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Static spin susceptibility in magnetically ordered states
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We report that special care is needed when longitudinal magnetic susceptibility is computed in a magnetically
ordered phase, especially in metals. We demonstrate this by studying static susceptibility in both a ferromagnetic
and an antiferromagnetic state in the random phase approximation to the two-dimensional Hubbard model on
a square lattice. In contrast to the case in the disordered phase, a first derivative of the chemical potential (or
the density) with respect to a magnetic field does not vanish in a magnetically ordered phase when the field is
applied parallel to the magnetic moment. This effect is crucial and should be included when computing magnetic
susceptibility in the ordered phase, otherwise an unphysical result would be obtained. In addition, consequently
the magnetic susceptibility becomes different when computed at a fixed density and a fixed chemical potential
in the ordered phase. In particular, we cannot employ magnetic susceptibility at a fixed chemical potential to
describe a system with a fixed density even if the chemical potential is tuned to reproduce the correct density.
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I. INTRODUCTION

Spin susceptibility is a fundamental quantity to study the
magnetic property of a system, and it is often computed in
the so-called random phase approximation (RPA). While this
approximation is usually good enough for a three-dimensional
system, it may not be precise enough, especially in a two-
dimensional system. However, even in such a case, the
susceptibility computed in the RPA is believed to capture at
least qualitative properties of the system.

RPA susceptibility is frequently computed in a disordered
phase, but it can also be computed in a magnetically or-
dered phase [1,2]. Moreover, as actually observed in high-
temperature cuprates [3], iron-based pnictides and chalco-
genides [4], and heavy-fermion materials [5], the ordered
phase sometimes coexists with superconductivity. Even in
such a complicated situation, the RPA provides feasible
computations of magnetic susceptibility [6,7].

Typically, RPA susceptibility is obtained by connecting
a simple bubble (or ladder) of noninteracting particle-hole
excitations with the electron-electron interaction, that is, its
functional form is given typically by

χ ∝ (1 − χ0g)−1χ0, (1)

where g is the interaction strength and χ0 is the susceptibility
in the noninteracting case; χ , χ0, and g can be matrices. In a
magnetic phase, χ0 is computed by using the quasiparticle
propagator in the ordered phase, and also by considering
possible umklapp contributions to the susceptibility when the
translational symmetry is broken by a magnetic order. Such
a procedure indeed yields the correct result of transverse
magnetic susceptibility [1,2,6–11], but special care is needed
for longitudinal magnetic susceptibility, which is not well
recognized [7,8,10–12].

Spin rotational symmetry is broken in a magnetically
ordered phase. As a result, the chemical potential (or the
density) is no longer a quadratic function of a magnetic field
when the field is applied parallel to the magnetic moment. A

first derivative of the chemical potential (or the density) then
becomes finite. Hence this effect should be considered on
an equal footing when we compute magnetic susceptibility,
because the magnetic susceptibility is a linear-response
quantity of a magnetic field.

In this paper, we show how important the contribution of
the first derivative of the chemical potential (or the density)
is to compute longitudinal susceptibility in a magnetically
ordered phase, which we exemplify by employing the two-
dimensional Hubbard model for both a ferromagnetic and an
antiferromagnetic state. Since the RPA is equivalent to the
mean-field approximation or the saddle-point approximation,
we can directly compute the magnetic susceptibility in mean-
field theory for the Hubbard model. We provide the correct
expression of the static susceptibility in the RPA as well as
results when the first derivative of the chemical potential
(or the density) is neglected. In addition, we point out that
the longitudinal magnetic susceptibility is different when
computed at a fixed density and a fixed chemical potential in a
magnetically ordered phase. Consequently, when the density is
fixed, the susceptibility obtained at a fixed chemical potential
cannot be applicable even if the chemical potential is tuned to
reproduce the correct density.

This paper is organized as follows. In Sec. II we present
the model and derive the self-consistency equations for
both a ferromagnetic and an antiferromagnetic phase. The
corresponding magnetic susceptibility is computed in Secs. III
and IV, respectively. We show in Sec. V that the susceptibility
for a fixed chemical potential is reproduced in a conventional
diagrammatic approach. Concluding remarks are given in
Sec. VI.

II. MODEL AND SELF-CONSISTENCY EQUATIONS

To exemplify our issue, we employ the two-dimensional
Hubbard model on a square lattice,

H = −
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
j

nj↑nj↓ + Hz, (2)
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where the transfer integrals tij are finite between the first-
(t) and second- (t ′) neighbor sites and zero otherwise; U

represents the on-site Coulomb repulsion. Hz is the Zeeman
term, for which we consider a static and uniform (staggered)
magnetic field when we compute longitudinal magnetic
susceptibility in a ferromagnetic (an antiferromagentic) state.
That is, it is described as

Hz = −h
∑

j

1

2
(nj↑ − nj↓)eiq·rj (3)

with q = 0 [q = Q ≡ (π,π )]. Here h is an effective magnetic
field given by h = gμBH ; g is a g factor, μB is the Bohr
magneton, and H is an external magnetic field. The magnetic
field is infinitesimally small, and we take the limit of h → +0
when we compute the susceptibility.

Since the RPA is equivalent to the mean-field approxima-
tion, we compute the RPA susceptibility in mean-field theory.
Defining the magnetization and the density operator as

mj = 1
2 (nj↑ − nj↓), (4)

nj = nj↑ + nj↓, (5)

respectively, the interaction term is written as nj↑nj↓ =
1
4njnj − mjmj . The density is assumed to be uniform and is
given by n = 〈nj 〉, whereas the magnetization 〈mj 〉 is uniform
in the ferromagnetic state and staggers with a wave vector
q = Q in the antiferromagnetic state. In mean-field theory, the
interaction term is decoupled as

nj↑nj↓ → n

2
nj − 2〈mj 〉mj − 1

4
n2 + 〈mj 〉2, (6)

and self-consistency equations for n and 〈mj 〉 are obtained by
minimizing the free energy.

In the ferromagnetic state, 〈mj 〉 is independent of j , i.e.,
〈mj 〉 = m. The self-consistency equations are given by

n = 1

N

∑
k

[
f

(
ξk − Um − h

2

)
+ f

(
ξk + Um + h

2

)]
,

(7)

m = 1

2N

∑
k

[
f

(
ξk − Um − h

2

)
− f

(
ξk + Um + h

2

)]
.

(8)

Here

ξk = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky + Un

2
− μ,

(9)

and f , μ, and N are the Fermi distribution function, the
chemical potential, and the total number of lattice sites,
respectively, and the summation of k is taken over the first
Brillouin zone.

In the case of the antiferromagnetic state, the magnetization
is described by 〈mj 〉 = mQeiQ·rj . Here mQ is the staggered

magnetization, which is the order parameter of antiferromag-
netism. The self-consistency equations are given by

n = 2

N

∑
k

′
[f (E+

k ) + f (E−
k )], (10)

mQ = − 1

N

∑
k

′ UmQ + h
2

Dk
[f (E+

k ) − f (E−
k )], (11)

where the summation of k is taken over the magnetic Brillouin
zone, namely |kx | + |ky | � π , and

E±
k = ξ+

k ± Dk, (12)

ξ±
k = 1

2
(ξk ± ξk+Q), (13)

Dk =
√

(ξ−
k )2 +

(
UmQ + h

2

)2

. (14)

A comprehensive mean-field analysis of the Hubbard model
[13] clarified the parameter region where ferromagnetic phases
with q = 0 and antiferromagnetic phases with q = Q are
stabilized. Referring to Ref. [13], we fix U = 3t and choose
t ′ = −0.45t and n = 0.2 to describe the ferromagnetic state,
and t ′ = −0.2t and n = 1.1 for the antiferromagnetic state.
Our conclusions, however, do not depend on the choice of
parameters as long as the ferromagnetic (or antiferromagnetic)
phase is stabilized. In the following, we set t = 1 and measure
all quantities with the dimensions of energy in units of t .

III. UNIFORM SUSCEPTIBILITY IN
THE FERROMAGNETIC STATE

The longitudinal magnetic susceptibility is obtained in the
RPA by taking a first derivative with respect to a field in Eqs. (7)
and (8), and then by taking the limit of h → +0. One would
assume that a first derivative of μ (or n) with respect to a field
should vanish in the limit of h → +0. This is actually correct
at least in the disordered phase. As a result, the longitudinal
susceptibility, which is defined by ∂m

∂h
|h→+0, is obtained as

χ̃(0) = 1

4

χ↑ + χ↓
1 − U

2 (χ↑ + χ↓)
, (15)

where

χ↑(↓) = − 1

N

∑
k

f ′(ξk ∓ Um) (16)

and f ′ is the first derivative with respect to energy.
The temperature (T ) dependence of χ̃ (0) is shown in Fig. 1.

With decreasing T , χ̃ (0) grows and diverges at the Curie tem-
perature TFM (= 0.187). Below TFM, ferromagnetic order m

develops. The value of m is determined by the self-consistency
equations (7) and (8). As expected, χ̃ (0) is suppressed below
TFM. However, it is enhanced at lower temperature inside the
ferromagnetic state. This dependence is obviously unphysical
and originates from the wrong assumption that the chemical
potential should remain a quadratic function with respect
to a field inside the ferromagnetic state. To show this, we
plot �μ(T ,h) ≡ μ(T ,h) − μ(T ,0) in Fig. 2. The chemical
potential μ has a quadratic dependence of h in the vicinity
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FIG. 1. Longitudinal magnetic susceptibility as a function of
temperature at a fixed density; n = 0.2, t ′ = −0.45, and U = 3. The
Curie temperature is TFM = 0.187, below which the ferromagnetic
moment develops. χ̃(0) is obtained from Eq. (15) and correct only
in T > TFM. χn(0) is given by Eq. (17) and correct in the whole
temperature region. For χμ(0) [Eq. (19)], the chemical potential is
tuned at each temperature to reproduce the fixed density n = 0.2.
χμ(0) provides the correct result only in T > TFM.

of h = 0 in the disordered phase because of the spin-rotational
symmetry of the system. Its curvature around h = 0 becomes
larger upon approaching TFM and becomes infinite just at TFM.
Below TFM, a linear term emerges with a singularity at h = 0.
The emergence of the linear term is due to the breaking of the
spin rotational symmetry, that is, the system has a different
response when an infinitesimally small field is applied parallel
and antiparallel to the direction of the ferromagnetic moment.
Therefore, the emergent linear term in h is crucially important
to describe the response in the ordered phase, and Eq. (15) is
valid only in the disordered phase where m = 0. While χ̃ (0)
is enhanced below T � 0.05 in Fig. 1 for the present choice
of the parameters, it could diverge inside the ferromagnetic
phase, especially when U is chosen to be a larger value.

A. Fixed density

We first consider the situation in which the density is fixed.
To get the correct RPA susceptibility inside the ordered phase,

-0.01

-0.0075

-0.005

-0.0025

 0

-0.01 -0.005  0  0.005  0.01

Δμ

h

(a)

(b)

(d) (c)

FIG. 2. h dependence of the chemical potential for several choices
of temperatures: (a) T = 1.1TFM, (b) T = 1.04TFM, (c) T = 0.99TFM,
and (d) T = 0.9TFM.
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FIG. 3. Temperature dependence of the first derivative of μ and n

with respect to a magnetic field h; TFM = 0.187, n = 0.2, t ′ = −0.45,
and U = 3.

a first derivative of μ should be kept when differentiating
Eqs. (7) and (8) with respect to h. Solving coupled equations,
we obtain

χn(0) = ∂m

∂h

∣∣∣∣
h→+0

= χ↑χ↓
χ↑ + χ↓ − 2Uχ↑χ↓

, (17)

∂μ

∂h

∣∣∣∣
h→+0

= −1

2

χ↑ − χ↓
χ↑ + χ↓ − 2Uχ↑χ↓

. (18)

In the disordered phase, we have χ↑ = χ↓. Hence Eq. (17)
is reduced to Eq. (15) and ∂μ

∂h
|
h→+0

= 0. However, inside
the ferromagnetic phase, it is clear that the functional form
of Eq. (17) is very different from Eq. (15), and in addition
∂μ

∂h
|
h→+0

becomes finite. We plot the temperature dependence
of χn(0) in Fig. 1. χn(0) is suppressed monotonically inside the
ferromagnetic phase with decreasing temperature. This is be-
cause the system becomes less susceptible to an infinitesimally
small field parallel to the magnetic moment when the magnetic
moment grows with decreasing temperature. The enhancement
of Eq. (15) inside the ferromagnetic phase (Fig. 1), therefore,
should be an artifact due to the discarding of the contribution
from ∂μ

∂h
|
h→+0

. As already implied in Fig. 2, the contribution

of ∂μ

∂h
|
h→+0

is indeed sizable below TFM. The temperature

dependence of ∂μ

∂h
|
h→+0

is plotted in Fig. 3. The quantity
∂μ

∂h
|
h→+0

is zero down to T = TFM. It diverges at T = TFM

only on the side of low temperature and is suppressed with
decreasing T , keeping a value comparable to χn(0) at low
temperature (see also Fig. 1).

B. Fixed chemical potential

We now consider the situation in which μ is fixed. In this
case, we differentiate Eqs. (7) and (8) with respect to h for a
fixed μ. We then obtain

χμ(0) = ∂m

∂h

∣∣∣∣
h→+0

= 1

4

χ↑ + χ↓ + 2Uχ↑χ↓
1 − U 2χ↑χ↓

, (19)

∂n

∂h

∣∣∣∣
h→+0

= 1

2

χ↑ − χ↓
1 − U 2χ↑χ↓

. (20)

Equation (19) is already known in the literature [1,14].
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In the disordered phase, we have χ↑ = χ↓, yielding
∂n
∂h

|
h→+0

= 0 and χμ = χn = χ̃ . Consequently, the magnetic
susceptibility at a fixed density is the same as that at a fixed
chemical potential in the disordered phase.

In the ordered phase, however, we have χ↑ �= χ↓, and
∂n
∂h

|
h→+0

becomes finite as shown in Fig. 3 and diverges at
T = TFM − 0. A comparison of Eqs. (17) and (19) should be
made in the same condition, namely the same density and
the same chemical potential. A physical quantity computed
at a fixed chemical potential is frequently used to describe a
system with a fixed density by tuning the chemical potential to
reproduce the density. Following this standard procedure, we
plot the temperature dependence of χμ also in Fig. 1. Although
the functional forms of Eqs. (17) and (19) are different, both
provide similar results in the ordered phase. Nevertheless, in
a strict sense, χμ does not lead to the correct result χn when
the density is fixed in the system. Conversely, χμ [Eq. (19)]
would provide the correct result when the chemical potential
is fixed in the system (see the Appendix). In this case, χn

[Eq. (17)] is in turn not correct even if the density is tuned
to reproduce the fixed chemical potential. The reason why the
longitudinal magnetic susceptibility χμ does not agree with
χn in the magnetically ordered phase is that μ and n are not
symmetric in Eqs. (7) and (8), and thus the field dependences
of μ and n (see Fig. 3) are different from each other.

IV. STAGGERED SUSCEPTIBILITY IN
THE ANTIFERROMAGNETIC STATE

The longitudinal staggered susceptibility is defined as
∂mQ

∂h
|
h→+0

, where h is a magnitude of a staggered field
introduced in Eq. (3) with q = Q. In the disordered phase,
the spin rotational symmetry is preserved and thus μ and n

are quadratic functions of h for a small h. In this case, we
have ∂μ

∂h
|
h→+0

= 0 and ∂n
∂h

|
h→+0

= 0. Thus we do not need
to consider a first derivative of μ and n with respect to h in
Eq. (11). The staggered susceptibility then becomes

χ̃ (Q) = 1

2

χ (0)(Q)

1 − Uχ (0)(Q)
, (21)

where

χ (0)(Q) = − 1

N

∑
k

′ (ξ−
k )2

D3
k

[f (E+
k ) − f (E−

k )]

− 1

N

∑
k

′
(

UmQ

Dk

)2

[f ′(E+
k ) + f ′(E−

k )], (22)

and mQ = 0 here. One might apply the formula Eq. (21) to
the antiferromagnetic phase, employing mQ and n (or μ)
determined by solving the self-consistency equations (10) and
(11). The resulting χ̃ (Q) [Eq. (21)] is shown in Fig. 4 as
a function of temperature. With decreasing T , χ̃ (Q) grows
and diverges at the Néel temperature TAF = 0.380. Just below
TAF, χ̃ (Q) is suppressed as expected. However, it grows below
T � 0.2 inside the antiferromagnetic phase. This apparently
unphysical result originates from the wrong assumption that
μ and n would still be quadratic in h in the magnetic phase.
The enhancement of χ̃(Q) could appear as its divergence at
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FIG. 4. Longitudinal magnetic susceptibility as a function of
temperature at a fixed density; n = 1.1, t ′ = −0.2, and U = 3. The
Néel temperature is TAF = 0.380, below which the antiferromagnetic
moment develops. χ̃ (Q) is obtained from Eq. (21) and correct only
in T > TAF. χn(Q) is given by Eq. (23) and correct in the whole
temperature region. χμ(Q) [Eq. (30)] is computed in the condition
of a fixed chemical potential; the chemical potential is tuned at each
temperature to reproduce the correct density. The result χμ(Q) is,
however, correct only in T > TAF.

a certain temperature below TAF when a larger value of U is
taken.

Figure 5 shows �μ = μ(T ,h) − μ(T ,0) as a function of
h for several choices of T . For T > TAF we see ∂μ

∂h
|
h→+0

=
0. However, below TAF, �μ becomes singular at h = 0 and
acquires a linear dependence of |h| around h = 0. This effect
is crucially important to obtain the correct RPA expression of
the longitudinal magnetic susceptibility inside the magnetic
phase. Because the correct expression depends on whether the
density is fixed or the chemical potential is fixed, we present
it below separately.

A. Fixed density

For a fixed density n, we differentiate both Eqs. (10) and
(11) with respect to h and take the limit of h → +0. Coupled

 0
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FIG. 5. h dependence of the chemical potential for several choices
of temperatures: (a) T = 1.1TAF, (b) T = 1.03TAF, (c) T = 0.99TAF,
and (d) T = 0.9TAF; TAF = 0.380, n = 1.1, t ′ = −0.2, and U = 3.
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FIG. 6. Temperature dependence of the first derivative of μ and n

with respect to a magnetic field h; TAF = 0.380, n = 1.1, t ′ = −0.2,
and U = 3.

equations of ∂m
∂h

and ∂μ

∂h
are easily solved, yielding

χn(Q) = ∂m

∂h

∣∣∣∣
h→+0

= 1

2

χ (0)
n (Q)

1 − Uχ
(0)
n (Q)

, (23)

∂μ

∂h

∣∣∣∣
h→+0

= −1

2

a12/a11

1 − Uχ
(0)
n (Q)

, (24)

where

χ (0)
n (Q) = a11a22 − a12a21

a11
, (25)

and

a11 = − 2

N

∑
k

′
[f ′(E+

k ) + f ′(E−
k )], (26)

a12 = 2

N

∑
k

′ UmQ

Dk
[f ′(E+

k ) − f ′(E−
k )], (27)

a21 = 1

2
a12, (28)

a22 = χ (0)(Q). (29)

Here h should be set to zero in E±
k and Dk [see Eqs. (12) and

(14)]. The functional form of Eq. (23) is the same as Eq. (21),
but χ (0)

n (Q) becomes identical to χ (0)(Q) only for mQ = 0.
χn(Q) is plotted in Fig. 4 as a function of temperature. It is the
same as Eq. (21) above TAF. Below TAF, χn(Q) is suppressed
monotonically with decreasing temperature as it should be. In
Fig. 6 we plot ∂μ

∂h
|
h→+0

. It vanishes in the disordered phase,
but it becomes sizable in the magnetically ordered phase with
divergence at T = TAF on the side of low temperature.

B. Fixed chemical potential

We next fix the chemical potential and differentiate
Eqs. (10) and (11) with respect to h. Taking the limit of
h → +0, we obtain

χμ(Q) = ∂m

∂h

∣∣∣∣
h→+0

= 1

2

χ (0)
μ (Q)

1 − Uχ
(0)
μ (Q)

, (30)

∂n

∂h

∣∣∣∣
h→+0

= 1

2
(
1 + U

2 a11
) a12

1 − Uχ
(0)
μ (Q)

, (31)

+χ(a) zz σ
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σσ

σ σ

σ
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+

=

=

FIG. 7. Diagrams of the longitudinal magnetic susceptibility for
the Hubbard interaction. σ̄ denotes the spin direction opposite to σ .

where

χ (0)
μ (Q) = a22 − U

2

a12a21

1 + U
2 a11

. (32)

The functional form of Eq. (30) is the same as Eq. (23) obtained
at a fixed density. However, the expression of χ (0)

μ is very
different from χ (0)

n [Eq. (25)]. They become the same only in
the disordered phase, where mQ = 0 and thus a12 = a21 = 0.
The temperature dependence of χμ(Q) is shown in Fig. 4.
Since the density is fixed in Fig. 4, the chemical potential is
tuned to reproduce the correct density at each temperature, as
is usually done. Below TAF, χμ(Q) is suppressed, but it does
not reproduce the correct result of χn(Q). This wrong result
originates from the naive assumption that the susceptibility
obtained at a fixed chemical potential could be used for
the system with a fixed density after tuning the chemical
potential to reproduce the correct density. However, as we
have obtained explicitly, the susceptibility at a fixed chemical
potential [Eqs. (30) and (32)] is different from that at a fixed
density [Eqs. (23) and (25)–(29)] in the magnetically ordered
phase. Furthermore, as shown in Fig. 6, the temperature
dependence of ∂n

∂h
|
h→+0

is very different from ∂μ

∂h
|
h→+0

.
Therefore, the choice of χn and χμ should be made carefully
to describe the system appropriately. Conversely, if we wish
to describe the system with a fixed chemical potential, the
susceptibility χμ(Q) is the correct one and χn(Q) [Eq. (23)]
does not reproduce the correct result even if the density is tuned
to reproduce the correct chemical potential at each temperature
(see the Appendix).

V. DIAGRAMMATIC APPROACH

It is natural to ask what kind of result is obtained when
a diagrammatic approach is employed. The longitudinal
magnetic susceptibility is defined by

χzz(q,iωm) = 1

N

∫ 1/T

0
dτ eiωmτ 〈TτS

z(q,τ )Sz(−q,0)〉, (33)

where ωm = 2mπT is the bosonic Matsubara frequency, with
m being an integer, Sz(q,τ ) = eτHSz(q)e−τH, and Sz(q) =
1
2

∑
kσ σc

†
kσ ck+qσ .

In the disordered phase, χzz is given by the diagrams shown
in Fig. 7 in the RPA. Hence we obtain

χzz = 1

4

(
χ↑ + χ↓

1 − U 2χ↑χ↓
+ 2Uχ↑χ↓

1 − U 2χ↑χ↓

)
. (34)
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In the static case, we set iωm = 0 and take q = 0 and Q
for the uniform and staggered susceptibility, respectively. We
then obtain χ↑ = χ↓ = χ0, which is the same as Eq. (16)
for the uniform susceptibility and Eq. (22) for the staggered
susceptibility. Hence Eq. (34) is reduced to

χzz = 1

2

χ0

1 − Uχ0
, (35)

and we reproduce the correct results Eqs. (15) and (21) in the
disordered phase.

In the ordered phase, we may compute χ↑ (↓) by using the
quasiparticle propagator. In the ferromagnetic phase, Eq. (34)
then becomes the same as χμ(0) [see Eq. (19) and Refs. [1]
and [14]], but not χn(0) [Eq. (17)].

The situation is delicate in the antiferromagnetic phase.
Although the translational symmetry is broken by the magnetic
order, the umklapp components of the susceptibility, such as
〈TτS

z(q,τ )Sz(−q − Q,0)〉 and 〈TτS
z(q + Q,τ )Sz(−q,0)〉, do

not contribute to the longitudinal susceptibility [8]. Hence
one might think that the RPA susceptibility would be ob-
tained simply by replacing the electron Green’s function
with the Green’s function of the two-component field ψ

†
kσ =

(c†kσ ,c
†
k+Qσ ); the summation of k is then restricted to the

magnetic Brillouin zone. This kind of calculation is frequently
seen in the literature [7,8,10–12]. In this case, however,
we obtain χ↑(Q) = χ↓(Q) = χ (0)(Q) [see Eq. (22)], which
is the same as χ̃ (Q) and does not reproduce the correct
result inside the antiferromagnetic phase, as we have seen
in Fig. 4. The correct procedure [6,9,15] is to take into account
the umklapp components such as 〈TτS

z(q,τ )ρ(−q − Q,0)〉
as well as the density fluctuations with q + Q, namely
〈Tτρ(q + Q,τ )ρ(−q − Q,0)〉. The density operator may be
given by ρ(q) = 1

2

∑
k

∑
σ c

†
kσ ck+Qσ = 1

2

∑′
k

∑
σ ψ

†
kσψk+Qσ ,

where the factor of 1/2 is added to make the formalism simpler.
The resulting RPA expression becomes

χ̂ = (1 − χ̂0Û )−1χ̂0 (36)

and

χ̂ =
(

χzz(q,iωm) χzρ(q,q + Q,iωm)

χρz(q + Q,q,iωm) χρρ(q + Q,iωm)

)
, (37)

Û =
(

2U 0
0 −2U

)
. (38)

Here

χzρ(q,q + Q,iωm)

= 1

N

∫ 1/T

0
dτ eiωmτ 〈TτS

z(q,τ )ρ(−q − Q,0)〉, (39)

χρz(q + Q,q,iωm)

= 1

N

∫ 1/T

0
dτ eiωmτ 〈Tτρ(q + Q,τ )Sz(−q,0)〉, (40)

χρρ(q + Q,iωm)

= 1

N

∫ 1/T

0
dτ eiωmτ 〈Tτρ(q + Q,τ )ρ(−q − Q,0)〉, (41)

and χ̂0 denotes a bare susceptibility matrix where each element
is given by a simple bubble diagram. Setting iωm = 0 and
q = Q, we obtain χzz(Q,0), which reproduces Eq. (30). That
is, the effect of ∂n

∂h
is taken into account diagrammatically

by considering the contribution from the density-density
interaction such as χzρ , χρz, and χρρ .

The diagrammatic method is formulated in the grand-
canonical ensemble. Hence it is natural that we can suc-
cessfully reproduce both results χμ(0) [Eq. (19)] in the
ferromagnetic phase and χμ(Q) [Eq. (30)] in the antiferro-
magnetic phase. A remaining problem is how to reproduce
χn(0) [Eq. (17)] and χn(Q) [Eq. (23)] obtained at a fixed
density in terms of the diagrammatic method. As we have
shown explicitly in Secs. III and IV, the longitudinal magnetic
susceptibility at a fixed density is different from that at a fixed
chemical potential in the magnetically ordered phase. Given
that the density is usually fixed in the actual material, it is
an important problem to find a general recipe to compute the
magnetic susceptibility in the ordered phase at a fixed density.

VI. CONCLUDING REMARKS

We have studied longitudinal magnetic susceptibility by
employing the two-dimensional Hubbard model. In the mag-
netically ordered phase, the spin rotational symmetry is
broken, and thus μ and n acquire a linear term in a magnetic
field when the field is applied parallel to the direction of the
magnetic moment. Because of this effect, a careful analysis
is required: the longitudinal magnetic susceptibility becomes
different when computed at a fixed density and a fixed chemical
potential. We have provided the correct expressions (17) and
(23) at a fixed density and Eqs. (19) and (30) at a fixed chemical
potential in both ferromagnetic and antiferromagnetic states.
It should be noted that the susceptibility obtained at a fixed
chemical potential (density) cannot be applied to the system
with a fixed density (chemical potential) even though the
chemical potential (density) is tuned to reproduce the correct
density (chemical potential).

While we have exemplified our issue by employing the
two-dimensional Hubbard model in the RPA, we believe that
our conclusions do not depend on the choice of models,
dimensions, lattices, and approximations even beyond the
RPA. This consideration is based on thermodynamics. As in the
case of the relation between specific heat at constant volume
and that at constant pressure, we can derive the following
relation from the thermodynamic principle:

χn = χμ + ∂n

∂h

∣∣∣∣
μ

∂μ

∂h

∣∣∣∣
n

. (42)

In addition, one can easily show that the second term in
Eq. (42) becomes negative-semidefinite and thus χn � χμ.
This is because ∂n

∂h
|
μ

∂μ

∂h
|
n

= −( ∂n
∂h

|
μ

)2 ∂μ

∂n
|
h
, and the stability

of the thermodynamic potentials indicates that ∂μ

∂n
|
h

should
be positive-semidefinite. Our obtained results in Figs. 1, 3, 4,
and 6 indeed satisfy Eq. (42) numerically, and we can also
check analytically that Eqs. (17)–(20) and Eqs. (23), (24),
(30), and (31) fulfill Eq. (42) in the ferromagnetic and the
antiferromagnetic case, respectively. Moreover, Figs. 3 and
6 indeed show that ∂n

∂h
|
μ

and ∂μ

∂h
|
n

have opposite signs. The
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FIG. 8. Longitudinal magnetic susceptibility as a function of temperature for a fixed chemical potential in the ferromagnetic (a) and
antiferromagnetic (b) phase. The chemical potential is chosen as μ = −1.83 in (a) which reproduces n = 0.2 at T = 0.15, and as μ = 1.69
in (b) where n = 1.1 at T = 0.2. The other parameters are U = 3, t ′ = −0.45 in (a) and t ′ = −0.2 in (b). For χn, the density is tuned at each
temperature to reproduce the fixed chemical potential. The result of χμ is correct in the whole temperature region.

thermodynamic relation (42) is, however, not well recognized
in the literature. In fact, the contributions from ∂n

∂h
and ∂μ

∂h

are frequently missed, and an inappropriate formula such as
Eqs. (15) and (21) is employed to compute the longitudinal
magnetic susceptibility in the magnetically ordered phase
[7,8,10–12].

As we have discussed in Secs. III (Fig. 1) and IV (Fig. 4),
the enhancement of χ̃ (0) [Eq. (15)] and χ̃ (Q) [Eq. (21)] at
low temperature inside the magnetic state is not a signal of
some instability, but just an artifact due to the employment of
the wrong susceptibility. Mathematically, this enhancement
comes from a slight enhancement of χ↑ + χ↓ [Eq. (16)]
and χ (0)(Q) [Eq. (22)] due to the development of magnetic
order. This subtle change is removed by including the effect
of ∂μ

∂h
|h→0 in Eqs. (17) and (23) or ∂n

∂h
|h→0 in Eqs. (19)

and (30) in the mean-field theory of the Hubbard model.
However, it should be noted that in a more general situation,
an enhancement of the susceptibility inside the magnetic
phase could occur even if the effect of ∂μ

∂h
|h→0 (or ∂n

∂h
|h→0)

is correctly taken into account. For example, with decreasing
temperature inside the magnetic phase, there could occur
a tendency of a reentrant transition to a normal phase or a
continuous transition to a different ordered phase.

Our obtained results are relevant to metallic systems
whenever μ and n acquire a linear dependence on a magnetic
field. The presence of the linear term in the field is easily
recognized by symmetry. The ferromagnetic (antiferromag-
netic) state is not symmetric with respect to the change
of the field direction, namely h ↔ −h when h is applied
parallel to the direction of the uniform (staggered) magnetism.
Therefore, we expect ∂μ

∂h
�= 0 and ∂n

∂h
�= 0. On the other hand,

for the uniform longitudinal magnetic susceptibility inside the
antiferromagnetic state, we have ∂μ

∂h
= 0 and ∂n

∂h
= 0, because

the system is symmetric with respect to the change of the
direction of a uniform field inside the antiferromagnetic phase.
Another example is the case of the transverse field h⊥: the
system is symmetric with respect to the change of the field
direction in both the ferromagnetic and antiferromagnetic
state, leading to ∂μ

∂h⊥
= 0 and ∂n

∂h⊥
= 0. Hence the transverse

magnetic susceptibility is computed without considering pos-
sible contributions from ∂μ

∂h⊥
and ∂n

∂h⊥
as seen in the literature

[1,2,6–11].

For an insulating state, special care may not be needed,
because ∂n

∂h
should vanish in Eq. (42) due to the presence

of a charge gap, and we obtain χn = χμ. In fact, in an
antiferromagnetic insulating state, we would have E+

k > 0 and
E−

k < 0 independent of k. We can then easily obtain n = 1
[Eq. (10)] and ∂n

∂h
= 0 [Eq. (31)] at T = 0.

As a direct test of the present theory, we propose a
susceptibility measurement in two different conditions, i.e.,
for a fixed density and a fixed chemical potential. Whereas the
former condition is easily controlled in experiments, the latter
condition may require the state-of-the-art technique in which
a magnetic metal touches a charge reservoir, for example,
exploiting a field-effect transistor. As seen in Figs. 1, 4, and
8, we predict a sizable difference between χn and χμ in a
magnetically ordered phase.
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APPENDIX A: SYSTEM WITH A FIXED CHEMICAL
POTENTIAL

The temperature dependence of the magnetic susceptibility
is obtained for a fixed density in Figs. 1 and 4. Hence χn

provides the correct result. While the density does not change
as a function of temperature in actual materials, one can still
consider a situation in which a system comes into contact
with a charge reservoir. For example, a system is described
as having several bands crossing the Fermi energy, and there
is essentially only one active band with a large density of
states. In that case, we may focus on such a band and invoke
a condition of a fixed chemical potential. The temperature
dependence of the magnetic susceptibility for a fixed chemical
potential is shown in Figs. 8(a) and 8(b) in the ferromagnetic
and antiferromagnetic case, respectively. These results are very
similar to the results for a fixed density shown in Figs. 1 and
4. However, the correct result here is χμ, not χn.
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