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Magnetocrystalline anisotropy of Laves phase Fe2Ta1−xWx from first principles:
Effect of 3d-5d hybridization
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The magnetic properties of Fe2Ta and Fe2W in the hexagonal Laves phase are computed using density functional
theory in the generalized gradient approximation, with the full potential linearized augmented plane-wave method.
The alloy Fe2Ta1−xWx is studied using the virtual crystal approximation to treat disorder, with some comparisons
to supercell calculations. Fe2Ta is found to be ferromagnetic with a saturation magnetization of μ0Ms = 0.66 T
while, in contrast to earlier computational work, Fe2W is found to be ferrimagnetic with μ0Ms = 0.35 T. The
transition from the ferri- to the ferromagnetic state occurs for x � 0.1. The magnetocrystalline anisotropy energy
(MAE) is calculated to 1.25 MJ/m3 for Fe2Ta and 0.87 MJ/m3 for Fe2W. The MAE is found to be smaller for all
values x in Fe2Ta1−xWx than for the end compounds and it is negative (in-plane anisotropy) for 0.1 � x � 0.9.
The MAE is carefully analyzed in terms of the electronic structure. Even though there are weak 5d contributions
to the density of states at the Fermi energy in both end compounds, a reciprocal space analysis, using the magnetic
force theorem, reveals that the MAE originates mainly from regions of the Brillouin zone with strong 3d-5d

hybridization near the Fermi energy. Perturbation theory and its applicability in relation to the MAE is discussed.
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I. INTRODUCTION

The magnetocrystalline anisotropy energy (MAE) is the in-
trinsic relativistic feature, originating from spin-orbit coupling
(SOC) [1], of magnetic materials that the energy depends on
the direction of magnetization relative to the crystal lattice. It
is crucial in a wide range of applications, from permanent
magnets [2–5] to magnetic storage devices [6]. The SOC
is strong in heavy elements such as rare earths (REs) and
actinides which consequently acquire large MAE, while in
applications it is highly desirable to obtain a large MAE
without such expensive or inaccessible constituent elements
[7]. One compound which has gained much attention due
to its huge MAE is tetragonal FePt [8–12]. This material
acquires its magnetization mainly from Fe, while the important
factors resulting in the large MAE include the strong SOC of
the Pt atom, as well as the uniaxial crystal structure. The
crystal structure is crucial because highly symmetric, e.g.,
cubic, crystals tend to have at least one order of magnitude
lower MAE. Nevertheless, FePt contains large amounts of
the valuable element Pt, whereby alternative magnetic 3d-5d

composites in uniaxial crystal structures can be of great
technological value. One such compound is hexagonal Laves
phase (C14) Fe2W, which was reported by Arnfelt and
Westgren [13] and recently attracted some attention in the
context of permanent magnet replacement materials [14,15].
Early electronic structure calculations [16] failed to establish
the existence of ferromagnetism in the compound from the
Stoner criterion. While it now seems clear that the compound
is magnetically ordered [14,15], a thorough understanding of
the magnetism in this material appears to be absent in the
literature and some discrepancies can be seen between recent
computational [14] and experimental work [15]. For example,
calculations [14] overestimated the saturation magnetization
by nearly 30% and provided a vastly different MAE when
compared to experimental data from nanoparticles [15]. It
is therefore the purpose of this work to use state-of-the-art
electronic structure calculations to unambiguously determine

the magnetic ground state of the Fe2W compound and inves-
tigate the magnetic properties, including the technologically
important intrinsic properties of saturation magnetization (Ms)
and MAE. The closely related compound Fe2Ta is isostructural
to Fe2W [17] and also studied. Some focus will be put on
the MAE, which will be carefully analyzed in terms of the
electronic structure. Furthermore, the possibility to tune the
MAE by alloying W and Ta will be examined and a discussion
of the underlying physical principles provided.

II. COMPUTATIONAL METHODS

Density functional theory (DFT) calculations in the gener-
alized gradient approximation [18] (GGA) were performed
with the full-potential linearized augmented plane waves
(FP-LAPW) method as implemented in WIEN2K [19]. Initially,
spin-polarized calculations were performed in the scalar
relativistic approximation, but to calculate the MAE, SOC
must be included and this was done in a second variational
approach [20]. The size of the basis set used is typically
described by the product of the smallest muffin-tin sphere
and the largest reciprocal-lattice vector included, RKmax. For
structure optimizations, this value was set to RKmax = 7, while
for MAE calculations a larger value of RKmax = 9 was used.
To obtain a well converged formation energy, a value as large
as RKmax = 9.5 was needed. Integration of k points over the
Brillouin zone was performed using the improved tetrahedron
method [21] and 700 k points in the full Brillouin zone (48 in
the irreducible wedge of the Brillouin zone after considering
the 24 symmetry operations of the crystal) were used for
structure optimization, 1500 for the calculation of formation
energy, and as many as 30 000 k points were used in order to
obtain well converged MAE values.

III. RESULTS: Fe2Ta AND Fe2W

One unit cell of the relevant crystal structure contains two
inequivalent Fe positions with multiplicity 2 and 6 respectively,
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TABLE I. Lattice parameters and parameters of the internal
atomic positions, magnetic moments, saturation magnetization, and
formation energy of Fe2W and Fe2Ta as calculated in a scalar
relativistic, spin polarized GGA calculation, neglecting SOC, in
WIEN2K.

Fe2Ta Fe2W

a (Å) 4.811 4.674
c (Å) 7.874 7.768
xFe2 0.83192 0.82946
z5d 0.06405 0.06924
m(Fe1)(μB) 0.90 −1.14
m(Fe2)(μB) 1.43 1.17
m(5d)(μB) −0.24 −0.05
mtot(μB/u.c.) 8.88 4.45
μ0Ms (T) 0.66 0.35
Formation energy (eV/u.c.) −2.82 −0.63

as well as two equivalent 5d sites. Calculations were performed
with the initial spin state either in ferro- or ferrimagnetic
configurations, i.e., parallel or antiparallel alignment of spins
on the two different Fe positions. In the case of Fe2Ta, the total
energy was found to be 7.9 meV per unit cell lower in the case
of ferromagnetic ordering compared to ferrimagnetic ordering.
For Fe2W, on the other hand, all calculations converged into
the ferrimagnetic state, regardless of initial spin configuration
and lattice parameters. This indicates that there is a change of
sign in the sum over exchange interactions between Fe1 and Fe1

sites when exchanging Ta for W. The magnitude of this change
could be estimated by comparing the energy differences
for parallel and antiparallel spin arrangements. However,
since the Fe2W calculations converge to the antiparallel spin
configuration regardless of the initial spin configuration, this
is not possible with the currently used methods. Instead a
more detailed analysis of the exchange interactions could
be performed using more suitable methods, such as that
of Liechtenstein et al. [22]. This would require introducing
different computational methods and is considered beyond the
scope of the current work.

Lattice parameters were calculated by minimizing the total
energy with respect to volume and c/a and relaxing the internal
atomic positions in each step. The calculated lattice parameters
are reported in Table I, which also contains spin magnetic
moments and the corresponding saturation magnetizations as
well as formation energies. For Fe2Ta, the lattice parameters
have been experimentally reported as a = 4.833 Å and c =
7.868 Å [17] and for Fe2W, a = 4.727 Å and c = 7.704 Å
[13], in close agreement with the calculated values in Table I,
although for Fe2W, c/a is slightly larger in the calculated data.
The Fe moments in Fe2W are of similar size and opposite sign
but as there are two and six of the respective Fe sites in one
unit cell, there is a net total of 4.45μB/u.c., corresponding to
a saturation magnetization of μ0Ms = 0.35 T. Since in Fe2Ta
the Fe moments are parallel, the total magnetic moment and
corresponding saturation magnetization is significantly larger,
reaching a value of μ0Ms = 0.66 T. Ta and W have small
induced moments of −0.24μB and −0.05μB, antiparallel to
the total magnetic moment, respectively, as is typical for these
5d atoms in a magnetic 3d host [23].

Since a different magnetic ordering, with a magnetic
moment close to zero on the first Fe site and a larger moment
moment around 1.3μB on the second Fe atom, has been
reported in earlier computational work (pseudopotential DFT
calculations in the GGA) [14] for Fe2W, further investigation
seems necessary to unambiguously determine the correct
magnetic ground state within the GGA. Hence, fixed spin
moment calculations, allowing the total magnetic moment of
the system to be constrained to a fixed given value, were
performed. The total magnetic moment was varied around
the value of 6.8μB/u.c., previously reported [14]. Magnetic
moments of −0.05μB and 1.25μB were then obtained on the
two Fe atoms, which is similar to the earlier computational
results [14]. Initially, the lattice parameters were set to the
values mentioned in Ref. [14], but then attempts were made at
optimizing the crystal structure with fixed magnetic moment
to lower the energy further. However, all calculations resulted
in total energies which were higher than those obtained for the
structure given in Table I and no minimum could be located in
the total energy as a function of total magnetic moment. Based
on these results, the most probable conclusion appears to be
that the authors of Ref. [14] assumed a ferromagnetic order
as initial state and reached a local energy minimum for which
the magnetic moments were reported. The correct magnetic
moments corresponding to the global energy minimum, within
the GGA, based on all results obtained here, are expected
to be those in Table I. The explanation given here is
consistent with the observation that the previous computational
work presented a value of μ0Ms as approximately 0.56 T
which overestimated the experimental low-temperature value
of approximately μ0Ms = 0.44 T. Nevertheless, the value
given in this work somewhat underestimates the experimental
result. A possible source of discrepancy is surface effects of
the nanoparticles, where enhanced magnetic moments could
appear near the surface.

Somewhat surprisingly, a non-negligible difference is seen
also in lattice parameters and total magnetic moment for
Fe2Ta, when comparing to previous computational work
[14], where a = 4.825 Å and c/a = 1.6329 (corresponding
to c = 7.879 Å) was reported. The difference in a is merely
2% and might be expected for the two different computational
methods. The difference in total spin magnetic moment is,
however, larger. For example, the magnetic moment on the
Fe1 is computed to 0.90μB, while the other authors reported
a value well above 1μB. The reason for this discrepancy is
difficult to pinpoint exactly, as both sets of calculations are
performed in the GGA [18], but might partly be related to the
difference in lattice parameters.

By comparing the total energy of Fe2(Ta/W) in the
calculated ground state with that of bcc Fe and bcc Ta or
W, the formation energy was calculated to −0.63 eV/u.c.
for Fe2W, which is lower than the value close to zero
previously reported [14]. A negative formation energy is
expected for a stable phase and a possible scenario ap-
pears to be that the authors of Ref. [14] obtained a too
high formation energy due to calculating a local energy
minimum and thus a too high total energy. For Fe2Ta, the
formation energy is lower and this compound may therefore
be expected to be more stable and form more easily in
nature.

064422-2



MAGNETOCRYSTALLINE ANISOTROPY OF LAVES PHASE . . . PHYSICAL REVIEW B 96, 064422 (2017)

TABLE II. Spin magnetic moments mS, orbital magnetic mo-
ments mL, saturation magnetizations, and MAE for Fe2W as calcu-
lated in WIEN2K, including SOC with magnetization either along 100
or 001 directions and using the lattice parameters presented in Table I.

Fe2Ta m‖100 m‖001

mS(Fe1)(μB) 0.943 0.932
mS(Fe2)(μB) 1.433 1.432
mS(Fe3)(μB) 1.427 1.432
mS(Ta)(μB) −0.240 −0.238
mL(Fe1)(μB) 0.070 0.109
mL(Fe2)(μB) 0.091 0.099
mL(Fe3)(μB) 0.101 0.099
mL(Ta)(μB) 0.033 0.034
μ0Ms (T) 0.69 0.69
Energy (meV/u.c.) 1.24 0
Energy (MJ/m3) 1.25 0

Fe2W m‖100 m‖001

mS(Fe1)(μB) −1.148 −1.150
mS(Fe2)(μB) 1.163 1.172
mS(Fe3)(μB) 1.172 1.172
mS(W)(μB) −0.044 −0.044
mL(Fe1)(μB) −0.066 −0.151
mL(Fe2)(μB) 0.045 0.039
mL(Fe3)(μB) 0.074 0.039
mL(W)(μB) 0.002 0.002
μ0Ms (T) 0.36 0.35
Energy (meV/u.c.) 0.79 0
Energy (MJ/m3) 0.87 0

In order to compute the MAE, calculations were performed
including SOC, which also results in a nonzero orbital
magnetic moment, that is otherwise quenched. The computed
spin magnetic moments (mS), orbital magnetic moments (mL),
and MAEs are listed in Table II. When the magnetization is
along the a axis, the SOC results in a lowering of symmetry so
that the second Fe site with initially six equivalent atoms are
split into two types with two and four Fe atoms of each, labeled
Fe2 and Fe3 respectively. Hence, the spin and orbital moments
are the same for Fe2 and Fe3 when the magnetization is along
the c axis but not when it is along the a axis. The MAE is cal-
culated to EMAE = 1.24 meV/u.c. = 1.25 MJ/m3 for Fe2Ta
and EMAE = 0.79 meV/u.c. = 0.87 MJ/m3 for Fe2W, with
easy magnetization axis along the c direction of the crystal in
both cases. The calculated uniaxial MAE for Fe2W presented
here is in better agreement with the small uniaxial MAE
recently presented in experimental work [15] than the large
in plane MAE previously computed for the Fe2W compound
[14]. Nevertheless, the computed value found in this work
is significantly larger than the reported experimental value
of 286 kerg/cm3 = 28.6 kJ/m3. However, measurements have
only been presented for nanoparticles, while unambiguous
MAE measurements require single crystals. For Fe2Ta, an
experimental MAE has not been found in the literature,
but the value calculated here differs notably from the value
of EMAE = −1.4 meV/u.c. previously calculated [14]. This
discrepancy is most likely related to the difference in magnetic
moments obtained, as mentioned above, but could also be
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FIG. 1. Spin polarized DOS for Fe2Ta in (a) and Fe2W in (b).

partially related to other computational details, such as the
treatment of SOC or core electrons.

Figure 1 shows the spin polarized density of states (DOS)
for Fe2Ta (a) and Fe2W (b). The majority spin DOS is
similar for the two compounds, with the Fermi energy (EF) at
approximately the same location. However, as Ta is exchanged
for W more electrons are added into the system and the
minority spin states become occupied, whereby these are
shifted more to the left in Fig. 1(b) and, as a result, EF

coincides with the bottom of a valley in the minority spin
DOS of Fe2W. Thus the DOS(EF) for Fe2W is dominated by
minority spin states, in contrast to Fe2Ta, where the opposite
is true. This fact will be of importance later when analyzing
the relation between MAE and orbital moment anisotropy.
It is also interesting to note that the minority spin DOS of
Fe2W has a valley at EF, resulting in a higher degree of
spin polarization of the DOS(EF) compared to Fe2Ta. In both
cases, the DOS(EF) is dominated by Fe, with rather modest
contributions from the 5d atoms. This might be one important
reason, together with other details in the band structure around
EF, why these compounds do not possess larger MAE. Even
the L10 phase of MnAl exhibits an MAE well above 1 MJ/m3

[24] without any constituent element heavier than a 3d atom.
Heavier atoms, such as 5d’s, should allow significantly larger
MAE, e.g., 4 MJ/m3 [10] or more [25] in FePt. However, this
requires significant 3d-5d hybridization around EF, as is seen
in FePt [26], but appears to be limited in the compounds studied
here. Nevertheless, the contribution from Ta (3.2 states/eV
for both spin channels summed) is greater than that of W
(1.8 states/eV). This is consistent with the observation that
the MAE is greater in the compound containing Ta, although
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other differences in the electronic structure are also expected
to play a role.

In a system with weak SOC, such as 3d-based itinerant
magnets, where ξ is significantly smaller than the bandwidth
(less than 100 meV compared to several eV), it is reasonable
to describe the effect of SOC in terms of perturbation theory
and important insights can be gained by doing so [27–29].
For a uniaxial crystal the leading term is of second order
while for cubic crystals it is fourth order. Andersson et al.
[29] discussed the case of having several atomic types and
hybridization between these in a tight-binding description. One
can consider unperturbed single-particle states at the point k
in the Brillouin zone as

|k,i〉 =
∑
q,μ

ck,i,q,μ |k,q,μ,σi〉 , (1)

with summation over atomic sites q and orbital states μ, but
not over the spin σn since the unperturbed states each have
well defined spin. With on-site SOC, The shift in the energy
eigenvalue Ek,i associated with |k,i〉 is

�Ek,i(n̂)

= −
∑
j �=i

∑
qq ′

∑
μμ′μ′′μ′′′

nk,i,qμ,q ′μ′′′nk,j,q ′μ′′,qμ′

· 〈qμσi |ξq l̂ · ŝ|qμ′σj 〉〈q ′μ′′σj |ξq ′ l̂ · ŝ|q ′μ′′′σi〉
Ek,j − Ek,i

, (2)

with occupation numbers nk,i,qμ,q ′μ′′′ = c∗
k,i,q,μck,i,q ′,μ′′′ and

spin and orbital angular momentum operators ŝ and l̂. For
a given q and k, it is clear that the effect of the SOC is
determined by matrix elements of the form 〈μi,σi | l̂ · ŝ |μj ,σj 〉
and for convenience these are listed with respect to spin and
d orbitals in the Appendix. n̂ is the spin quantization axis
(magnetization direction) and the dependence of �Ek,i(n̂) on
this quantity comes from the SOC matrix elements. For the
total shift in Ek,i , the coupling between all states j �= i should
be considered. However, if both i and j denote occupied states
there will be a cancellation when these are summed over to
compute the total energy. Therefore, only coupling between
occupied and unoccupied states are relevant, except possibly in
the small regions of the Brillouin zone where deformations of
the Fermi surface occur, as was pointed out by Kondorskii and
Straube [27]. This leads to the important and well established
conclusion that the MAE is determined by the electronic band
structure near the Fermi energy, in particular by the coupling
between occupied and unoccupied states [27,30,31]. One more
important observation from Eq. (2) is that regions in the band
structure with significant Fe-Ta hybridization will allow MAE
contributions of order ξTaξFe

Ek,j −Ek,i
, which is significantly larger

than ξ 2
Fe

Ek,j −Ek,i
, since ξTa is several times larger than ξFe, or

similarly for W instead of Ta.
The discussion above is motivation to perform a careful

analysis of the electronic band structure near the Fermi energy
to obtain a better understanding of the MAE. Figures 2(a)–2(f)
show the spin polarized band structure through various high-
symmetry points in the Brillouin zone, without SOC, for Fe2Ta,
with spin-up states on the left side and spin-down states on the
right side. Color coding is used to show the orbital character

of the bands with red, green, and blue indicating m = 0
(dz2 ), m = 1 (dxz or dyz) and m = 2 (dxy or dx2−y2 ) character,
respectively, for different atomic types in the different rows.
A black region on a band indicates that the given atomic type
is not significantly contributing to the band there. The large
number of bands present, even within one electron volt from
the Fermi surface, and complicated band structure with further
complication due to hybridization, makes analysis of the MAE
in terms of the band structure difficult. Some observation
can, nevertheless, directly be made. The � point is often of
particular importance since it has the highest symmetry. Here
there are occupied and unoccupied spin-up states very near
the Fermi energy at this point, potentially allowing very strong
effect from the SOC, especially since these states both show
strong Ta contributions and Ta has the largest SOC constant.
However, the unoccupied band is largely of m = 0 character,
while the occupied one is of m = 1 character. Such states do
not couple via SOC (see Table IV), whereby the potentially
strong MAE contribution at � is absent.

To obtain information about which regions in reciprocal
space are particularly important to the MAE, the band
structures after applying SOC with magnetization along either
100 or 001 directions are plotted in Fig. 2(g). From these
bands the MAE contribution per k point can be evaluated
using the magnetic force theorem [32], by taking the difference
of the sum over occupied energy eigenvalues for different
magnetization directions, which is also plotted (red line, right
y axis) in Fig. 2(g). To confirm that the force theorem provides
an accurate description of the MAE in the relevant materials,
the difference between occupied Kohn-Sham eigenvalues for
different magnetization directions was also integrated over the
Brillouin zone to yield a value for the MAE. This resulted
in 1.26 meV/u.c. for Fe2Ta and 0.76 meV/u.c. for Fe2W,
in excellent agreement with the results from total-energy
calculations presented in Table II. Since the MAE is positive in
Fe2Ta, regions with positive MAE contributions are expected
to outweigh the negative regions. In agreement with the
observation mentioned about � above, there is a rather weak
MAE contribution from the region around that point. Instead,
it is clear that the most important region is that around the
A point where a large and positive MAE contribution is seen,
while other regions show smaller values of varying sign, which
one might expect to nearly cancel out in a Brillouin-zone
integration. From a first look at the bands in Figs. 2(a)–2(f), the
most important bands for the MAE at A should be the highest
occupied and lowest unoccupied ones, which are in both cases
spin-down with fourfold degeneracy. However, in Fig. 2(g)
one can identify the strongest positive MAE contribution
where occupied 001 bands (blue dashed line) are shifted well
below the corresponding 100 bands (black dash-dotted line).
This occurs mainly for the highest occupied (also fourfold
degenerate) spin-up bands at A, whereby these should also be
considered. The three sets of band which thus far appear most
important at A all have significant contributions from several
atomic types and orbitals, in particular Ta and Fe1, m = 1 and
m = 2 states, but for the lowest unoccupied spin-down bands,
Fe2 m = 1 and m = 2 are also important. This means that
detailed analysis of the MAE contribution from the A point is
complicated since a large number of terms from Eq. (2) must
be considered. It is clear, however, that there is a significant
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FIG. 2. Atomic type and spin resolved band structure of Fe2Ta with the colors red, green, and blue indicating the contribution of m = 0
(dz2 ), m = 1 (dxz or dyz) and m = 2 (dxy or dx2−y2 ) states respectively, in (a)–(f). Black bands indicate that the d orbitals of given atomic type
do not contribute significantly to the band in that region. (a) Fe1, spin up. (b) Fe1, spin down. (c) Fe2, spin up. (d) Fe2, spin down. (e) Ta, spin
up. (f) Ta, spin down. (g) Band structure including SOC with magnetization along 100 (black dash-dotted line) or 001 direction (blue dashed
line) as well as the MAE contribution per k point (red solid line), obtained via the magnetic force theorem.

Fe-Ta hybridization in the relevant region and as was pointed
out above, this allows for significant additions to the MAE.

Figure 3 contains the same type of information as Fig. 2,
but for Fe2W. Since Fe2W also has a uniaxial (positive)

MAE, positive regions are expected to dominate the MAE
contributions in Fig. 3(g). In similarity with the Fe2Ta case,
there are large regions of small contributions with varying sign,
which one would expect to nearly vanish in an integration. In

064422-5



ALEXANDER EDSTRÖM PHYSICAL REVIEW B 96, 064422 (2017)

L M Γ A H K

E
-E

F
 (

eV
)

-1

0

1

(a)

L M Γ A H K

E
-E

F
 (

eV
)

-1

0

1

(b)

L M Γ A H K

E
-E

F
 (

eV
)

-1

0

1

(c)

L M Γ A H K
E

-E
F
 (

eV
)

-1

0

1

(d)

L M Γ A H K

E
-E

F
 (

eV
)

-1

0

1

(e)

L M Γ A H K

E
-E

F
 (

eV
)

-1

0

1

(f)

L M Γ KHA

E
-E

F
 (

eV
)

-0.5

0

0.5

M
A

E
 (

10
-2

eV
/k

-p
oi

nt
)

-6

-3

0

3

6

(g)

FIG. 3. Atomic type and spin resolved band structure of Fe2W with the colors red, green, and blue indicating the contribution of m = 0
(dz2 ), m = 1 (dxz or dyz), and m = 2 (dxy or dx2−y2 ) states respectively, in (a)–(f). Black bands indicate that the d orbitals of given atomic type
do not contribute significantly to the band in that region. (a) Fe1, spin up. (b) Fe1, spin down. (c) Fe2, spin up. (d) Fe2, spin down. (e) W, spin
up. (f) W, spin down. (g) Band structure including SOC with magnetization along 100 (black dash-dotted line) or 001 direction (blue dashed
line) as well as the MAE contribution per k point (red solid line), obtained via the magnetic force theorem.
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particular, the important � point provides a weak contribution,
which can be understood from the relatively large separation in
energy between the highest occupied and lowest unoccupied
states, compared to other regions. The most important positive
contributions to the MAE stem from the L neighborhood, as
well as a region along the path A-H , while there is a significant
negative region around M , which can partially explain why the
MAE of Fe2W is not stronger. In the important region along
the A-H path, there are two spin-up bands nearly parallel to
each other. These are on opposite sides of the Fermi energy
where the k-point resolved MAE is strongest, and can therefore
contribute to the MAE. Both bands are mainly of W and
Fe1 m = 1 character. From the SOC matrix elements in the
Appendix, one finds that states of same spin and m value yield
a positive (uniaxial) contribution to the MAE. Furthermore,
the Fe-W hybridization allows the strong W SOC to enhance
the coupling strength and this explains the large positive MAE
contribution in that part of the A-H path.

At the L point, a significant positive source of MAE is
found in the highest occupied spin-up states which are mainly
Ta and Fe1 m = 1, since the 001 bands are shifted below the
100 bands. This situation is reversed as one moves along the
L-M path and the change of sign in the k-resolved MAE
appears to coincide with the spin-down bands which are unoc-
cupied at L becoming occupied near M . The presence of many
bands with significant hybridization effects makes it difficult
to pinpoint states coupling via SOC which are particularly
important to the MAE along the L-M path. Nevertheless, it
should be pointed out that once again there is significant Fe-W
hybridization, so that the strong W SOC can increase the MAE.
Since there is a limited 5d contribution to the DOS at the Fermi
energy, there can only be significant 3d-5d hybridization near
the Fermi energy in a limited region of the Brillouin zone.
Nevertheless, the reciprocal space analysis of the electronic
structure and MAE contributions reveals that the MAE is
mainly determined by those regions in the Brillouin zone
where there is notable 3d-5d hybridization, in both Fe2Ta
and Fe2W.

As both quantities are due to the SOC, Bruno [28] pointed
out the close relation between magnetocrystalline anisotropy
and orbital moments and showed, using perturbation theory on
a tight-binding model, that if deformations of the Fermi surface
can be neglected and the MAE is dominated by spin-diagonal
coupling, the MAE and orbital magnetic-moment anisotropy
are proportional. If coupling between minority spin states
dominates the SOC, a maximum orbital magnetic moment
is expected in the easy direction of magnetization, as is seen
in the case of Fe2Ta in Table II. If, on the other hand, the
SOC is dominated by the coupling between majority spin
states, a maximum orbital magnetic moment is expected along
the hard magnetization axis, as is seen in the case of Fe2W.
This is consistent with the observation made in Fig. 1 that the
Fe2Ta DOS(EF) is dominated by minority spin states, while
the opposite is true for Fe2W. For a further analysis of the
relation between MAE and mL in the studied systems, energy
and orbital moments have been computed as functions of the
angle θ (with φ = 0) when the magnetization is along n̂ =
(sin θ cos φ, sin θ sin φ, cos θ ). The result for the energy as
function of θ is shown in Fig. 4. The second-order perturbation
theory for a uniaxial system leads to the conclusion that the
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FIG. 4. Energy as a function of the polar angle θ between the
c axis and the magnetization direction in (a) and energy as a
function of the azimuthal angle φ with θ = π

2 in (b). The fit in
(b) is to a function E(θ = π

2 ,φ) = C1 + C2 cos 3φ + C3 cos 6φ and
C2 cos 3φ + C3 cos 6φ is plotted.

energy as function of θ follows the relation
E(θ ) = K0 + K1 sin2 θ, (3)

with isotropic energy K0. This is merely the first part of the
longer expansion

E(θ,φ) = K0 + K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

× (1 + k3,3 cos 3φ + k3,6 cos 6φ) + · · · , (4)

valid for a uniaxial crystal with threefold rotational symmetry
about the z axis, such as the one studied here. For a system
where the MAE is well described by second-order perturbation
theory, one expects that the energy is well fitted by Eq. (3) and
that Ki is vanishingly small for i > 1. As seen in Fig. 4(a),
fitting the energy as function of angle between magnetization
direction and 001 direction to K1 sin2 θ provides an unsat-
isfactory curve for E(θ ) for both Fe2Ta and Fe2W, while
including also the term K2 sin4 θ yields an excellent fit [for the
fit to K1 sin2 θ, K1 was simply set to E(π/2) − E(0), while
the fit to K1 sin2 θ + K2 sin4 θ was done with the method of
least squares]. This indicates that second-order perturbation
theory provides a quantitatively inaccurate description of the
MAE in the studied compounds, while fourth-order terms
should provide an accurate description with higher (than
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TABLE III. Anisotropy constants K1, K2, and K̃3 = K3(1 +
k3,3 + k3,6) from least-squares fitting of E(θ,φ = 0) to K1 sin2 θ +
K2 sin4 θ or K1 sin2 θ + K2 sin4 θ + K̃3 sin6 θ (see Fig. 4).

K1 (meV/f.u.) K2 (meV/f.u.) K̃3 (meV/f.u.)

Fe2Ta −0.27 1.50
Fe2Ta −0.19 1.23 0.19
Fe2W 0.50 0.30
Fe2W 0.45 0.46 −0.11

fourth)-order corrections being small. Clearly, the fit to
K1 sin2 θ is significantly better in the case of Fe2W than for
Fe2Ta. This indicates that restriction to second-order pertur-
bation theory, rather than fourth, is a better approximation
for the W compound, which might be related to the smaller
contribution of the 5d atom to the DOS(EF), making the
assumption of a small ξ more realistic.

The anisotropy constants obtained from the fitting to
K1 sin2 θ + K2 sin4 θ are listed in Table III. As was already
anticipated from Fig. 4(a), K2 is of more importance in Fe2Ta
and in fact it is of opposite sign and significantly bigger than
K1. In the case where K1 and K2 have the same sign, the θ

derivative of E(θ ) = K1 sin2 θ + K2 sin4 θ has only two zeros
for real Ki , namely θ = 0 and θ = π/2, whereby the easy and
hard magnetization directions will occur at these angles. For
opposite signs of K1 and K2, an additional zero occurs at

θ = sin−1

(√
− K1

2K2

)
(5)

and for Fe2Ta there is a minimum in the energy at approxi-
mately θ = 0.15 = 8.8◦. The easy magnetization direction is
thus expected at this angle rather than at θ = 0, so the material
strictly speaking does not have a uniaxial magnetization. For
Fe2W, both constants are positive so θ = 0 is the easy axis.
Although in this case the magnitude of K1 is greater than K2,
the latter is not negligible.

Table III also contains parameters from a fit to K1 sin2 θ +
K2 sin4 θ + K̃3 sin6 θ . This indicates non-negligible values of
K̃3 for both compounds and, in the case of Fe2Ta, it is of the
same magnitude as K1. However, it is not clear how many
fitting parameters are reasonable to include with the given
numerical accuracy. Comparison to a fit from a calculation
with only 2 × 104 k points yields a value smaller by a factor
of 1/3 for Fe2Ta, indicating that the numerical accuracy might
be insufficient. However, more accurate calculations become
prohibitively computationally demanding.

Typically, in uniaxial systems which do not possess strong
SOC, the variation in energy for rotations of the magnetization
direction in the plane is small. This makes it challenging
and computationally heavy to compute the in-plane magnetic
anisotropy (this might differ in, for example, actinide systems,
where even cubic materials can have enormous MAE [33]).
Nevertheless, the energy as a function of φ with θ = π

2 was
computed and the result is shown in Fig. 4(b). The calculated
points have been fitted to E(θ = π

2 ,φ) = C1 + C2 cos 3φ +
C3 cos 6φ (C2 and C3 should correspond to K3k3,3 and K3k3,6,
respectively) and C1 has been subtracted from the calculated
points and fitted curves. As expected, the variations in Fig. 4(b)

θ
0 π/4 π/2

Δ
m

L
 (
μ

B
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Total
Ta
Fe

1
Fe

2
Fe

3

(a)

θ
0 π/4 π/2

Δ
m

L
 (
μ

B
)

-0.15

-0.1

-0.05

0

0.05

Total
W
Fe

1
Fe

2
Fe

3

(b)

Δm
L
(θ) (μ

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12

E
(θ

) 
(m

eV
/f.

u.
)

-1.5

-1

-0.5

0

0.5

1

Increasing θ →

←
 Increasing θ

Ta: linear fit
Ta: Calculated data
W: linear fit
W: Calculated data

(c)

FIG. 5. Energy and orbital magnetic moments as function of
the angle θ between the magnetization direction and the 001 axis.
(a) Orbital magnetic moment as function of θ for Fe2Ta. (b) Orbital
magnetic moment as function of θ for Fe2W. (c) Change in energy
versus change in orbital moment as θ is varied from 0 to π/2.

are much smaller, by nearly three orders of magnitude, than
the variations seen in Fig. 4(a). It is difficult to say whether the
deviations between the computed points and the fitted lines are
mainly due to limitations in the numerical accuracy or because
of neglecting higher-order terms.

Figure 5 shows how the orbital magnetic moments vary
with magnetization direction for Fe2Ta (a) and Fe2W (b). In
both materials the greatest contribution to the orbital moment
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anisotropy is due to the Fe1 atom. The Fe2 and Fe3 atoms
have identical orbital magnetic moments at θ = 0, as expected
from symmetry, while they deviate from one another at other
directions. The compounds differ in the sign of the variation of
the orbital magnetic moment with θ , although they both have
the same sign of K1 + K2. In Fig. 5(c), which shows a plot
of the energy as function of θ vs the anisotropy in total orbital
magnetic moment as function of θ , this appears as a difference
in the sign of the slope of the curves. As was previously
mentioned, this can be understood in terms of the DOS(EF)
which is mainly due to the majority spin channel in Fe2W and
mainly due to the minority spin channel for Fe2Ta. According
to the work of Bruno [28], this should lead to approximate
proportionality between �mL(θ ) and E(θ ), but with opposite
signs in the proportionality constants. However, that was based
on second-order perturbation theory, and as was seen above,
fourth-order perturbation theory is expected to be necessary
for a quantitative description of the magnetic anisotropy in
these materials, especially in Fe2Ta. Figure 5(c) also shows
a linear fit to the curves for E(θ ) vs �mL(θ ). For Fe2W, the
linear fit provides a reasonable description of the curve, while
in Fe2Ta the deviation from linearity is more pronounced.
This might largely be because of strong spin polarization of
the DOS at EF for Fe2W, which makes the approximation that
only spin diagonal SOC contributes to the magnetic anisotropy
more realistic. Although the DOS(EF) in Fe2Ta is dominated
by minority spin states, the contribution from the majority
spin channel is significant, whereby neglecting spin-off diag-
onal contributions is questionable. Furthermore, the stronger
contribution from the 5d states could also affect the relation
between MAE and orbital moment anisotropy in that direction,
consistent with previous observations [29] of nonproportional-
ity between orbital magnetic moment and anisotropy in energy
systems with significant 3d-5d hybridization.

IV. RESULTS: Fe2Ta1−xWx

As the MAE depends sensitively on the band structure
around the Fermi energy, it can be controlled by tuning the
band structure around the Fermi energy. In practice this can
be done, for example, by alloying. This will be explored next
by considering the alloy Fe2Ta1−xWx . Reports regarding the
stability of the alloy Fe2Ta1−xWx appear to be absent in the
literature and a thorough investigation into the phase stability is
beyond the scope of the current work. However, the existence
of both end compounds indicates that it is not unreasonable
to expect also the alloy to form for at least some range of x.
A computational study of the properties of the alloy indicates
whether efforts to synthesize the material is worthwhile and,
furthermore, can shed light on similarities and differences
between Fe2Ta and Fe2W.

Due to the complicated electronic structure, which was
illustrated in Figs. 2(g) and 3(g), it is difficult to predict
the effect of alloying on properties such as the MAE without
explicitly doing calculations to evaluate the properties. For the
system studied here it is also of interest to investigate where
the transition from ferro- to ferrimagnetism occurs. The virtual
crystal approximation [34] (VCA), in which the alloyed atoms
are exchanged for virtual atoms with noninteger effective
atomic numbers, Z, which on average have the right ionic

charge and number of electrons for a given alloy concentration,
will be used to treat the disorder. The VCA, although simple
compared to more sophisticated single site approximations,
such as the coherent potential approximation (CPA), often
provides a good average description for properties such as
magnetic moments [3,35–37], especially for neighbors in the
periodic table and small alloy concentrations [34]. For delicate
properties, like the MAE, on the other hand, the VCA has often
been seen to result in quantitative discrepancies compared to
CPA calculations [37,38], supercell calculations [39,40], or
experiments [37,41,42]. Nevertheless, one should still be able
to observe correct qualitative trends in the MAE from the
VCA and it will be applied also for this property. Additionally,
the discrepancies in the MAE observed when comparing the
VCA with more sophisticated methods, mentioned above,
were found in cases where magnetic elements, such as Fe and
Co, were alloyed with each other. Here, alloying is considered
between the nonmagnetic constituents Ta and W, whereby one
might expect better performance from the VCA when studying
magnetic properties.

Calculations were performed for values of x in increments
of 0.1. A calculation for x = 0.1 revealed that this is enough
for the magnetic ordering to transition into the ferrimagnetic
ordering observed also for Fe2W. A complete structural relax-
ation, using spin polarized calculations neglecting SOC, was
thus performed for x = 0.1. The resulting lattice parameters
are a = 4.771 Å and c = 7.847 Å. Lattice parameters for
0.2 � x � 0.9 were calculated by linear interpolation between
the values obtained for x = 0.1 and x = 1.0. Calculations
including SOC were then performed for the whole range
of alloys and the resulting spin magnetic moments (for
magnetization along the c axis) and MAEs are presented in
Fig. 6. A large decrease in total spin magnetic moment is seen
when going from x = 0 to x = 0.1, due to the change in sign
of the Fe1 spin moment, but also because of an accompanying
reduction in size of the Fe2 moment. For x greater than 0.1, the
total spin magnetic moment monotonically increases until x =
1.0. This appears to be from a combination of a decrease in size
of the Fe1 moment and an increase in size of the Fe2 moment.
The MAE decreases with x until it reaches a minimum at
x = 0.5 and then increases until x = 1.0. Hence, the largest
positive values of the MAE are obtained for the end compounds
and it cannot be increased by the alloying considered here. A
negative in-plane anisotropy of very large magnitude is seen
for x = 0.5. However, it is important to remember that the
VCA has often been seen to overestimate the magnitude of the
MAE, whereby the real value might be of smaller magnitude.

Due to limitations in the VCA, it is desirable to compare the
MAE calculations with a more realistic model of disorder, such
as supercell calculations. Unfortunately, a realistic description
of a delicate property, such as the MAE, is computationally
very demanding. Not only must one use large supercells with
broken symmetry in combination with accurate Brillouinzone
integration, but averaging over several of these supercells is
necessary [40,43]. Even if using so-called special quasirandom
structures [44], such an averaging is necessary for an adequate
description of the MAE [45]. Thus, a complete study using
such methods becomes prohibitively expensive and is beyond
the scope of the current work. Nevertheless, to obtain a
comparison with the VCA results, the case of x = 0.25 has
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FIG. 6. (a) Spin magnetic moments and (b) MAE (computed
as total-energy differences for magnetizations along 100 and 001
directions) as functions of x in Fe2Ta1−xWx .

been studied by replacing one of the four equivalent Ta atoms in
a unit cell by a W atom. Calculations were first performed using
the structural parameters obtained by linear interpolation be-
tween those of x = 0.1 and x = 1.0, and then by optimizing the
lattice parameters and relaxing the internal atomic positions for
the supercell. The structural optimization resulted in a slightly
smaller lattice parameter of a = 4.728 Å and c = 7.785 Å,
compared to the interpolated values of a = 4.755 Å and
c = 7.834 Å. The computed magnetic moments and MAEs
are included in Fig. 6. The magnetic moments of Fe1 and
Fe2 are antiparallel in agreement with the VCA calculations.
The total magnetic moment is nearly identical for the two
supercell calculations and both values agree well with that
from the VCA calculation, as expected. Direct comparison of
individual moments is complicated by the symmetry breaking
in the supercell which results in a larger number of different
magnetic moments. The individual magnetic moments tend
to be slightly larger for the interpolated structure than the
relaxed structure, consistent with the somewhat larger unit-cell
volume, which tends to allow larger magnetic moments to
form. However, cancellation between the negative magnetic
moments on Fe1 sites and positive magnetic moments on
Fe2 sites results in merely a small difference of 0.03μB in the
total magnetic moment per unit cell. The magnetic moments
in units of Bohr magnetons for each atom in the unit cell of
the relaxed structure are shown in Fig. 7. The small variations

FIG. 7. Structure with three Ta atoms and one W atom. Numbers
indicate the magnetic moments on the atoms in units of Bohr
magnetons.

in magnetic moments between different Fe1 sites, different
Fe2 sites, or different Ta and the W sites is an effect beyond
what can be described within the single-site approximations,
such as the VCA or CPA. From the data in Fig. 7, one can
observe that magnetic moments on Fe atoms near W tend to
be larger than those on Fe atoms near Ta.

Regarding the MAE, the values obtained for the re-
laxed and interpolated structures are −4.6 meV/u.c. and
−5.5 meV/u.c., respectively. That is significantly larger in
magnitude than the value of approximately −2 meV/u.c.
expected from the VCA according to Fig. 6. Nevertheless,
the VCA and supercell calculations agree in the sign change
of the MAE in going from x = 0 to x = 0.25. From the
currently available data it is not possible to say how much
of the discrepancy is due to insufficiency of the VCA and how
much is due to considering only one supercell of limited size.

V. CONCLUSIONS

A comprehensive computational study has been performed
for the hexagonal Laves phase compounds Fe2Ta and Fe2W,
with focus on the important intrinsic magnetic properties
saturation magnetization and MAE. For Fe2W, a ferrimagnetic
ground state has been suggested, different from that found in
earlier computational work [14]. In the case of Fe2Ta, a similar
magnetic ordering is found as in preceding calculations [14],
but an opposite sign is found in the MAE. The discrepancies
in comparison with earlier calculations calls for further
experimental efforts to unambiguously determine the magnetic
properties of these compounds.

The MAE has been carefully analyzed in terms of the
electronic structure and by using the magnetic force theorem to
compute k-point resolved contributions to the MAE. Because
the density of states at the Fermi energy is dominated by
3d states, 5d states can only contribute notably to the MAE in
small regions of the Brillouin zone. Nevertheless, it is found
that the MAE originates mainly from regions in the Brillouin
zone where there is a strong 3d-5d hybridization, allowing the
strong SOC of the 5d atoms to increase the MAE.

The main motivation to study uniaxial 3d-5d compounds is
the possibility to have a very large MAE, such as the value of

064422-10



MAGNETOCRYSTALLINE ANISOTROPY OF LAVES PHASE . . . PHYSICAL REVIEW B 96, 064422 (2017)

6.6 MJ/m3 [4] observed in FePt. When a significant amount of
magnetic 3d elements is included, this can be combined with
large saturation magnetization and a high Curie temperature.
Among the compounds studied here, the MAEs calculated are
modest compared to that of FePt. In addition, for Fe2W, a
ferrimagnetic ordering is found, resulting in a low saturation
magnetization. Nevertheless, whether a material is useful for a
given application depends on a combination of the mentioned
intrinsic parameters. For example, in the context of permanent
magnets, the hardness parameter

κ =
√

K

μ0M2
, (6)

with MAE K and saturation magnetization M , can be used
to determine whether a material has the potential to exhibit
a reasonable coercive field and be used as a permanent
magnet [4,5]. κ is required to be greater than unity but the
microstructural engineering to obtain the desired properties
of a permanent magnet should be easier with larger κ and
Hirosawa [5] suggested κ > 1.4 to be demanded from potential
permanent magnet materials. For the materials studied here
one finds κ = 1.8 for Fe2Ta and κ = 2.9 for Fe2W, from the
data in Table II, well above the requirement put forward by
Hirosawa. These large values of κ appear largely because of the
modest saturation magnetizations and the energy product of a
permanent magnet will be limited by this. In both materials the
saturation magnetization is below the value of μ0Ms = 1.6 T
[4] found in the powerful Nd2Fe14B magnet. However, at
least in Fe2Ta the saturation magnetization is greater than
0.48 T seen in BaFe12O19 ferrite magnets, potentially making

the compound technologically interesting as an intermediate
alternative between rare-earth and ferrite magnets.

Experimental work has reported a Curie temperature of
550 K in Fe2W [15], which should be sufficient for many
technological applications. As a useful extension of the
current work, it would be interesting to compute the Curie
temperatures of Fe2W and Fe2Ta, e.g., by calculating the
Heisenberg exchange parameters from first principles and
using these as input to the mean-field approximation or Monte
Carlo simulations. This would reveal whether Fe2Ta also
has a high enough Curie temperature to be technologically
interesting and might also shed further light on the issue
regarding the magnetic ordering of Fe2W.

To investigate the possibility of enhancing the relevant
properties, alloying of W and Ta has been considered in
calculations for Fe2Ta1−xWx , with the disorder treated in the
virtual crystal approximation. These calculations indicate that
the transition from ferro- to ferrimagnetic ordering occurs for
x smaller than 0.1 and that the MAE is significantly reduced
and mainly strongly negative in the alloy. For technological
purposes this does not appear promising. However, there
are various isostructural 3d-5d compounds, such as Mn2Ta,
Co2Ta, or Fe2Hf [17,46], and one might also consider alloys
among these. Allowing for 3d or 4d atoms to substitute the
5d atom gives further possibilities [46]. As a next step, it
should be worthwhile to investigate ternary or quaternary
phase diagrams for magnetic 3d elements combined with
5d and other elements in uniaxial crystals. Numerous such
phases which have not been properly characterized in terms of
magnetic properties should exist and the type of computational
methods used in this work should be of great value in
identifying interesting materials.

TABLE IV. Matrix elements 〈σi,di | l̂ · ŝ |σj ,dj 〉 of the spin-orbit coupling operator with respect to spin states in direction n̂ =
(sin θ cos φ, sin θ sin φ, cos θ ) and d orbitals, in units of h̄2. Reproduced from Ref. [47].

|↑,dxy〉 |↑,dyz〉 |↑,dz2 〉 |↑,dxz〉 |↑,dx2−y2 〉
〈↑,dxy | 0 1

2 i sin θ sin φ 0 − 1
2 i sin θ cos φ i cos θ

〈↑,dyz| - 1
2 i sin θ sin φ 0 −

√
3

2 i sin θ cos φ i
2 cos θ −i

2 sin θ cos φ

〈↑,dz2 | 0
√

3
2 i sin θ cos φ 0 −

√
3

2 i sin θ sin φ 0

〈↑,dxz| 1
2 i sin θ cos φ − i

2 cos θ
√

3
2 i sin θ sin φ 0 − 1

2 i sin θ sin φ

〈↑,dx2−y2 | − i cos θ −i
2 sin θ cos φ 0 1

2 i sin θ sin φ 0
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− 1

2 (cos φ

− i cos θ sin φ)
0

− 1
2 (sin φ

+ i cos θ cos φ)
−i sin θ

〈↓,dyz|
1
2 (cos φ

− i cos θ sin φ)
0

−
√

3
2 (sin φ

+ i cos θ cos φ)
− i

2 sin θ
− 1

2 (sin φ

+ i cos θ cos φ)

〈↓,dz2 | 0

√
3

2 (sin φ

+ i cos θ cos φ)
0

√
3

2 (cos φ

− i cos θ sin φ)
0

〈↓,dxz|
1
2 (sin φ

+ i cos θ cos φ)
i
2 sin θ

−
√

3
2 (cos φ

− i cos θ sin φ)
0

1
2 (cos φ

− i cos θ sin φ)

〈↓,dx2−y2 | i sin θ
− 1

2 (sin φ
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− 1
2 (cos φ

− i cos θ sin φ)
0
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APPENDIX: MATRIX ELEMENTS OF THE
SPIN-ORBIT OPERATOR

If |i〉 is a single-particle eigenstate to an unperturbed
Hamiltonian with no SOC, the total shift in the energy Ei

due to HSOC = ξ l̂ · ŝ in second-order perturbation theory is

�Ei = −ξ 2
∑
j �=i

|〈n|l̂ · ŝ|k〉|2
Ej − Ei

. (A1)

If the unperturbed Hamiltonian commutes with the spin
operator, |i〉 has a well defined spin σi but can be considered
a superposition of different orbitals μ so in the simplest case

(ignoring other quantum numbers, e.g., k)

|i〉 =
∑

μ

ci,μ |μ,σi〉 . (A2)

For d-electron magnetism, which is of focus here, it is suitable
to consider μ as dz2 , dxz, dyz, dxy or dx2−y2 . The numerator in
Eq. (A1) then contains matrix elements 〈di,σi | l · s |dj ,σj 〉,
which determine the effect of the SOC. For convenience
these matrix elements are explicitly listed in Table IV, with
θ and φ denoting the polar and azimuthal angles of the spin
quantization axis relative to the crystal lattice.

As mentioned in the main text, only coupling between states
|i〉 and |j 〉 with energies Ei and Ej such that Ei < EF <

Ej will contribute to the MAE and clearly then �Ei � 0
according to Eq. (A1). In terms of the matrix elements
in Table IV this means that any coupling containing cos θ

will lower the energy for θ = 0, i.e., favoring a uniaxial
magnetization (positive MAE), while sin θ lowers the energy
for θ = π/2 which favors in-plane magnetization (negative
MAE). The situation taking into account multiple atomic types
and hybridization in Eq. (2) is somewhat more complicated and
contains a product of matrix elements for possibly different
atomic types. Nevertheless, the MAE is still determined by the
matrix elements in Table IV.
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