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The nonplanar sample surface is a crucial feature that must be taken into account for a good interpretation of
magneto-optical observations of magnetic cylindrical microwires. This is due to the fact that a curved topography
gives rise to a spatial distribution of local planes of incidence as a function of position on the circumference
of a cylinder. Analytical calculations of the magnetic contrast of magnetic cylinders spontaneously magnetized
in the axial direction reveal that an axial magnetization reversal produces a characteristic black-and-white
magneto-optical contrast and that it does not correspond to two oppositely magnetized domains, as would be
concluded in the case of planar samples. Optical and magneto-optical observations of thin cylindrical FeSiB
wires support this model. Calculations are also performed for the cases of circular and polar magnetizations.
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I. INTRODUCTION

A reliable determination of the surface magnetization on
samples with curved topography is necessary for proposed
spintronic devices utilizing three-dimensional structures [1]
that are supposed to substitute current laterally patterned
nanomagnets [2,3]. While several experimental techniques
allow for very controllable deposition of magnetic structures
with complex geometries at the nano- and microscales [4],
a reliable characterization of the surface magnetization by
conventional experimental techniques usually meets several
obstacles in the case of samples with a curved surface. The
magneto-optical Kerr effect (MOKE) is widely employed
in research and industrial applications to study the surface
magnetization of materials since in a first-order approximation
the MOKE signal is proportional to the magnetization of the
studied material. While MOKE is widely used to investigate
surface magnetism of planar samples like thin multilayered
films [5] or planar nanowires [6], it was only recently demon-
strated that the curved topography of samples is responsible for
peculiar magneto-optical contrasts, which cannot be explained
well within the simple planar surface approximation [7,8].
The thorough understanding of these contrasts is particularly
important as domain walls in cylindrical ferromagnets are
predicted to be massless objects and potentially break the
Walker limit [9]. Extremely fast domain wall propagation
has been reported [10,11] in thin magnetic cylinders with
a diameter of 10–100 μm. It was shown that fast domain
wall motion in this material can be tuned by mechanical
stress [12,13], temperature [14,15], or perpendicular field
[16] even though the exact spin structure of the domain
wall in the material is not clear. It is evident that a key
prerequisite for understanding the fast reversal is detailed
knowledge of surface magnetization processes. Several optical
and magneto-optical studies have been devoted to nonplanar
samples like corrugated surfaces [17] and thin cylindrical wires
with negative magnetostriction [18–22], in which a typical
bamboo domain structure was found. However, most such
studies so far have been based on the assumption that the
cylindrical shape of the wire can be neglected, approximating
it by a planar sample.

In this paper, we perform an analytical calculation of the
magneto-optic contrast of ferromagnetic cylinders. The calcu-
lation is carried out within a physical-optics approximation for
cylinders with a large diameter (compared to the wavelength
of light), where diffraction effects can be neglected. It is
shown that the curvature of the sample surface is a crucial
factor that must be taken into account in the interpretation of
magneto-optical observations of thin cylinders. This paper is
organized in the following manner. First, the role of topography
is examined for reflection of linearly polarized light from a
cylindrical surface. Within the physical-optics approximation,
it is recalled that the cylindrical shape of wires gives rise
to a spatially dependent orientation of the local planes of
incidence. If the cylinder is observed along its main axis
by linearly polarized light, the polarization of each ray can
be decomposed into two components of local polarization
oriented perpendicular and parallel to the local plane of
incidence. Since both of these local polarization components
experience different reflection coefficients, the polarization
of the reflected ray is changed, which, in turn, gives rise to
a characteristic light intensity profile consisting of two light
stripes when observed by a microscope with a crossed polarizer
and analyzer. In the second part, a full analytic calculation of
magneto-optical contrast for the spontaneously magnetized
cylinder with axial, circular, and polar magnetizations is
presented. It is shown that each of these surface magnetization
directions gives a characteristic magneto-optical contrast.
While the axial change of the surface magnetization produces
in MOKE microscopy two black and white stripes oriented
along the main axis of the cylinder, in the case of circular
magnetization, the two stripes of magnetic contrast are of
the same polarity. Our theoretical results are compared to
experimental observations. The magneto-optics of cylinders
is a first step towards the generalization of MOKE microscopy
to nonplanar samples in the optical range with more complex
geometries.

II. EXPERIMENT

The magneto-optical observations are performed on cylin-
drical wires produced with the Taylor-Ulitovski method [23].
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This fabrication process involving drawing and rapid quench-
ing ensures a cylindrical sample shape [24] with a well-defined
diameter of the metallic core, which is desirable for the study.
In our case, a 2-cm-long Fe77.5Si7.5B15 sample has been used
for the observations. This composition is characterized by a
high iron content, which gives rise to a strong magneto-optical
effect [25]. The sample had a total diameter (metallic core plus
glass thickness) of 33 μm, with a metallic core diameter of
15 μm. Microwires of such diameter and glass thickness have
been studied previously [26] because of their observed high
domain wall velocities.

The magneto-optical observation was carried out on a
commercial EVICO Imager.D2m Zeiss polarizing microscope
[22]. The microscope uses Köhler illumination that gives
separate access to the back focal plane and the object plane.
The direction of the incident light beam can be varied by
the position of an aperture diaphragm relative to optical axis,
which allows us to set up all configurations of MOKE.

The maximum angle of incidence was increased by use
of Zeiss 518C immersion oil that was applied between the
objective and sample. The refraction index of immersion
oil (noil = 1.518 at 23 ◦C) is very close to that of glass,
which helps remove parasitic optical effects of the glass
coating (like multiple internal reflections or reflectivity at the
air-glass interface). Images were captured by a high-resolution
Hamamatsu ORCA-03G digital camera.

III. RESULTS: PHYSICAL-OPTICS CALCULATIONS
AND COMPARISON TO EXPERIMENTS

In MOKE microscopy, the magnetic contrast is based on
the change in light intensity that stems from interaction of
linearly polarized light with surface magnetization. Thus,
we start in this section with basic geometric calculations
revealing the interplay between linear polarization of light and
reflection from a cylindrical sample (optics), which will be
used to evaluate magneto-optical effects. As noted above, the
calculation is carried out for cylindrical microwires, so that
diffraction effects can be neglected, and the physical optics
approximation is justified. Although this physics is well known
(see [27], for example), the magnetic case is less known, and
the magnetic cylinder geometry has not been treated, so we
quickly derive the necessary formulas.

A. Role of the cylindrical geometry of sample

Let x be the axis of the cylinder and z be the vertical
direction. If the cylinder is illuminated along its main axis
by an incident light beam consisting of parallel rays (e.g., a
laser beam), the optical geometry can be described by two
parameters in a cylindrical coordinate system. The first is the
radial angle θ , which defines the position on the cylinder’s
surface (Fig. 1) by the local normal �n:

�n =

⎛
⎜⎝

0

sin θ

cos θ

⎞
⎟⎠. (1)

This vector is vertical at the cylinder top (θ = 0) and horizontal
for θ= π/2 (Fig. 1, right). The second parameter is the global
angle of incidence I , formed between the normal at the

FIG. 1. Schematic of the main parameters used: �I is the direction
of the incident beam with global angle of incidence I , θ is the
circumferential angle defining a position on the cylinder surface, �n is
the local normal to the cylinder, i(θ ) is the local angle of incidence,
and �r is the direction of the local reflected ray.

cylinder’s top and the direction of the incident beam. It defines
the vector of incidence �I :

�I =

⎛
⎜⎝

sin I

0

− cos I

⎞
⎟⎠, (2)

which is constant for all rays of the incident beam (Fig. 1).
In accord with the law of reflection, the emerging rays have

a direction given by the vector �r:

�r(θ,I ) =

⎛
⎜⎝

sin I

sin 2θ cos I

cos 2θ cos I

⎞
⎟⎠. (3)

In contrast to the incident beam, the direction of the reflected
rays is a function of both the global angle of incidence I

and the radial angle θ . It means that for any given value of
the global angle of incidence, the direction of the reflected
ray depends on the circumferential position on the cylindrical
surface. Even though the sample is illuminated by a beam
consisting of parallel rays, they are no longer parallel after
reflection from the cylindrical surface but form a diverging
beam that appears in experiment as an asymmetric light cone
with an elliptical base, whose main axis is along z (Fig. 1).
Such a divergence of the reflected rays is a direct consequence
of the nonplanar shape of the cylindrical surface.

As seen from Eqs. (1) and (2), the local angle of incidence
i(θ ) changes with the circumferential angle θ according to

cos[i(θ )] = −�I · �n = cos I cos θ,

sin[i(θ )] =
√

1 − cos2Icos2θ =
√

sin2θ + sin2Icos2θ

=
√

sin2I + sin2θcos2I . (4)

Figure 2 plots the circumferential dependence of the local
angle of incidence for different global angles of incidence.
Independent of the value of the global angle of incidence, the
minimum local angle of incidence is always achieved at the
top of cylinder (θ = 0◦), where the local angle of incidence is
equal to the global angle of incidence. As the θ angle increases,
the angle of incidence becomes bigger than the global angle
of incidence and reaches its maximum of 90◦ at θ = 90◦,
independent of the value of the global angle of incidence I .
This variation of the angle of incidence will be shown to be
important for the resulting magneto-optical contrast.
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FIG. 2. Calculated local angle of incidence as a function of
circumferential position on the cylinder surface given by the angle θ

for different values of the global angle of incidence I . Dashed vertical
lines depict the maximum angle (±45◦) that can be observed in the
microscope.

The circumferential dependence of the angle of incidence
that can be observed is limited by the numerical aperture of the
objective. Defining a local numerical aperture na [θ,I ] as the
sine of the angle between the vertical and the locally reflected
ray, we obtain from Eq. (3)

na [θ,I ] =
√

sin2I + sin22θ cos2I . (5)

Figure 3 shows how the local numerical aperture depends on its
two variables. The shape of the curve can be explained by the
variation of the z component of the reflectance vector, Eq. (3).

FIG. 3. Calculated local numerical aperture as a function of angle
θ . Independent of the value of the global angle of incidence I , the
local numerical aperture reaches a maximum value (1) at θ = 45◦.
At this angle, rays are reflected into the xy horizontal plane. The
numerical aperture of the objective lens is depicted by a horizontal
thin line and sets the maximum interval of the microwire surface
(−30◦ < θ < 30◦) that can be observed with this objective lens.

FIG. 4. Reflection from a cylindrical surface causing an inclina-
tion of the planes of incidence. For each position on the cylinder
surface (angle θ ), the y abscissa at x = 0 is the vertical projection of
this point on the top xy plane, i.e.,y/R(x = 0) = sin θ , in order to
separate the various families of lines.

For θ < 45◦, this component is always positive, which means
that the reflected ray points towards the upper half-space of
the incident rays. Increasing the angle θ leads to a progressive
tilting of the reflected ray towards the xy plane, which is
fully achieved at θ = 45◦. The numerical aperture reaches its
maximum at this angle, independent of the global angle of
incidence I (Fig. 3). For θ > 45◦ and θ < −45◦, the rays are
reflected below the xy plane (towards the –z axis). Therefore,
only the surface of the cylinder with −45◦ < θ < 45◦ can
be observed by optical microscopy, even if an objective of
maximum numerical aperture is used.

In addition to the varying angle of incidence and numerical
aperture, the cylindrical shape of the surface affects the
geometry of the planes of incidence as well. Due to the θ

dependence of the normal, Eq. (1), the planes of incidence
are not parallel to each other but show an inclination with
respect to the wire axis. Figure 4 draws the lines formed by
the intersection of the planes of incidence with the horizontal
plane. A simple calculation from Eqs. (1) and (2) shows that
the inclination angle α of the lines with respect to the x axis
obeys tan α = tan θ/ tan I .

The spatially dependent orientation of the planes of in-
cidence has an important impact on optical magnetometric
measurements, where a linearly polarized light with a crossed
analyzer is used. Even though the cylinder is illuminated by
a global “s” or “p” linearly polarized light (with respect to
the plane of incidence at θ = 0◦), the mutual orientation of
the oscillating electric vector (which defines the direction of
linear polarization) and the plane of incidence is not the same
for each plane of incidence. Thus, in the following we consider
(i) the component of the oscillating electric vector parallel to
the (local) plane of incidence (local p polarization) and (ii) the
component of the oscillating electric vector perpendicular to
the local plane of incidence (local s polarization). Both arise as
a result of the particular shape of the sample, while the global
polarization of the light is determined by the experimental
conditions.

From Eqs. (1)–(3), the (normalized) vector perpendicular
to the local plane of incidence (local s polarization), along
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�n × �I , reads

�s = 1

sin [i(θ )]

⎛
⎜⎝

− sin θ cos I

cos θ sin I

− sin θ sin I

⎞
⎟⎠, (6)

whereas the vector parallel to the plane of incidence (local p

polarization) is along �I × �s,

�p = 1

sin [i(θ )]

⎛
⎜⎝

cos θ sin I cos I

sin θ

cos θsin2I

⎞
⎟⎠. (7)

If the cylinder is illuminated by a globally P polarized light
(we denote by uppercase letters the global polarizations and
by lowercase letters the local ones), the corresponding electric
vector decomposes on the local s and local p polarizations as

�P =

⎛
⎜⎝

cos I

0

sin I

⎞
⎟⎠ = − sin θ�s + cos θsinI �p

sin [i(θ )]
. (8)

For an S-polarized light beam, one gets similarly

�S =

⎛
⎜⎝

0

1

0

⎞
⎟⎠ = cos θ sin I �s + sinθ �p

sin [i(θ )]
. (9)

As seen in Eq. (9), for a globally S polarized incident light,
the oscillating electric field intensity vector is perpendicular
to the plane of incidence only at the top of wire (θ = 0◦). In
turn, the polarization of rays contains both s and p components
[Eq. (9)] for θ > 0◦ and θ < 0◦. The situation is qualitatively
the same for globally P polarized light that conserves its p

polarization at the top of the wire, θ = 0◦ (and at the wire’s
edge, θ = 90◦). The local polarization of globally p polarized
light is neither p nor s as soon as θ differs from 0◦ (and 90◦).

Once we parameterize the cylindrical geometry of the
sample and local polarization of the incident light, we can
proceed with the calculation of reflectivity. The general
description of the magneto-optical properties in the physical-
optics approximation is given by the Fresnel coefficients of
reflection. In the first-order approximation of the magneto-
optical effects and for a single air-magnetic-medium interface,
the reflection coefficients for every combination of incident
and reflected polarizations (s and p) are [28]

Rss = cos i − n̂ cos t

n̂ cos t + cos i
, (10)

Rsp = −jQ̂ sin (2i) ml

2 cos t(n̂ cos t + cos i)(cos t + n̂ cos i)
, (11)

Rpp = cos t − n̂ cos i

cos t + n̂ cos i
+ jQ̂sin(2i)

( cos t + n̂ cos i)2 mt, (12)

Rps = Rsp. (13)

In these formulas, n̂ is the complex index of refraction of the
metal (divided by the index of oil/glass in case of immersion),

i and t are the angles of incidence and transmission of
the ray with respect to the interface normal (linked by the
relation sin i = n̂ sin t , so that sin t and cos t are complex;
note that we use j 2 = −1 to avoid ambiguities), ml and mt

are the longitudinal and transverse components of surface
magnetization (with respect to the plane of incidence), and
Q̂ is the complex Voigt magneto-optical parameter. The case
of polar magnetization is treated separately at the end. In all
calculations shown below, the optical parameters of iron at a
wavelength of 550 nm were used: n̂ = 2.95 − 2.93j , and for
the Voigt parameter we took Q̂ = 0.042 − 0.119j [28].

B. Reflection from a nonmagnetic cylinder

In the first step, we consider a nonmagnetic cylinder, so that
the Voigt parameter Q is zero and off-diagonal components

Rsp and Rps of the local reflection matrix
↔
R are zero as well.

The amplitude of the light transmitted for an analyzer crossed
by the polarizer is defined as a scalar product (for S-polarized
incident light),

ASP = �P · (
↔
R �S), (14)

and vice versa for P -polarized incident light, where
↔
R denotes

the reflection matrix which consists of Fresnel coefficients
from Eqs. (10)–(13). The corresponding circumferential de-
pendence of reflectivity for a crossed polarizer and analyzer is
obtained from Eqs. (8), (9), and (14),

APS = ASP = sin θ cos θ sin I

sin2θ + cos2θsin2I
(Rpp − Rss). (15)

On the other hand, the reflectivity without the analyzer (and
for S polarization of incident light) is obtained through

↔
R �S = cos θ sin IRSS�s + RPP sin θ �p√

sin2θ + cos2θsin2I
, (16)

and hence the intensity is

IS = |
↔
R �S|2 = |Rpp|2sin2θ + |Rss |2cos2θsin2I

sin2θ + cos2θsin2I
. (17)

The circumferential dependences of reflectivity without ana-
lyzer and with a crossed polarizer and analyzer are compared
in Figs. 5(a) and 5(b), respectively. The maximal reflectivity
is achieved at the top of the cylinder (angle θ = 0◦) for the
case without an analyzer [Fig. 5(a)]. As seen, the reflectivity
decreases progressively from the cylinder top on both sides
and drops to zero at θ = 90◦ and θ = −90◦, where rays are no
longer reflected.

The circumferential dependence of the reflectivity without
an analyzer is qualitatively the same for any global incident
angle I, and it has the same dependence for both S and P linear
polarizations of the incident light.

However, if an analyzer crossed with a polarizer is inserted,
the reflected light intensity profile changes drastically. As seen
in Fig. 5(b), the profile consists of two maxima separated by
a minimum at θ = 0◦ in this case. The light intensity profile
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FIG. 5. (a) Calculated circumferential dependence of reflectivity for the nonmagnetic iron cylindrical surface without an analyzer and
S-polarized incident light. (b) Light intensity transmitted through the crossed polarizer and analyzers when reflected from cylindrical surface.
The right axis shows the corresponding decrossing angles. In both plots, dashed vertical lines depict the maximum angle (±45◦) that can be
observed with the microscope.

can be understood by the rotation of the plane of polarization
when reflected from the cylindrical surface. As noted above,
the polarization of each ray can be decomposed into two
components of local polarizations with perpendicular and
parallel orientation with respect to the local plane of incidence
at θ > 0◦ and θ < 0◦. Since both of these components have
different reflection coefficients [Eqs. (10) and (13)], the
polarization direction changes with reflection. Such rotation
of light polarization is not related to the interaction with
surface magnetization (like MOKE) but stems purely from
the composite nature of local polarization. The effect of mixed
p and s polarization on resulting magneto-optical contrast
was previously observed in diffracted beams from a periodic
array of thin deposited disks [29] and plasmonic crystals [30].
However, in the case of magnetic cylinders, such an effect
stems from the curved topography of cylindrical samples. As

seen in Fig. 5(b), the equivalent value of the polarization
rotation is much bigger (2◦−8◦) than typical values of Kerr
rotation, obscuring the magnetic contrast. Thus, the cylindrical
shape of the sample is an important factor that must be taken
into account to interpret magneto-optical observations. As
seen in Fig. 5, the relative change in reflectivity increases
remarkably with the global angle of incidence, but the angular
position of the maxima is more or less the same (θ = ±62◦,
beyond the observable range).

This analytical calculation of the circumferential depen-
dence of reflectivity is confirmed qualitatively by optical
observations of Fe77.5Si7.5B15 microwires. Figure 6 shows
that reflection of linearly polarized light without an analyzer
gives a single intensity maximum, while two intensity maxima
(two bright stripes) appear with a crossed polarizer and
analyzer, similar to the plot in Fig. 5. Since the highest

FIG. 6. The intensity profile of light reflected from cylindrical surface of Fe77.5Si7,5B15 amorphous glass-coated microwire for different
focusing depths of (a) 2, (b) 3, and (c) 4 μm below the top surface of the metallic nucleus. The left column shows the optical image of microwires
observed by P -polarized light, whereas the right column compares the images obtained with a crossed polarizer and analyzer. Graphs on the
right show the corresponding profiles when observed with a polarizer (black curve) and with a crossed polarizer and analyzer (red curve). The
scale of light intensity is very different between both cases. As seen in the left and right columns, the presence of two cylindrical surfaces
(glass coat and metallic core) results in two superimposed profiles from Fig. 5(a). All images are taken using immersion oil. (d) Theoretical
calculation of intensity for both cases (i) with a polarizer and analyzer and (ii) for only a polarizer.
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FIG. 7. Components of the local magnetization with respect to
the local plane of incidence: longitudinal (ml) and transverse (mt ) for
an axially magnetized cylinder. For a circularly magnetized cylinder,
these components are simply exchanged. Dashed vertical lines depict
the maximum angle (±45◦) that can be observed with the microscope.

intensity of reflected light without an analyzer is obtained at
the top of the wire (Fig. 6), the two light stripes observed
with crossed polarizer and analyzer (Fig. 6) cannot result
from imperfections of polarizers. The increasing separation
of the two stripes when focusing below the top surface is
qualitatively expected (points of the wire surface that come
into focus). For a quantitative comparison, a full calculation
of the microscope image would be required.

C. Reflection from a magnetic cylinder

A calculation of the magneto-optical contrast for all
orientations of incident light (including various polarizations)
and the direction of surface magnetization is beyond the scope
of this work. Here, we confine our calculation to three limiting
configurations: (i) spontaneous magnetization along the main
axis, (ii) circular surface magnetization, and (iii) polar surface
magnetization.

1. Axially magnetized cylinder

For an axially magnetized cylinder, the local magnetization
components (i.e., with respect to the local planes of incidence)
to be inserted in Eqs. (11) and (12) read, from Eqs. (6) and (7),

mt = �m · �s = − sin θ cos I/ sin [i(θ )],

ml = �m · (�s × �n) = sin I/ sin [i(θ )], (18)

with the polar component being zero. These formulas show
that, even if the surface magnetization is along the global
longitudinal direction, in the local plane of incidence it has a
transverse component mt that is odd in the angle θ [8] (Fig. 7).

The reflectivities are given by the Fresnel coefficients,
Eqs. (10)–(13) as before, but a nonzero Voigt constant must
be taken. Then, the off-diagonal components Rsp (and Rps) of

the reflection matrix
↔
R are not zero, and the circumferential

dependence of the light intensity after the crossed polarizer
and analyzer (along the principal directions S and P ) can be
evaluated from

ASP = APS = �P · (
↔
R �S) = sin θ cos θ sin I (Rpp − Rss) + (cos2θsin2I − sin2θ )Rsp

sin2θ + cos2θsin2I
. (19)

Plots of the intensity computed from Eq. (19) for both axial
directions of surface magnetization, + �MS and − �MS , are
compared in Fig. 8(a). As seen, due to the small value of
Q, the interaction of light with surface magnetization results
in very small changes in light intensity.

Our extended MOKE microscopy setup utilizes a differ-
ential imaging technique, in which the magnetic contrast is
visualized by subtraction of a background image (for example,
the sample before reversal) from the image of the sample after
reversal. The magnetic contrast corresponding to the axial
change in surface magnetization from + �MS to − �MS is then
given by

�ISP = |ASP (+MS)|2 − |ASP (−MS)|2. (20)

A plot of Eq. (20) is shown in Fig. 8(b). As seen, the axial
change in surface magnetization results in the appearance of
a black and white magneto-optic contrast that is largest for
I = 70◦. In the visible range, the contrast grows with both θ

and I .

These calculations can be compared to the observations
of the surface reversal process invoked by axial domain wall
propagation in a Fe77.5Si7.5B15 microwire. Such a composition
is characterized by a very thin shell of surface domains
(<10 nm) due to the high magnetostriction of the alloy [14].
Alternatively, the absence of the surface shell of the domain
would allow observation of the axial domain directly, which
could explain the black-and-white contrast observed in the
experiment [Fig. 9(a)]. Note that a small uncrossing of the
polarizer and analyzer leads to asymmetry in the heights
of intensity maxima (±2% of the crossed intensity for a 1◦
decrossing).

As seen in Fig. 9, the axial change in the magnetization
results in the black-and-white contrast, in agreement with the
model. Interestingly, such magnetic contrast is independent of
the direction of incident light (i.e., +I or −I ) [8], which can
be understood by the formulas given. Moreover, the magnetic
contrast appears to be determined by the sample shape
rather than by the configuration of the microscope (normal
incident light for the polar Kerr effect and inclined light for
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FIG. 8. (a) Calculation of the intensity profile of light reflected from a cylinder magnetized axially. (b) Change in the light intensity profile
that occurs by reversal of surface axial magnetization. In both plots, dashed vertical lines depict the maximum angle (±45◦) that can be observed
with the microscope.

the longitudinal Kerr effect with respect to the wire axis),
which confirms the important role of cylindrical geometry on
magneto-optical observations. We note that similar contrasts
were reported recently in another study [20,22].

As seen in Fig. 10, both longitudinal and transverse com-
ponents of the local magnetization contribute to a magnetic
contrast that is odd with angle θ . The longitudinal component

prevails for small values of angle θ . At higher angles, when
the effect of the longitudinal component changes its sign, it is
overcome by the transverse component with the same polarity
as the longitudinal one for small angles. Thus, their sum results
in uniform (and opposite) magnetic contrast for each side of
the cylinder. At small angles θ , the contrast is close to linear
[compare to Fig. 9(b)].

FIG. 9. (a) Magneto-optical contrast for an axial magnetization change in a Fe77.5Si7,5B15 microwire for various global angles of
incidence. (b) Light intensity for a positive axial magnetization +MS . (c) Scheme of the observations by illumination of the wire along
its main axis, with P polarization. Note that magneto-optical contrast decreases with the global angle of incidence, in agreement with
calculation in Fig. 8(b). (d) Calculation of magneto-optical contrast for an axially magnetized cylinder and for a crossed polarizer and
analyzer.
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FIG. 10. Two contributions to the overall magnetic contrast
(black curve) for the axially magnetized cylinder (change in ISP

compared to the nonmagnetic case). The contribution of the local
magnetization longitudinal (transverse) is marked in red (blue).
Dashed vertical lines depict the maximum angle (±45◦) that can
be observed with the microscope.

2. Circularly magnetized cylinder

For this case, we consider a surface magnetization that lies
in the yz plane and hence a local magnetization reading

�m =

⎛
⎜⎝

0

cos θ

− sin θ

⎞
⎟⎠. (21)

The components of the local magnetization with respect to
the local plane of incidence are, from Eqs. (1) and (6),

mt = �m · �s = sin I/ sin [i(θ )],

ml = �m · (�s × �n) = cos I sin θ/ sin [i(θ )]. (22)

Making a comparison to the axial case, Eq.(18), one sees
that the longitudinal and transverse components are simply
exchanged, so that the longitudinal component ml is now an
odd function of the angle θ . Note that, as magnetization is
tangent to the surface, the local polar component is still zero.

Inserting Eq. (22) into Eq. (19) and calculating the change
in the light intensity for both circulations of surface magneti-
zation, Eq. (20), one gets the light intensity profile plotted in
Fig. 11.

Contrary to the axial change in surface magnetization, the
circular one gives a magneto-optical contrast consisting of two
light stripes of the same polarity. Such a light intensity profile
can be understood by a dominant contribution of the local
transverse magnetization mt that is an even function of the
angle θ (Fig. 7). We note also that the contrast is about 5 times
larger than in the axial case. With uncrossing the polarizer
and analyzer by a small angle, the magneto-optical contrast
remains qualitatively the same.

As seen in Fig. 12, the longitudinal component of local
magnetization gives a negative contrast for small values of

FIG. 11. Calculated change in the light intensity profile that
occurs by reversal of surface circular magnetization for a crossed
polarizer and analyzer (along the principal S and P directions).
Dashed vertical lines depict the maximum angle (±45◦) that can
be observed with the microscope.

the angle θ ; however, it is always overcome by the magnetic
contrast coming from the local transverse magnetization.

3. Cylinder with polar magnetization

For surface magnetization spontaneously oriented in polar
direction, we write

�m =

⎛
⎜⎝

0

sin θ

cos θ

⎞
⎟⎠ (23)

In this case, the polar component �mp = �n, �m is one, in-plane
components of local magnetization zero, mt = ml = 0, and
corresponding Fresnel coefficients R⊥ for polar magnetization

FIG. 12. Calculation of the two contributions to the overall mag-
netic contrast for a circularly magnetized cylinder. The calculation is
obtained from Eqs. (22) and (10)–(14). Dashed vertical lines depict
the maximum angle (±45◦) that can be observed with the microscope.
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FIG. 13. (a) Calculation of the intensity profile of light reflected from a cylinder magnetized in the polar direction. (b) Change in the light
intensity profile that occurs by reversal of surface polar magnetization. In both plots, dashed vertical lines depict the maximum angle (±45◦)
that can be observed with the microscope.

mp can be read from [28] as

R⊥
ss = Rss, (24)

R⊥
pp = Rpp, (25)

R⊥
sp = ĵ Q̂n̂ cos imp

(n̂ cos i + cost)(n̂ cos t + cos i)
, (26)

R⊥
ps = −R⊥

sp. (27)

The light intensity profile for polar magnetization can be
obtained by inserting Fresnel coefficients (24)–(27) into (19)
[generalized for Rsp �= Rps] and utilizing (23). Figure 13
shows that a change in the polar magnetization generates black-
and-white contrast, similar to the case of axial magnetization.

For polar magnetization, the amplitude of the contrast
reaches up to 20 × 10−3, which is approximately 8 times
bigger than the contrast generated by axial magnetization
[Fig. 8(b)]. The simplest way to distinguish between axial
and polar surface magnetizations is to compare the resulting
magneto-optical contrast for two opposite global angles of
incidence. Figure 13(b) shows that by reversing the global
angle of incidence, the polarity of black-and-white contrast
is reversed too [see I = ±30◦ in Fig. 13(b)] in the case
of polar magnetization. On the other hand, the polarity of
black-and-white contrast does not depend on the sign of the
global angle of incidence for the axial change in the surface
magnetization [Fig. 8(b)]. The magneto-optical contrast of the
same polarity for both opposite global angles of incidence was
observed in FeSiB previously [8], which implies that surface
magnetization has an axial direction.

The black-and-white contrast is sometimes attributed to a
helical surface domain structure that is reversed by internal
domain wall propagation in the inner core of the wire [31].
However, our experiments with a domain wall trapped in a
potential well [8] show that even if the wall has opposite tilting
[Figs. 14(a) and 14(b)], the magneto-optical contrast remains
the same. This contradicts the helical structure hypothesis,
according to which domain walls at the surface should have a
tilt fixed by the helix.

IV. CONCLUSIONS

We have presented a comprehensive analysis of the
magneto-optical observations of ferromagnetic cylinders. This
framework will obviously not apply to nanowires that are
subwavelength in diameter, for which diffraction effects
appear. On the other hand, for large-diameter wires, it will
become appropriate to consider only the tangent plane at
the top of the wire’s surface. For the intermediate regime,
we have shown that the curvature of the cylindrical surface
gives rise to a circumferential dependence of reflectivity due
to variations in the angle of incidence, numerical aperture, and
spatial orientation of planes of incidence. When the cylinder is
illuminated along its main axis by linearly polarized light, the
axial change in surface magnetization results in the appearance
of a black-and-white contrast. This study shows the complexity
of the optical magnetic imaging of microwires, whose radius is
not very large compared to the wavelength of light. It is a first
step towards a full calculation of magneto-optical microscope
images in such samples.

FIG. 14. (a) and (b) Magneto-optical images of the domain wall in FeSiB microwire. (c) Corresponding optical image.
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