then reads s(F) �
1
M

(−Im[δ](n × ṅ) + Re[δ]ṅ) and the equation of motion
becomes

(1 + Imδ)ṅ = −α̃n × ṅ − γ B × n, (82)

where

α̃ ≡ α + Reδ, (83)

is the Gilbert damping including the enhancement due to the
spin pumping effect. The precession angular frequency ωB is
modified by the imaginary part of T↑,↓, i.e., by the spin current
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proportional to ṅ, as

ωB = γB

1 + Imδ
. (84)

This is equivalent to the modification of the gyromagnetic ratio
(γ ) or the g factor.

For most 3D ferromagnets, we may approximate
m2νNaMεF

2

2kF+kF−(kF+−kF−) � O(1) (as kF+ − kF− ∝ M), resulting in
δ ∼ a

d
T↑,↓. As discussed in Sec. III, when the interface

spin-orbit interaction is taken into account, we have T↑,↓ =
t̃0
↑ t̃0

↓ + iγ̃xz(t̃0
↑ + t̃0

↓) + O((γ̃ )2), where t̃0
σ and γ̃xz are assumed

to be real. Moreover, t̃0
σ can be chosen as positive and thus

T↑,↓ > 0. (t̃0
σ here is field representation, and has unit of

energy.) Equations (83) and (84) indicate that the strength of
the hopping amplitude t̃0

σ and interface spin-orbit interaction
γ̃xz are experimentally accessible by measuring the Gilbert
damping and shift of resonance frequency as has been
known [2]. A significant consequence of Eq. (83) is that the
enhancement of the Gilbert damping,

δα ∼ a

d

1

εF
2
t̃0
↑ t̃0

↓, (85)

can exceed in thin ferromagnets the intrinsic damping pa-
rameter α, as the two contributions are governed by different
material parameters. In contrast to the positive enhancement
of damping, the shift of the resonant frequency or g factor can
be positive or negative, as it is linear in the interface spin-orbit
parameter γ̃xz.

Experimentally, the enhancement of the Gilbert damping
and frequency shift has been measured in many systems [12].
In the case of Ni80Fe20(Py)/Pt junction, the enhancement of
damping is observed to be proportional to 1/d in the range of
2 nm < d < 10 nm, and the enhancement was large, δα/α � 4
at d = 2 nm [12]. These results appears to be consistent with
our analysis. Same 1/d dependence was observed in the shift
of the g factor. The shift was positive and the magnitude is
about 2% for Py/Pt and Py/Pd with d = 2nm, while it was
negative for Ta/Pt [12]. The existence of both signs suggests
that the shift is due to the linear effect of spin-orbit interaction,
and the interface spin-orbit interaction we discuss is one of the
possible mechanisms.

For thin ferromagnet, d̃ � 1, the spin accumulation of
Eq. (79) reads

s(F) = 1

M
((n × ṅ)Re[δthin] + ṅIm[δthin]), (86)

where

δthin ≡ δd̃ = m2νNa2M

2kF+kF−
T↑,↓. (87)

Equation (86) indicates that the roles of imaginary and real
part of T↑,↓ are interchanged for thick and thin ferromagnets,
resulting in

α̃ = α + Imδthin, ωB = γB

1 − Reδthin
, (88)

for thin ferromagnets. Thus, for weak interface spin-orbit inter-
action, a positive shift of the resonance frequency is expected
(as Reδthin > 0). A significant feature is that the damping
can be decreased or even become negative if strong interface

spin-orbit interaction exists with a negative sign of Imδthin. Our
result indicates that the “spin mixing conductance” description
of Ref. [2] breaks down in thin metallic ferromagnets (and the
insulator case as we shall see in Sec. VII D).

In this section, we have discussed spin accumulation and
enhanced Gilbert damping in a ferromagnet attached to a
normal metal. In the field-theoretic description, the damping
enhancement arises from the imaginary part of the self-energy
due to the interface. Thus a randomness like the interface
scattering changing the electron momentum is essential for
the damping effect, which sounds physically reasonable.
The same is true for the reaction, namely, the spin current
pumping effect into the N region, and thus the spin current
pumping requires randomness too. (In the quantum mechanical
treatment of Sec. II, change of electron wave vector at
the interface is essential.) The spin current pumping effect
therefore appears different from general pumping effects,
where randomness does not play essential roles apparently
[3].

The spin accumulation and enhanced Gilbert damping was
discussed by Berger [11] based on a quantum mechanical
argument. There, 1/d dependence was pointed out and the
damping effect was calculated by evaluating the decay rate
of magnons. A comparison of enhanced Gilbert damping
with experiments was carried out in Ref. [2] but in a
phenomenological manner.

VI. CASE WITH MAGNETIZATION STRUCTURE

The field theoretic approach has an advantage that the
generalization of the results is straightforward. Here we
discuss briefly the case of a ferromagnet with spatially varying
magnetization. The excitations in a metallic ferromagnet
consist of spin waves (magnons) and Stoner excitation. While
spin waves usually have a gap as a result of magnetic
anisotropy, Stoner excitation is gapless for a finite wave vector,
(kF+ − kF−) < |q| < (kF+ + kF−), and it may be expected
to have significant contribution for magnetization structures
having wavelength larger than kF+ − kF−. Let us look into
this possibility.

Our result of spin accumulation in a ferromagnet, repre-
sented in the rotated frame, Eq. (A3), indicates that when
the magnetization has a spatial profile, the accumulation
is determined by the spin gauge field and spin correlation
function depending on the wave vector q as∑

q

A±
s,t (q)χ±(q,0), (89)

where

χ±(q,�) ≡ −
∑

k

fk+q,± − fk,∓
εk+q,± − εk,∓ + � + i0

(90)

is the correlation function with finite momentum transfer
q and finite angular frequency �. For the case of free
electron with quadratic dispersion, the correlation function
is [34]

χ±(q,�) = Aq + i�Bqθst(q) + O(�2), (91)
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where

Aq = ma3

8π2

[
(kF+ + kF−)

(
1 + (kF+ − kF−)2

q2

)
+ 1

2q3
((kF+ + kF−)2 − q2)(q2 − (kF+ − kF−)2)

× ln

∣∣∣∣q + (kF+ + kF−)

q − (kF+ + kF−)

∣∣∣∣],
Bq = m2a3

4π |q| , (92)

and

θst(q) ≡
{

1 (kF+ − kF−) < |q| < (kF+ + kF−)

0 otherwise
, (93)

describes the wave vectors where Stoner excitation exists.
As we see from Eq. (91), the Stoner excitation contribution
vanishes to the lowest order in �, and thus the spin pumping
effect in the adiabatic limit (� → 0) is not affected. Moreover,
the real part of the correlation function, Aq , is a decreasing
function of q and thus the spin pumping efficiency would
decrease when the ferromagnet has a structure. However, for
rigorous argument, we need to include the spatial component
of the spin gauge field arising form the spatial derivative of the
magnetization profile.

As for the effect of the Stoner excitation on spin damping
(Gilbert damping), it was demonstrated for the case of a
domain wall that the effect is negligibly small for a wide wall
with thickness λ � (kF+ − kF−)−1 (Refs. [34,35]). Simanek
and Heinrich presented a result of the Gilbert damping as the
linear term in the frequency of the imaginary part of the spin
correlation function integrated over the wave vector [13]. The
result is, however, obtained for a model where the ferromagnet
is an atomically thin layer (a sheet), and would not be
applicable for most experimental situations. A discussion of
the Gilbert damping including a finite wave vector and the
impurity scattering was given in Ref. [36]. Inhomogeneity
effects of damping of a domain wall were studied recently
in detail [37]. The effective Gilbert damping constant in
the presence of a domain wall was numerically studied in
Refs. [38,39]. A quadratic dependence on the inverse of the
wall thickness appears to be consistent with the quadratic
behavior of Aq at small q, while the linear behavior found
for an out-of-plane extremely narrow wall [39] seems not to
be covered by the simple argument here.

VII. INSULATOR FERROMAGNET

In this section, we discuss the case of a ferromagnetic
insulator. It turns out that the generation mechanisms for spin
current in the insulating and metallic cases are distinct.

A. Magnon and adiabatic gauge field

The Lagrangian for the insulating ferromagnet is

LIF =
∫

d3r

[
Sφ̇(cos θ − 1) − J

2
(∇S)2

]
− HK, (94)

where J is the exchange interaction between the localized spin
S and HK denotes the magnetic anisotropy energy.

We first study low-energy magnon dynamics induced by
slow magnetization dynamics. For separating the classical
variable and fluctuation (magnon), the rotated coordinate
description used in the metallic case is convenient. For
magnons described by the Holstein-Primakov boson, the uni-
tary transformation is a 3 × 3 matrix defined as follows [40]:

S = U S̃, (95)

where

U =
⎛⎝cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞⎠
= (

eθ eφ n
)
. (96)

The diagonalized spin S̃ is represented in terms of annihilation
and creation operators for the Holstein-Primakov boson, b and
b†, as [41]

S̃ =

⎛⎜⎜⎝
√

S
2 (b† + b)

i

√
S
2 (b† − b)

S − b†b

⎞⎟⎟⎠. (97)

We neglect the terms that are third- and higher-order in boson
operators. Derivatives of the localized spin then read

∂μS = U (∂μ + iAU,μ )̃S, (98)

where

AU,μ ≡ −iU−1∇μU (99)

is the spin gauge field represented as a 3 × 3 matrix. The spin
Berry’s phase of the Lagrangian (94) is written in terms of
magnons as (derivation is in Appendix D)

Lm = 2Sγ 2
∫

d3ri
[
b†
(
∂t + iAz

s,t

)
b − b†

(←
∂ t −iAz

s,t

))
b
]
,

(100)

namely, the magnons interact with the adiabatic component
of the same spin gauge field for electrons, Az

s,t , defined in
Eq. (14). As the magnon is a single-component field, the
gauge field is also single-component, i.e., a U(1) gauge field.
This is a significant difference between insulating and metallic
ferromagnets; in the metallic case, a conduction electron
couples to an SU(2) gauge field with spin-flip components,
which turned out to be essential for spin current generation. In
contrast, in the insulating case, the magnon has a diagonal
gauge field, i.e., a spin chemical potential, which simply
induces diagonal spin polarization. Pumping of magnon was
discussed in a different approach by evaluating the magnon
source term in Ref. [42].

The exchange interaction at the interface is represented by
a Hamiltonian

HI = JI

∫
d3r I S(r) · c†σc, (101)

where JI is the strength of the interface sd exchange interaction
and the integral is over the interface. We consider a sharp in-
terface at x = 0. Using Eq. (95), the interaction is represented
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in terms of magnon operators up to the second order as

HI = JI

∫
d3r I

{
(S − b†b)c†(n · σ )c

+
√

S

2
[b†c†� · σc + bc†�∗ · σc]

}
, (102)

where

� ≡ eθ + ieφ =
⎛⎝cos θ cos φ − i sin φ

cos θ sin φ + i cos φ

− sin θ

⎞⎠. (103)

Equation (102) indicates that there are two mechanisms
for spin current generation; namely, the one due to the
magnetization at the interface (the term proportional to n)
and the one due to the magnon spin scattering at the interface
(described by the term linear in magnon operators).

Let us briefly demonstrate based on the expression of
Eq. (102) that spin-flip processes due to magnon creation or
annihilation lead to generation of spin current in the normal
metal. At the second order, the interaction induces a factor on
the electron wave function (�∗(t) · σ )(�(t ′) · σ ) for magnon
creation and (�(t) · σ )(�∗(t ′) · σ ) for annihilation (we allow
an infinitesimal difference in time t and t ′). The factor for the
creation has charge and spin contributions, (�∗(t) · σ )(�(t ′) ·
σ ) = �∗(t) · �(t ′) + iσ · (�∗(t) × �(t ′)). For magnon anni-
hilation, we have (�∗(t) × �(t ′))∗, and thus the sum of the
magnon creation and annihilation processes leads to a factor∑

q

[(nq + 1)(�∗(t) × �(t ′)) + nq(�∗(t) × �(t ′))∗]

=
∑

q

{(2nq + 1)Re[�∗(t) × �(t ′)]

+ iIm[�∗(t) × �(t ′)]}. (104)

For adiabatic change, the amplitude is expanded as

(�∗(t) × �(t ′)) = 2i(1 + i(t − t ′) cos θφ̇)n − (t − t ′)

× (n × ṅ − iṅ) + O((∂t )
2), (105)

where we see that a retardation effect from the adiabatic change
of magnetization (represented by the second term on the right-
hand side) gives rise to a magnon state change proportional
to n × ṅ and ṅ. The retardation contribution for the spin part
[Eq. (104)] is

(t − t ′)
∑

q

[−(2nq + 1)(n × ṅ) + iṅ]. (106)

We therefore expect that a spin current proportional to n × ṅ
emerges proportional to the magnon creation and annihilation
number,

∑
q(2nq + 1). (As we shall see below, the factor t − t ′

reduces to a derivative with respect to the angular frequency of
the Green’s function.) A rigorous estimation using the Green’s
function method is presented in Sec. VII C.

In Eq. (106), the last term proportional to ṅ is an imaginary
part arising from the difference of magnon creation and
annihilation probabilities of vacuum, nq + 1 and nq . The term
is, however, an unphysical one corresponding to a real energy
shift due to magnon interaction, and is removed by redefinition
of the Fermi energy.

n
js

FIG. 9. Feynman diagrams for spin current pumped by interface
sd exchange interaction.

B. Spin current pumped by the interface exchange interaction

Here, we study the spin current pumped by the classical
magnetization at the interface, namely, the one driven by
the term proportional to Sn in Eq. (102). We treat the
exchange interaction perturbatively to the second order as
the exchange interaction between a conduction electron and
the insulator ferromagnet is localized at the interface and is
expected to be weak. The weak-coupling scheme employed
here is in the opposite limit as the strong-coupling (adiabatic)
approach used in the metallic ferromagnet (Sec. IV). A recent
experiment indicates that the insulator spin pumping effect is
driven by local magnetization induced in the normal metal
by the magnetic proximity effect [8], supporting perturbative
treatment.

In the perturbative regime, the issue of adiabaticity needs
to be argued carefully. In the strong sd coupling limit, the
adiabaticity is trivially satisfied, as the time needed for the
electron spin to follow the localized spin is the fastest time
scale. In the weak-coupling limit, this time scale is long.
Nevertheless, the adiabatic condition is satisfied if the electron
spin relaxation is strong so that the electron spin relaxes
quickly to the local equilibrium state determined by the
localized spin. Thus the adiabatic condition is expected to
be MIτsf/h̄ � 1, where MI and τsf are the interface spin
splitting energy, and the conduction electron spin relaxation
time, respectively. In the following calculation, we consider
the case of εF τsf/h̄ � 1, i.e., h̄(τsf)−1 � εF , as the spin-flip
lifetime is by definition longer than the elastic electron lifetime
τ , which satisfies εF τ/h̄ � 1 in a metal. The perturbative
results therefore can apply to both adiabatic and nonadiabatic
cases.

The calculation is carried out by evaluating the Feynman
diagrams of Fig. 9, similar to the study of Refs. [18,19].
A difference is that while Refs. [18,19] assumed a smooth
magnetization structure and used a gradient expansion, the
exchange interaction we consider is localized.

The lesser Green’s function for a normal metal including
the interface exchange interaction to the linear order is

G
(1)<
N (r,t,r,t) = MI

∫
dω

2π

∫
d�

2π

∑
kk′

e−i�t ei(k′−k)·r

× [
(f (ω + �) − f (ω))gr

k′,ω+�
ga

kω

− f (ω)gr
k′,ω+�

gr
kω + f (ω + �)ga

k′,ω+�
ga

kω

]
× (n� · σ ), (107)

where MI ≡ JIS is the local spin polarization at the interface.
Expanding the expression with respect to � and keeping
the dominant contribution at long distance, i.e., the terms
containing both ga and gr. Using

∑
kg

a
kωeik·r � im

kF
eikre− |x|

� (≡
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ga(r)), the result of spin current is

j (1)
s (r,t) = −MI

m

kF

ṅe−|x|/�. (108)

The second-order contribution is similarly calculated to
obtain

G
(2)<
N (r,t,r,t) � (MI)

2
∫

dω

2π

∫
d�1

2π

∫
d�2

2π

×
∑
kk′k′′

e−i(�1+�2)t ei(k′−k)·rf ′(ω)gr
k′,ωga

kω

× (
�1g

a
k′′ω + �2g

r
k′′ω

)(
n�1 · σ

)(
n�2 · σ

)
= −2πiν(MI)

2|gr(r)|2(n × ṅ) · σ . (109)

The corresponding spin current at the interface (x = 0) is thus

j (2)
s (x = 0,t) = ν(MI)

2 m

kF

(n × ṅ), (110)

and the total spin current reads

js(x = 0,t) = −MI
m

kF

ṅ − 2ν(MI)
2 m

kF

(n × ṅ). (111)

In the perturbation regime, the spin current proportional to ṅ
is dominant (larger by a factor of (νMI)−1) compared to the
one proportional to n × ṅ.

An expression of the spin current induced by the interface
exchange interaction was presented in Ref. [43] in the limit
of strong spin relaxation, MIτsf � 1, where τsf is the spin
relaxation time of electrons. By solving the Landau-Lifshitz-
Gilbert equation for the electron spin, they obtained Eq. (111)
with νMI replaced by MIτsf .

C. Calculation of magnon-induced spin current

Here, the magnon-induced spin current due to the magnon
interaction in Eq. (102) is calculated. As a magnon is a small
fluctuation of magnetization, the contribution here is a small
correction to the contribution of Eq. (111). Nevertheless, the
magnon contribution has a typical linear dependence on the
temperature, and is expected to be experimentally identified
easily.

The spin current induced in a normal metal is evaluated by
calculating the self-energy arising from the interface magnon
scattering of Eq. (102). The contribution to the path-ordered
Green’s function of N electron from the magnon scattering to
the second order is

GN(r,t,r ′.t ′) =
∫

C

dt1

∫
C

dt2
∑
r1 r2

gN(r,t,r1,t1)

×�I(r1,t1,r2,t2)gN(r2,t2,r ′,t ′), (112)

where

�I(r1,t1,r2,t2) ≡ i
SJ 2

I

2
Dαβ(r1,t1,r2,t2)σαgN(r1,t1,r2,t2)σβ

(113)

represents the self-energy. Here,

Dαβ(r1,t1,r2,t2) ≡ −i〈TCBα(r1,t1)Bβ(r2,t2)〉 (114)

Φ†

Φ

gNjs

gN

D

FIG. 10. Feynman diagrams for spin current pumped by magnons
at the interface. Green’s functions for magnons and electrons in the
normal metal are denoted by D and gN, respectively. � represents the
effects of magnetization dynamics [Eq. (103)].

is the Green’s function for a magnon dressed by the magneti-
zation structure [� is defined in Eq. (103)],

Bα(r,t) ≡ �α(t)b†(r,t) + �†
α(t)b(r,t). (115)

The diagrammatic representation is in Fig. 10. In the present
approximation including the interface scattering to the second
order, the electron Green’s function in Eq. (113) is treated
as spin-independent, resulting in a self-energy (defined on
complex time contour)

�I(r1,t1,r2,t2) = i
SJ 2

I

2
(δαβ + iεαβγ σγ )

×Dαβ(r1,t1,r2,t2)gN(r1,t1,r2,t2). (116)

We focus on the spin-polarized contribution containing the
Pauli matrix. The self-energy is then

�I,γ (r1,t1,r2,t2) ≡ −SJ 2
I

2
D̃γ (r1,t1,r2,t2)gN(r1,t1,r2,t2),

(117)

where D̃γ ≡ εαβγDαβ , and the lesser Green’s function,
Eq. (112), reads

G<
N = σγ G<

N,γ , (118)

where (time and spatial coordinates partially suppressed)

G<
N,γ (r,t,r ′.t ′) ≡

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
gr

N(t − t1)�r
I,γ (t1,t2)

× g<
N (t2 − t ′) + gr

N�<
I,γ ga

N + g<
N �a

I,γ ga
N

]
.

(119)

The dominant contribution long distance is (see Appendix E
for detail)

G<
N,γ (r,t,r ′,t) �

∫
dω

2π

∑
kk′

gr
N,kωga

N,k′ωeik·re−ik′ ·r ′
�̃I,γ

(120)

with

�̃I,γ � i�γ

πν

εF

SJ 2
I

2

∑
qk′′

(1 + 2nq)(2fk′′ − fk − fk′). (121)

The spin current pumped by the magnon scattering is therefore

jm
s (r,t) = πν

εF

SJ 2
I

2
|gr(r)|2

∑
q

(1 + 2nq)(n × ṅ). (122)
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At high temperature compared to magnon energy, βωq � 1,
1 + 2nq � 2kBT

ωq
, and the magnon-induced spin current de-

pends linearly on temperature. The result (122) agrees with a
previous study carried out in the context of thermally induced
spin current [20].

D. Correction to Gilbert damping in the insulating case

In this section, we calculate the correction to the Gilbert
damping and g factor of an insulating ferromagnet as a
result of the spin pumping effect. We study the torque on
the ferromagnetic magnetization arising from the effect of
conduction electrons of a normal metal, given by

τ I = BI × n = MI(n × sI), (123)

where

BI ≡ −δHI

δn
= −MIsI (124)

is the effective magnetic field arising from the interface
electron spin polarization, sI(t) ≡ −itr[σG<

N(0,t)]. The con-
tribution to the electron spin density linear in the interface
exchange interaction, Eq. (101), is

s
(1),α
I (t) = −i

∫
dt1MInβ(t1)tr[σαgN(t,t1)σβgN(t1,t)]

<,

(125)

where the Green’s functions connect positions at the interface,
i.e., from x = 0 to x = 0, and are spin unpolarized. (The
Feynman diagrams for the spin density are the same as the
one for the spin current, Fig. 9, with the vertex js replaced by
the Pauli matrix.) The pumped contribution proportional to the
time variation of magnetization is obtained as

s(1)
I (t) = −MIṅ

∫
dω

2π

∑
kk′

f ′(ω)
(
ga

N,k′ − gr
N,k′

)(
ga

N,k − gr
N,k

)
= −MI(πν)2ṅ. (126)

The second-order contribution similarly reads

s
(2),α
I (t) = − i

2

∫
dt1

∫
dt2(MI)

2nβ(t1)nγ (t2)tr[σαgN(t,t1)

× σβgN(t1,t2)σγ gN(t2,t)]
<

� −2(MI)
2(πν)3(n × ṅ). (127)

The interface torque is therefore

τ I = −(MIπν)2(n × ṅ) + 2(MIπν)3ṅ. (128)

Including this torque in the LLG equation, ṅ = −αn × ṅ −
γ B × n + τ , we have

(1 − δI)ṅ = −αI(n × ṅ) − γ B × n, (129)

where

δI = 2μd (πMIν)3, αI = α + μd (πMIν)2, (130)

where μd ∼ dmp/d is the ratio of the length of magnetic
proximity (dmp) and thickness of the ferromagnet, d. The
Gilbert damping constant therefore increases as far as the
interface spin-orbit interaction is neglected. The resonance
frequency is ωB = γB

1−δI
, and the shift can have both signs

depending on the sign of interface exchange interaction, MI.
There may be a possibility that magnon excitations induce

a torque that corresponds to effective damping. In fact, such

a torque arises if 〈b〉 or 〈b†〉 are finite, i.e., if the magnon
Bose condensation glows. Such condensation can in principle
develop from the interface interaction of magnon creation or
annihilation induced by electron spin flip, Eq. (102). However,
conventional spin relaxation processes arising from the second
order of random spin scattering do not contribute to such
magnon condensation and additional damping.

Comparing the result of pumped spin current, Eq. (111), and
that of damping coefficient, Eq. (130), we notice that the “spin
mixing conductance” argument [2], where the coefficients for
the spin current component proportional to n × ṅ and the
enhancement of the Gilbert damping constant are governed by
the same quantity (the real part of a spin mixing conductance)
does not hold for the insulator case. In fact, our result indicates
that the spin current component proportional to n × ṅ arises
from the second-order correction to the interaction (the second
diagram of Fig. 9), while the damping correction arises from
the first-order process (the first diagram of Fig. 9). Although
the magnitudes of the two effects happen to be both second
order of the interface spin splitting, MI, the physical origins
appear to be distinct. From our analysis, we see that the spin
mixing conductance description is not general and applies only
to the case of a thick metallic ferromagnet (see Sec. V A for
the metallic case).

VIII. DISCUSSION

Our results are summarized in Table II. Let us discuss
experimental results in the light of our results. In the early fer-
romagnetic resonance (FMR) experiments, consistent studies
of g factor and the Gilbert damping were carried out on metallic
ferromagnets [12]. The results appear to be consistent with
theories (Refs. [2,11] and the present paper). Both the damping
constant and the g factor have 1/d dependence on the thickness
of the ferromagnet in the range of 2 nm < d < 10 nm [12].
The maximum additional damping reaches δα ∼ 0.1 at d = 2
nm, which exceeds the original value of α ∼ 0.01. The g-factor
modulation is about 1% at d = 2 nm, and its sign depends on
the material; the g factor increases for Pd/Py/Pd and Pt/Py/Pt,
while decreases for Ta/Py/Ta. These results appear consistent
with ours, because δωB is governed by ImT+−, whose sign
depends on the sign of interface spin-orbit interaction. In
contrast, damping enhancement proportional to ReT+− is
positive for thick metals. However, other possibilities like the
effect of a large interface orbital moment playing a role in the
g factor, cannot be ruled out at present.

Recently, inverse spin Hall measurement has become com-
mon for detecting the spin current. In this method, however,
only the dc component proportional to n × ṅ is accessible so
far and there remains an ambiguity for qualitative estimates
because another phenomenological parameter, the conversion
efficiency from spin to charge, enters. Qualitatively, the values
of Ar obtained by the inverse spin Hall measurements [44] and
FMR measurements are consistent with each other.

The cases of insulating ferromagnets have been studied
recently. In the early experiments, orders of magnitude
smaller values of Ar compared to metallic cases were re-
ported [43], while those small values are now understood
as due to poor interface quality. In fact, FMR measure-
ments on epitaxially grown samples like yttrium iron garnet
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TABLE II. Summary of essential parameters determining the spin current js, corrections to the Gilbert damping δα, and the resonance
frequency shift δωB for metallic and insulating ferromagnets. Coefficients Ai and Ar are for the spin current, defined by Eq. (1). Label “−”
indicates that it is not discussed in the present paper. “∗” is for the strong spin relaxation case, the density of states ν is replaced by the inverse
of electron spin-flip time τsf [43].

Ferromagnet (F) Ai Ar δα δωB Assumption Equations

ReT+− ImT+− Thick F (27)(63) (83)(84)
Metal ImT+− ReT+−

ImT+− ReT+− Thin F (88)
Insulator MIν (MIν)2 (MIν)2 (MIν)3 Weak spin relaxation∗ (111) (130)

– (MIν)2
∑

q(1 + 2nq) – – Magnon (122)

(Y3Fe5O12,YIG)/Au/Fe turned out to show Ar of 1–5 ×
1018 m−2 (Refs. [45,46]), which is the same order as in the
metallic cases. Inverse spin Hall measurements on YIG/Pt
report similar values [47], and the value is consistent with
the first-principles calculation [48]. Systematic studies of
YIG/NM with NM=Pt, Ta, W, Au, Ag, Cu, Ti, V, Cr, Mn,
etc., were carried out with the result of Ar ∼ 1017–1018 m−2

(Refs. [49–52]). If we use a naive phenomenological relation,
Eq. (6), Ar = 1018 m−2 corresponds to δα = 3 × 10−4 if
a = 2 Å, S = 1, and d = 20 Å. Assuming interface sd ex-
change interaction, the value indicates MIν ∼ 0.01, which
appears reasonable at least by the order of magnitude from
the result of x-ray magnetic circular dichroism (XMCD)
suggesting spin polarization of interface Pt of 0.05μB within
a proximity length of less than 1 nm [53]. A recent experiment
indicates that the spin pumping effect of an insulator is induced
locally in the normal metal as a result of the magnetic proximity
effect [8], supporting our perturbative treatment.

On the other hand, FMR frequency shift of insulators cannot
be explained by our theory. In fact, the shift for YIG/Pt is
δωB/ωB ∼ 1.6 × 10−2, which is larger than δα ∼ 2 × 10−3,
while our perturbation theory assuming weak interface sd

interaction predicts δωB/ωB < δα. We expect that the discrep-
ancy arises from the interface spin-orbit interaction that would
be present at the insulator-metal interface, which modifies the
magnetic proximity effect and damping torque significantly. It
would be necessary to introduce an anomalous sd coupling at
the interface like the one discussed in Ref. [54]. Experimen-
tally, the influence of interface spin-orbit interaction [55] and
proximity effect needs to be carefully characterized by using a
microscopic technique such as MCD to compare with theories.

IX. SUMMARY

We have presented a microscopic study of spin pumping
effects, the generation of spin current in a ferromagnet-
normal metal junction by magnetization dynamics, for both
metallic and insulating ferromagnets. As for the case of a
metallic ferromagnet, a simple quantum mechanical picture
was developed using a unitary transformation to diagonalize
the time-dependent sd exchange interaction. The problem of
dynamic magnetization is thereby mapped to the one with
static magnetization and off-diagonal spin gauge field, which
mixes the electron spin. In the slowly varying limit, the spin
gauge field becomes static, and the conventional spin pumping
formula is derived simply by evaluating the spin accumulation

formed in the normal metal as a result of interface hopping.
The effect of interface spin-orbit interaction was discussed.
A rigorous field theoretical derivation was also presented,
and the enhancement of spin damping (Gilbert damping)
in the ferromagnet as a result of spin pumping effect was
discussed. The case of an insulating ferromagnet was studied
based on a model where the spin current is driven locally
by the interface exchange interaction as a result of magnetic
proximity effect. The dominant contribution turns out to be the
one proportional to ṅ, while the magnon contribution leads to
n × ṅ, whose amplitude depends linearly on the temperature.
Our analysis clearly demonstrates the difference in the spin
current generation mechanism for metallic and insulating
ferromagnets. The influence of atomic-scale interface structure
on the spin pumping effect is an open and urgent issue, in
particular for the case of ferrimagnetic insulators which have
two sublattice magnetic moments.
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A±
s,t

s̃
(F)
±

gr
∓

ga
±

FIG. 11. Feynman diagram for electron spin density of ferromag-
net induced by magnetization dynamics (represented by spin gauge
field As) neglecting the effect of normal metal. The amplitude is
essentially given by the spin-flip correlation function χ± [Eq. (A3)].
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APPENDIX A: SPIN DENSITY INDUCED BY MAGNETIZATION DYNAMICS IN F

Let us here calculate the spin density in a ferromagnet induced by magnetization dynamics neglecting the effect of interface,
HI. (Effects of HI are discussed in Sec. V.)

In the rotated frame, the spin density in F pumped by the spin gauge field is therefore (diagrams shown in Fig. 11)

s̃(F)
α (k,k′) ≡ −i

∫
dω

2π
tr[σαδG<(k,k′,ω)]

= −i

∫
dω

2π

∑
k′′

(fk′′+ − fk′′−)
∑
±

(±)A±
s,t tr[σαgr(k,k′′,ω)σ∓ga(k′′,k′,ω)]

=
{

∓i
∫

dω
2π

∑
k′′ (fk′′+ − fk′′−)A±

s,t g
r
∓(k,k′′,ω)ga

±(k′′,k′,ω) (α = ±)

0 (α = z)
. (A1)

Let us here neglect the effects of interface in discussing the
spin polarization of F electrons, then the Green’s functions are
translationally invariant, i.e., ga(k,k′) = δk,k′ga(k) (a = r,a).
Using the explicit form of the free Green’s function, ga

σ (k,ω) =
1

ω−εk,σ −i0 , and∫
dω

2π
gr

∓(k,k′′,ω)ga
±(k′′,k′,ω) = i

εk,± − εk,∓ + i0
, (A2)

the spin density in the rotated frame then reduces to

s̃
(F)
± (k) = −A±

s,tχ±, (A3)

where

χ± ≡ −
∑

k

fk,± − fk,∓
εk,± − εk,∓ + i0

(A4)

is the spin correlation function with spin flip, +i0 meaning
an infinitesimal positive imaginary part. Since we focus on
the adiabatic limit and spatially uniform magnetization, the
correlation function is at zero momentum and frequency
transfer. We thus easily see that

χ± = n+ − n−
2M

, (A5)

where n± = ∑
kfk± is the spin-resolved electron density.

The spin polarization of Eq. (A3) in the rotated frame is
proportional to A⊥

s,t , and represents a renormalization of total
spin in F. In fact, it corresponds in the laboratory frame to
s(F) ∝ n × ṅ, and exerts a torque proportional to ṅ on n.

It may appear from Eq. (A5) that a damping of spin, i.e., a
torque proportional to n × ṅ, arises when the imaginary part
for the Green’s function becomes finite, because 1

M
is replaced

by 1
M∓iηi

, where ηi is the imaginary part. This is not always the
case. For example, nonmagnetic impurities introduce a finite
imaginary part inversely proportional to the elastic lifetime
(τ ), i

2τ
. They should not, however, cause damping of spin.

The solution to this apparent controversy is that Eq. (A1) is
not enough to discuss damping even including lifetime. In
fact, there is an additional process called vertex correction
contributing to the lesser Green’s function, and it gives rise
to the same order of small correction as the lifetime does,
and the sum of the two contributions vanishes. Similarly,
we expect damping does not arise from the spin-conserving
component of spin gauge field, Az

s,t . This is indeed true as
we explicitly demonstrate in Appendix B. We shall show in

Sec. V that damping arises from the spin-flip components of
the self-energy.

APPENDIX B: EFFECT OF SPIN-CONSERVING SPIN
GAUGE FIELD ON SPIN DENSITY

Here we calculate the contribution of spin-conserving spin
gauge field, Az

s,t , on the interface effects of spin density in F.
It turns out that a spin-conserving spin gauge field combined
with interface effects does not induce damping. This result is
consistent with a naive expectation that only the nonadiabatic
components of spin current should contribute to damping.

The contribution to the lesser Green’s function in F from the
interface hopping (lowest, the second order in the hopping) at
the linear order in the spin gauge field reads (diagramatically
shown in Fig. 12)

δG< = δG<
(a) + δG<

(b) + δG<
(c),

δG<
(a) = gr(As,t · σ )gr�r

0g
< + gr(As,t · σ )gr�<

0 ga

+ gr(As,t · σ )g<�a
0g

a + g<(As,t · σ )ga�a
0g

a,

δG<
(b) = gr�r

0g
r(As,t · σ )g< + gr�<

0 g<(As,t · σ )ga

+ gr�a
0g

a(As,t · σ )ga + g<�a
0g

a(As,t · σ )ga,

δG<
(c) = gr�rg< + gr�<ga + g<�aga. (B1)

Here,

�a ≡ t̃U−1ga
NUt̃† (a = a,r, <),

�a
0 ≡ t̃ga

N (B2)

are the self-energy due to the interface hopping, where �a

is the full self-energy including the time-dependent unitary
matrix U , which includes the spin gauge field. �a

0 is the

As,t

tt∗
N

(a)

As,t

t∗t
N

(b)

tU−1

N

Ut∗
(c)

FIG. 12. Diagrammatic representation of the contribution to the
lesser Green’s function for F electron arising from the interface
hopping (represented by t and t∗) and spin gauge field (As,t ). The
diagram (c) includes the spin gauge field implicitly in unitary matrices
U and U−1.
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contribution of �a with the spin gauge field neglected. We here focus on the contribution of the adiabatic (z) component, Az
s,t .

Using g< = F (ga − gr) for F (F is a 2 × 2 matrix of the spin-polarized Fermi distribution function) and g<
N = fN(ga

N − gr
N) and

noting that all the angular frequencies of the Green’s function are equal, we obtain

δG<
(a) + δG<

(b) � Az
s,t σz

{−2F
[
(gr)3�r

0 − (ga)3�a
0

]− (F − fN)[(gr)2ga + gr(ga)2]
(
�a

0 − �r
0

)}
. (B3)

The contribution δG<
(c) is calculated noting that

t̃U−1ga
NUt̃† = ga

N t̃ t̃† − dga
N

dω
t̃(As,t · σ )t̃† + O((As,t )

2). (B4)

The linear contribution with respect to the z component of the gauge field turns out to be

δG<
(c) � Az

s,t σz

{
F

[
(gr)2 ∂

∂ω
�r

0 − (ga)2 ∂

∂ω
�a

0

]
+ (F − fN)grga ∂

∂ω

(
�a

0 − �r
0

)}
. (B5)

We therefore obtain the effect of spin-conserving gauge field as

δG< = Az
s,t σz

∂

∂ω

{
F
[
(gr)2�r

0 − (ga)2�a
0

]+ (F − fN)grga
(
�a

0 − �r
0

)}
, (B6)

which vanishes after integration over ω. Therefore the contribution from the spin-conserving gauge field and interface hopping
vanishes in the spin density, leaving the damping unaffected.

APPENDIX C: DERIVATION OF EQ. (72)

We show here the details of the calculation of the induced spin density in the ferromagnetic metal, diagrammatically represented
in Fig. 8. Writing the spatial and temporal positions explicitly, the self-energy of F electrons arising from the hopping to N region
reads (r1 and r2 are in F)

�a(r1,r2,t1,t2) =
∫

IN

d3r ′
1

∫
IN

d3r ′
2 t̃(r1,r ′

1)U−1(t1)ga
N(r ′

1,r
′
2,t1 − t2)U (t2)t̃†(r2,r ′

2), (C1)

where a = r,a, <. We assume the Green’s function in N region is spin-independent, i.e., we neglect higher-order contributions
of hopping. Moreover, we treat the hopping to occur only at the interface, i.e., at x = 0. The self-energy is then represented
as

�a(r1,r2,t1,t2) = a2δ(x1)δ(x2)t̃U−1(t1)U (t2)t̃†
∑

k

ga
N(k,t1 − t2), (C2)

where a is the interface thickness, which we assume to be the order of the lattice constant. The diagrammatic representations of
Eqs. (68) and (C1) are in Fig. 8. Expanding the matrix using a spin gauge field as U−1(t1)U (t2) = 1 − i(t1 − t2)As,t + O((As,t )

2),
we obtain the gauge field contribution of the self-energy as

�a(r1,r2,t1,t2) = a2δ(x1)δ(x2)
∫

dω

2π

de−iω(t1−t2)

dω
t̃As,t t̃

†
∑

k

ga
N(k,ω)

= −a2δ(x1)δ(x2)
∫

dω

2π
e−iω(t1−t2) t̃As,t t̃

†
∑

k

d

dω
ga

N(k,ω). (C3)

The linear contribution of the lesser component of the off-diagonal self-energy is

G<(r,t,r ′,t) = gr�rga + gr�<ga + g<�aga

= a2
∫

dω

2π

∑
k

[
gr(r,ω)

dgr
N(k,ω)

dω
t̃As,t t̃

†g<(−r,ω)

+ gr(r,ω)
dg<

N (k,ω)

dω
t̃As,t t̃

†ga(−r,ω) + g<(r,ω)
dga

N(k,ω)

dω
t̃As,t t̃

†ga(−r,ω)

]
. (C4)

For a finite distance from the interface r , the dominant contribution arises from the terms containing both gr(r,ω) and ga(−r,ω),
as they do not contain a rapid oscillation like ei(kF++kF−)r and e2ikFσ r . Using an approximation

∑
k gr

N(k,ω) ∼ −iπνN and partial
integration with respect to ω, Eq. (C4) finally reduces to Eq. (72).
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APPENDIX D: MAGNON REPRESENTATION OF SPIN BERRY’S PHASE TERM

Here we derive the expression for the spin Berry’s phase term of the Lagrangian (94) in terms of a magnon operator. The time
integral of the term is written by introducing an artificial variable u as [56]∫

dtLB = S

∫
dtφ̇(cos θ − 1) = S−2

∫
dt

∫ 1

0
duS · (∂t S × ∂uS), (D1)

where S(t,u) is extended to a function of t and u, but only S(t,u = 1) is physical. Noting that the unitary transformation matrix
element of Eq. (96) is written as

Uij = (ej )i , (D2)

where r1 ≡ eθ , e2 ≡ eφ and e3 ≡ n, we obtain

S · (∂t S × ∂uS) = S̃ · [(∂t + iAU,t )̃S × (∂u + iAU,u )̃S)]. (D3)

Evaluating to the second order in the magnon operators, we have

∂t S̃ × ∂u S̃ = 2iγ ẑ[(∂ub
†)(∂tb) − (∂tb

†)(∂ub)]. (D4)

Using the explicit form of AU,μ, the gauge field contribution is

∂u S̃ · [̃S × iAU,t S̃)] = S2γ [(∂ub
†)(− sin θφ̇ + iθ̇ ) + (∂ub)(− sin θφ̇ − iθ̇ )] − 2Sγ 2 cos θ (∂tφ)∂u(b†b). (D5)

The terms linear in the boson operators vanish by the equation of motion, and the second-order contribution is

S · (∂t S × ∂uS) = 2Sγ 2{i∂u[b†(∂tb) − (∂tb
†)b] − ∂u[cos θ (∂tφ)b†b] + ∂t [cos θ (∂uφ)b†b]

+ sin θ ((∂tθ )(∂uφ) − (∂uθ )(∂tφ))b†b}. (D6)

Integrating over t and u, the total derivative with respect to t of Eq. (D6) vanishes, resulting in∫
dt

∫ 1

0
duS · (∂t S × ∂uS) = 2Sγ 2

∫
dt{i[b†(∂tb) − (∂tb

†)b] − cos θ (∂tφ)b†b + sin θ ((∂tθ )(∂uφ) − (∂uθ )(∂tφ))b†b}. (D7)

The last term of Eq. (D7) represents the renormalization of spin Berry’s phase term, i.e., the effect S → S − b†b, which we
neglect below. The Lagrangian for magnons thus reads

Lm = 2Sγ 2
∫

d3ri
[
b†
(
∂t + iAz

s,t

)
b − b†

(←
∂ t −iAz

s,t

))
b
]
, (D8)

namely, magnons interacts with the adiabatic component of the spin gauge field, Az
s,t .

APPENDIX E: DERIVATION OF EQS. (120) AND (121)

For the self-energy type of the Green’s functions, depending on two times as g(t1 − t2)D(t1 − t2) [Eq. (117)], the real-time
components are written as (suppressing time and suffix of N) (see Appendix F)

[g(t1 − t2)D(t1 − t2)]r = grD< + g>Dr = g<Dr + grD>,

[g(t1 − t2)D(t1 − t2)]a = gaD> + g<Da = gaD< + g>Da,

[g(t1 − t2)D(t1 − t2)]< = g<D<. (E1)

The Green’s function D̃ is that of a composite field Bα defined in Eq. (115), and is decomposed to the elementary magnon Green’s
function D as

D̃γ (r1,t1,r2,t2) = [�†(t1) × �(t2)]γ D(r1,t1,r2,t2) − [�†(t2) × �(t1)]γ D(r2,t2,r1,t1), (E2)

where

D(r1,t1,r2,t2) ≡ −i〈TCb(r1,t1)b†(r2,t2)〉. (E3)

The spin-dependent factor in Eq. (E2) is calculated for adiabatic dynamics as

�†(t1) × �(t2) = 2in(t1) + (t2 − t1)[� + iṅ] + O((∂t )
2), (E4)

where

� ≡ 2 cos θφ̇n + n × ṅ. (E5)
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The real-time Green’s functions are therefore [D(1,2) ≡ D(r1,t1,r2,t2)]

D̃<
γ (r1,t1,r2,t2) = 2in(t1)[D<(r1,t1,r2,t2) − D>(r2,t2,r1,t1)] + (t2 − t1){�[D<(r1,t1,r2,t2) + D>(r2,t2,r1,t1)]

+iṅ[D<(r1,t1,r2,t2) − D>(r2,t2,r1,t1)]}, (E6)

D̃r
γ (1,2) = θ (t1 − t2)

(
D̃<

γ (1,2) − D̃>
γ (1,2)

)
, D̃a

γ (1,2) = −θ (t2 − t1)εαβγ (D<
αβ(1,2) − D>

αβ(1,2)),

and D̃<
γ is obtained by exchanging < and > in D̃<

γ . Elementary Green’s functions are calculated as

D<(r1,t1,r2,t2) = −i
∑

q

eiq·(r1−r2)nqe
−iωq (t1−t2), D>(r1,t1,r2,t2) = −i

∑
q

eiq·(r1−r2)(nq + 1)e−iωq (t1−t2), (E7)

where ωq is the magnon energy and nq ≡ 1
eβωq −1

. In our model, the interface is atomically flat and has an infinite area, and thus
r i(i = 1,2) are at x = 0. The Fourier components, defined as (a = r,a,<,>)

D̃a
γ (x1 = 0,t1,x2 = 0,t2) ≡

∑
q

∫
d�

2π
e−i�(t1−t2)D̃a

γ (q,�), (E8)

are calculated from Eq. (E6) as

D̃<
γ (q,�) = −i

{
2n(D<

− − D>
+) + d

d�

[
�(D<

− + D>
+) + iṅ(D<

− − D>
+)
]}

,

D̃r
γ (q,�) = −i

{
2n(Dr

− + Dr
+) + d

d�

[
�(Dr

− − Dr
+) + iṅ(Dr

− + Dr
+)
]}

, (E9)

D̃a
γ (q,�) = −i

{
2n(Da

− + Da
+) + d

d�

[
�(Da

− − Da
+) + iṅ(Da

− + Da
+)
]}

,

where

Da
± ≡ 1

� ± ωq − i0
, Dr

± ≡ 1

� ± ωq + i0

D<
− ≡ nq(Da

− − Dr
−), D>

+ ≡ (1 + nq)(Da
+ − Dr

+). (E10)

The spin part of the Green’s function, Eq. (118), is

G<
N,γ (r,t,r ′,t) = −SJ 2

I

2

∫
dω

2π

∫
d�

2π

∑
kk′

∑
k′′q

[
gr

N,kω

(
D̃r

γ (q,�)g>
N,k′′,ω−�

+ D̃<
γ (q,�)gr

N,k′′,ω−�

)
g<

N,k′ω

+ gr
N,kωD̃r

γ (q,�)g>
N,k′′,ω−�

ga
N,k′ω + g<

N,kω

(
D̃a

γ (q,�)g>
N,k′′,ω−�

+ D̃<
γ (q,�)ga

N,k′′,ω−�

)
ga

N,k′ω

]
. (E11)

The contribution surviving at long distance is the one containing gr
N,ω(r) and ga

N,ω(−r), obtaining Eq. (120), i.e.,

G<
N,γ (r,t,r ′,t) �

∫
dω

2π

∑
kk′

gr
N,kωga

N,k′ωeik·re−ik′ ·r ′
�̃I,γ ,

where

�̃I,γ ≡ −SJ 2
I

2

∫
d�

2π

∑
k′′q

[(
fk′D̃r

γ (q,�) − fkD̃a
γ (q,�)

)
(fk′′ − 1)

(
ga

N,k′′,ω−�
− gr

N,k′′,ω−�

)
+ D̃<

γ (q,�)
(
fk′gr

N,k′′,ω−�
− fkg

a
N,k′′,ω−�

+ fk′′
(
ga

N,k′′,ω−�
− gr

N,k′′,ω−�

))]
. (E12)

We focus on the pumped contribution, containing a derivative with respect to � in Eq. (E9). The result is, using partial integration
with respect to � (�̃I is a vector representation of �̃I,γ ),

�̃I � −i
SJ 2

I

2

∫
d�

2π

∑
k′′q

{
(fk′′ − 1)

d

d�

(
ga

N,k′′,ω−�
− gr

N,k′′,ω−�

)
(fk′[�(Dr

− − Dr
+) + iṅ(Dr

− + Dr
+)]

− fk[�(Da
− − Da

+) + iṅ(Da
− + Da

+)]) + [�(D<
− + D>

+)

+ iṅ(D<
− − D>

+)]
d

d�

(
(fk′′ − fk)ga

N,k′′,ω−�
− (fk′′ − fk′)gr

N,k′′,ω−�

)}
. (E13)
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Using d
d�

ga
k′′,ω−�

= (ga
k′′,ω)2 + O(�) and an approximation, we obtain

∑
k′′ (ga

k′′,ω)2 � −πi ν
2εF

,

�̃I � πν

εF

SJ 2
I

2

∫
d�

2π

∑
qk′′

(
�

{
(fk′′ − 1)[fk′ (Dr

− − Dr
+) − fk(Da

− − Da
+)] + 1

2
(2fk′′ − fk − fk′)(D<

− + D>
+)

}

+ iṅ
{

(fk′′ − 1)[fk′(Dr
− + Dr

+) − fk(Da
− + Da

+)] + 1

2
(2fk′′ − fk − fk′ )(D<

− − D>
+)

})
. (E14)

As argued for Eq. (106), only the imaginary part of self-energy contributes to the induced spin current, as the real part, the shift
of the chemical potential, is compensated by redistribution of electrons. We therefore obtain Eq. (121).

We further note that the component of � proportional to n [Eq. (E5)] does not contribute to the current generation, as a result
of gauge invariance. (In other words, the contribution cancels with the one arising from the effective gauge field for magnons).

APPENDIX F: DECOMPOSITION OF CONTOUR-ORDERED SELF-ENERGY

Here we derive the decomposition formula for the self-energy in Eq. (E1). Obviously, we have

[gD]< = g<D<. (F1)

The retarded component is defined as

[gD]r ≡ [gD]t − [gD]<, (F2)

where the time-ordered one is written as

[g(t1 − t2)D(t1 − t2)]t ≡ θ (t1 − t2)g>D> + θ (t2 − t1)g<D< = grDr + grD< + g<Dr + g<D<. (F3)

We thus obtain

[gD]r = grDr + grD< + g<Dr. (F4)

Noting that grDa = 0, we can write it as

[gD]r = grD< + g>Dr = g<Dr + grD>. (F5)

The advanced component is similarly written as

[gD]a = −gaDa + gaD< + g<Da = gaD> + g<Da = gaD< + g>Da. (F6)
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