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Magnetic charge and moment dynamics in artificial kagome spin ice
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Spin ice materials represent an intriguing class of frustrated magnetic systems which, through their geometry,
admit an exponential number of approximately degenerate configurations. In this paper, the relaxation properties
of a thermally active artificial kagome spin ice system are studied. Through application of an external magnetic
field, an out-of-equilibrium vertex charge ordered configuration is selected and relaxed under approximate
zero-field conditions. Using x-ray photo-emission electron microscopy, the magnetic moment and vertex charge
degrees of freedom are followed in space and time, revealing different dynamics to that seen in past athermal
equilibration protocols, and a relaxation which is well described by a point-dipolar model system. Furthermore
the charge correlations are found to relax with a time scale several times smaller than that of the moment
correlations.
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I. INTRODUCTION

Frustration in matter is a phenomenon that arises when the
interactions within a given system cannot be simultaneously
minimized resulting in a very large number of low-energy
configurations with an approximate degeneracy that scales
exponentially with system size. Prominent examples are the
way protons arrange themselves in water ice [1] and how
adjacent spins, because of the magnetic interactions and crystal
structure, orient themselves in a magnetic material according
to an ice rule [2–4]. The pyrochlore spin ice [2–4] and
the two-dimensional kagome sublattices of herbertsmithite
variants [5] are well-known systems, which exhibit such spin
ice physics. In these materials, a perfect degeneracy would
lead to a finite configurational entropy as the temperature
approaches zero—Pauling’s residual entropy [1]—and thus
a zero-point disordered ground state. However, when more
distant interactions are present, this perfect degeneracy can be
lifted, introducing new energy scales and therefore temperature
regimes at which less disordered phases become thermody-
namically stable, reducing or even extinguishing Pauling’s
residual entropy—a phenomenon that has been demonstrated
for the Dy2Ti2O7 pyrochlore system [6].

Kagome spin ice is a two-dimensional lattice of spins
positioned on the sites of the kagome lattice, in which the
local ice rule constraint [7] forces each nearest-neighbor triplet
of spins to configurations in which two point away/towards
and one points towards/away from the triplet’s center of
position vertex—see Fig. 1. When viewed in terms of the
net magnetic flux entering or leaving each triplet vertex,
the kagome system may be represented by a hexagonal
array of magnetic vertex charges, Q = ±q, that reside at the
vertices where three nanomagnets meet [see Fig. 1(a)]. This
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system can be partially realized at the microscopic level in
pyrochlore spin ice in the presence of a magnetic field [8],
and at the mesoscopic level via a two-dimensional patterned
array of nanomagnets, the individual shape anisotropies of
which lead to single domain magnets with Ising-like moments
[9–17]. These latter systems offer the advantage that their
magnetization dynamics can be studied in real space and time
on the level of individual magnetic moments to complement
reciprocal space techniques, which have been used to probe the
pyrochlore spin ice systems in the past. Theory has shown that,
if the spins of the kagome system interact via the long-range
magnetic dipolar interaction, the degeneracy of the spin ice
sector is lifted giving rise to three low-temperature phases
[18,19]. In order of decreasing temperature, the different
regimes can be listed as a magnetic moment and vertex charge
disordered phase (spin ice I), a vertex charge ordered and
partially ordered magnetic moment phase (spin ice II) in which
there is moment fragmentation into both a magnetic charge
crystal and a Coulomb phase [20,21], and a lowest-temperature
magnetic moment and vertex charge long-range ordered (LRO)
phase [see Fig. 1(b)].

In earlier work, low-energy magnetic configurations in
artificial spin ice systems could only be obtained athermally
through demagnetization protocols [9,11] or with thermal
treatments prior to measurement [15]. Here, various mi-
croscopy methods were implemented to perform real-space
imaging of the magnetic configurations and, in addition to
attempts to obtain low-energy states, the creation and sep-
aration of emergent magnetic monopole/antimonopole pairs
could be observed during magnetization reversal [10]. More
recently, it was shown to be possible to manufacture thermally
active artificial kagome spin ice from thinner films and observe
in real space and time the exploration of the low-energy
magnetic configurations in finite structures [12,13]. By tuning
the nanomagnet volume, the blocking temperature of the
individual nanomagnets can be engineered to be well below
the critical temperatures associated with the phase transitions
of extended systems. In such an artificial kagome ice system,
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FIG. 1. (a) Scanning electron microscope image of part of an
artificial kagome spin ice consisting of nanomagnets with a length L

= 470 nm, width W = 170 nm, and thickness d = 3 nm arranged
on a lattice with nearest-neighbor center-to-center distance a =
500 nm. Due to their elongated shape and the small value of d ,
each nanomagnet is well described by an Ising moment, which points
parallel or antiparallel to its long axis. Superimposed on the image are
two nearest-neighbor triplets of Ising moments that adhere to the ice
rule of two in(out) moments and one out(in) moments. The net local
flux may be identified as magnetic vertex charges of either Q = q or
−q (red or blue circles) existing on the parent honeycomb lattice.
(b) Upper schematic: At high enough temperatures these vertex
charges, like the underlying Ising moments, are spatially disordered—
a phase referred to as spin ice I. Middle schematic: As the temperature
is lowered, the vertex charges order and the spin ice II phase is formed.
Lower schematic: At even lower temperatures, the long-range nature
of the underlying dipolar interaction gives rise to ordered moments,
resulting in a long-range ordered phase where a partial tiling of
microvortices defines the zero-temperature ground state.

dynamical signatures of both phase transitions could be ob-
tained indirectly via low-energy muon spectroscopy methods
[22].

In the present paper, a thermally active artificial kagome
spin ice system is realized and studied at a temperature in which
the spin ice I phase is expected to be at equilibrium. Using x-ray
photo-emission electron microscopy, the associated magnetic
degrees of freedom of the artificial kagome spin ice are
resolved both spatially and temporarily allowing us to study the
early stages of relaxation to the spin ice I phase from a prepared
out-of-equilibrium spin ice II charge ordered configuration.
Kinetic Monte Carlo (KMC) simulations are used to compare
the experimentally observed relaxation dynamics with the
predictions of a simplified point-dipolar model system. The
sample preparation and experimental measurement methods,
the use of moment and charge-correlation measures, and the
nature of the numerical simulations are detailed in Sec. II.
In Sec. III, the experimental results including the time
dependence of the correlation functions and comparison with
simulation are presented. Specifically, we observe a dynamical
creation and destruction of charge and moment order which

is fundamentally different from the behavior observed in past
athermal work [10,23] and we experimentally confirm that the
dynamics of such artificial spin systems are controlled by the
dipolar interaction between the patterned nanomagnets.

II. METHODS

A. Sample fabrication and characterization

We used electron-beam lithography to pattern a Permalloy
(Ni80Fe20) wedge film on a silicon (100) substrate. Following
exposure and development of a 70-nm-thick polymethyl-
methacrylate (PMMA) resist spin coated on a silicon (100)
substrate, a Permalloy film wedge, along with a 3-nm capping
layer of aluminum to protect against oxidation, was deposited
by thermal evaporation at room temperature at a rate of several
nanometers per minute and a base pressure of 3 × 10−6 mbar.
The unwanted resist and magnetic material were then removed
in acetone by ultrasound assisted liftoff. Extended arrays
(50 × 40 μm) of artificial kagome spin ice consisting of
nanomagnets with length L = 470 nm, width W = 170 nm,
and lattice parameter a = 500 nm [see Fig. 1(a)] were
fabricated with thicknesses d increasing from zero up to 15 nm
over a distance of 4 mm. Similar fabrication procedures have
been used to construct thermally active artificial square ice
systems [24,25]. The magnetic imaging is performed at a film
thickness of 3 nm, where we observe thermally driven moment
reorientations at a time scale of several minutes at T = 420 K.
Each nanomagnet is small enough to be single domain and
its elongated shape forces the moments to point into one of
two possible directions along the nanomagnet long axis, thus
mimicking a single Ising macrospin.

Magnetic imaging was performed using a photo-emission
electron microscope (PEEM), employing x-ray magnetic
circular dichroism (XMCD) at the Fe L3 edge [26–28]. The
dark and bright contrast in the magnetic contrast maps (referred
to as XMCD images) is a measure of the orientation of
the magnetic moment of a nanomagnet relative to the x-ray
polarization vector. Nanomagnets with magnetic moments
pointing towards the x-ray propagation vector will appear dark,
while nanomagnets with magnetic moments opposing the x-
ray propagation vector will appear bright [see Figs. 2(a)–2(c)].

B. Magnetic moment and vertex charge correlation functions

A quantitative measure of the magnetic moment and vertex
charge dynamics in the experimental or simulation data can
be gained through the determination of two-point magnetic
moment and vertex charge correlation functions, defined,
respectively, as

CMij (t,τ ) = 〈m̂i(t) · m̂i+j (t + τ )〉 (1)

and

CQij (t,τ ) = 〈Qi(t)Qi+j (t + τ )〉. (2)

Here, the indices i and j label the magnetic moment directions
m̂ or vertex charges Q, i + j refers to the j th neighbor of i,
and 〈·〉 represents a spatial average over the experimental or
simulation data window.

In Eqs. (1) and (2), t and t + τ give the two times between
which the correlations are observed. Under equilibrium con-
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FIG. 2. (a–c) XMCD snapshots of artificial kagome spin ice starting from an initial out-of-equilibrium spin ice II phase, which then relaxes
towards the equilibrium spin ice I phase. The insets show the corresponding smeared charge-density maps indicating the creation of emergent
magnetic monopoles (see caption of Fig. 3), which remain confined due to a strict obedience to the local ice rule at each vertex. In these
insets, the red and blue points reflect charge defects that can be seen as emergent magnetic monopoles connected by Dirac strings consisting of
chains of magnetic moments connecting the charge defect pair (black lines). (d–f) The corresponding Q = +q/ − q red and blue vertex charge
configurations, which show how the initially global charge order of the prepared state decays into regions of local charge order characteristic
of spin ice I. The two shades of gray refer to the two possible local (central vertex plus nearest neighbors) charge order configurations.
(g–j) XMCD image sequence highlighting a typical example of thermally induced Dirac-string evolution in artificial kagome spin ice under a
strict obedience to the local ice rule.

ditions the correlation functions do not depend on t . However,
during relaxation there will be a dependence on t , which is the
time since relaxation began. Two temporal correlation relations
will be presently considered. In the first case, the correlations
as a function of t with τ = 0 minutes will be measured. These
instantaneous correlation functions allow for a quantitative
comparison to the equilibrium (spin ice I) instantaneous values.
In the second case, the correlations as a function of τ with
t = 0 will be measured, which gives quantitative information
on how the system decorrelates from the initial charge ordered
configuration.

For the case of the instantaneous (τ = 0) magnetic moment
correlation function, a coarse-grained version is used in which
sgn[m̂i(t) · m̂i+j (t)] is now averaged [9,11,12,15]:

CMcg
ij (0) = 〈sgn[m̂i(t) · m̂i+j (t)]〉. (3)

In the above moment correlation functions, we refer to
the spatial indices as αα for onsite, αβ for the first-neighbor,
αγ for the second-neighbor, and αδ and αν for the fourth-
neighbor correlations. For the charge correlation functions,
we refer to the spatial indices as AA for onsite, AB for the
first-neighbor, and AC for the second-neighbor correlations.
This nomenclature is displayed in Fig. 1(a).

C. Visualization of emergent magnetic monopoles

The relaxation from an initial out-of-equilibrium
spin ice II configuration prepared by application of magnetic
field (Sec. III) can be viewed from the perspective of emergent
magnetic monopoles. These are visualized by inspecting the
deviations away from the charge ordered configuration giving
a charge difference map, �Q = ±2q [10,23], or may be
visualized by calculating the dimensionless smeared charge
density ρ̃m = (�x)2ρm/q, where the smeared charge density
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ρm is a convolution of the vertex charge (Qi) distribution with
a Gaussian of full width at half maximum �x = 2ah [10].
Here, the spatial position of the maximum/minimum value
provides the location of the emergent magnetic monopoles.
The so-called Dirac strings connecting pairs of emergent
magnetic monopoles of opposite sign correspond to chains of
reversed magnetic moments transferring the flux from negative
to positive emergent charge. Here they are mainly used to
identify confined monopole pairs which mediate the early
stages of the relaxation seen in Fig. 2. For these emergent
magnetic monopoles, blue indicates negative charge and red
indicates a positive charge.

We emphasize here that emergent magnetic monopoles
should be distinguished from the vertex charges (Q) shown
in Fig. 1. An emergent magnetic monopole is identified
from the difference in vertex charge measured relative to
a reference vertex charge ordered configuration, and occurs
when the vertex charge difference is �Q = 2 (monopole) and
�Q = −2 (antimonopole). The ice sector may be exited on
separation of an emergent monopole/antimonopole pair as seen
in Fig. 4.

D. Simulations

The experimentally observed dynamics is compared to
simulations based on the KMC method [29]. Starting from
a given magnetic configuration, all possible transitions from
this initial configuration are determined together with their
associated transition rates. The transition rates are assumed to
follow an Arrhenius type behavior given by 
 = ν0exp(−βE),
where the prefactor ν0 is the attempt frequency, β = 1/kBT ,
and E = E0 + 1/2(Ef − Ei) is the sum of the energy barrier
to reorient an individual nanomagnet E0 and half of the
difference between configurational energies after and before a
given transition (Ef − Ei). The energy of each moment con-
figuration is calculated using the leading-order point-dipolar
interaction

V (rij ,mi ,mj ) = − μ0

4πr3
ij

[3(mi · r̂ij )(mj · r̂ij ) − mi · mj ]

(4)

where rij is the distance vector separating the ith and j th
point-dipole magnetic moments, mi and mj , giving the final
Hamiltonian

∑
i<j V (rij ,mi ,mj ). The point-dipole moment

of each nanomagnet is given by the product MLWd where M

is the experimentally determined magnetization. In addition,
variations in the barrier energy, E0, due to intrinsic disorder
are included via a uniform distribution of width 2σ . Good
agreement between experiment and simulation could be found
with ν0 = 1012 s−1, E0 = 1.26 eV, σ = 0.3 eV, and M =
350 A/m (see also [12]). Converged simulation data are
obtained when the dipolar interaction range is truncated to
at least five neighbor shells.

For this parametrization, the crossover from high-
temperature paramagnetism to the spin ice regime (spin ice
I) occurs at a temperature of approximately 500 K. To obtain
estimates of the critical temperatures corresponding to the
spin ice I/II (Tc1) and spin ice II/LRO (Tc2) phase transitions,
ensemble Monte Carlo simulations are performed for the
point-dipolar kagome ice, calculating the heat capacity as a

function of temperature. Inspection of this curve (not shown)
gives the critical temperatures as Tc1 ≈ 140 K and Tc2 ≈ 50 K.
To obtain the low-temperature phase transition, a cluster MC
algorithm was needed (in addition to the usual single site
method) to access the relevant fluctuations of the spin ice I
phase. See Ref. [22] for more details.

III. RESULTS

A. Magnetic moment and charge dynamics

Experimentally, a perfectly charge ordered initial out-of-
equilibrium configuration of the spin ice II phase can be set
by applying a saturating external magnetic field parallel to one
of the three equivalent symmetry axes of the kagome lattice.
When the the external magnetic field is removed, the charged
ordered remnant state relaxes towards the equilibrium spin
ice I phase, allowing us to study the thermally driven nonequi-
librium dynamics [Figs. 2(a)–2(c)]. We find that the relaxation
of the initial out-of-equilibrium spin ice II configuration to the
equilibrium spin ice I phase is driven by the destruction of the
vertex charge order, which can be viewed in terms of the cre-
ation of emergent magnetic monopoles [10,23]. Such emergent
magnetic monopoles are defined as charge defects with respect
to vertex charge order, which gives rise to nonzero values of the
smeared charge density [10] [see inset of Figs. 2(a)–2(c)], and
can only be created as an emergent monopole-antimonopole
pair, connected by a so-called Dirac string [10,23]. A com-
parison of XMCD images and the corresponding smeared
charge-density maps reveals Dirac strings consisting of chains
of reversed magnetic moments transferring magnetic flux from
the negative to the positive charge defects [black lines connect-
ing the blue and red dots in the insets of Figs. 2(a)–2(c)].

The temporal evolution of the moment configuration reveals
that, initially, isolated emergent monopole-antimonopole pairs
are created. These remain confined and immobile due to a strict
obedience to the local ice rule [see insets of Figs. 2(a)–2(c),
Figs. 2(g)–2(j), and also Fig. 3]. Further relaxation involves
the continued creation of such confined emergent monopole
pairs until a density is reached that more closely reflects the
spin ice I phase. As this regime is approached, emergent
magnetic monopoles of opposite sign and from different (but
neighboring) sites annihilate, resulting in a single emergent
monopole/antimonopole pair connected by an extended Dirac
string. An example of this process involving two emergent
monopole/antimonopole pairs is shown in Figs. 2(g)–2(j), with
numerous examples also occurring in Fig. 3. This thermally
active nonequilibrium emergent monopole dynamics is very
different from that observed under athermal field driven condi-
tions where, upon emergent monopole-antimonopole creation,
relaxation is mainly mediated by sequential Dirac string exten-
sion, thus repeatedly violating the ice rule constraint [10,23].

Underlying the emergent monopole dynamics is the disor-
dering of the initially ordered vertex charge configuration.
Because the global vertex charge order configuration has
a degeneracy of two, there can be two local charge order
configurations, which are visualized as either dark or light gray
regions in Figs. 2(d)–2(f). The initially perfect charge ordered
configuration is arbitrarily chosen to be dark gray. Inspection of
Figs. 2(d)–2(f) reveals that, as relaxation proceeds, local light
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FIG. 3. (a–f) Thermal behavior of emergent magnetic monopoles
in artificial kagome spin ice during relaxation to the spin ice
I phase. XMCD images (upper panels), obtained as a function
of time at constant temperature T = 420 K, are shown together
with smeared charge-density maps (lower panels) as well as the
emergent monopole/antimonopole pairs (�Q = +2q,−2q,0 indi-
cated, respectively, by red, blue, and white dots), where the back
lines indicate the connecting Dirac string. It is seen that emergent
monopole defects give rise to a nonzero smeared charge density, as
in the case of athermal field protocols (see Ref. [10]). However,
in contrast to field-driven experiments, each nucleated emergent
monopole/antimonopole pair remains confined and immobile due to
strict ice rule compliance.

gray regions of “opposite” vertex charge order appear, as well
as unshaded regions of local vertex charge disorder. Indeed
as the density of emergent monopole-antimonopole pairs
increases, the initial perfect vertex charge order breaks up into
increasingly smaller domains of alternate (dark and light gray)
vertex order until only short-range vertex charge order remains.

(a) (b)

(c)

FIG. 4. Three local moment configurations differing by a single
moment reversal. The vertex charges are given by the colored balls
where blue corresponds to a vertex charge of −q, red corresponds
to a vertex charge of +q, and black corresponds to a vertex charge
of −3q. Due to the moment reorientation in going from (a) to (b),
there is an exchange of vertex charges and the creation of an emergent
monopole/antimonopole pair with charges �Q = ±2q. This involves
a total change in energy equal to 0.045 eV. The small value reflects the
fact that the configuration remains within the ice sector. The moment
reorientation associated with going from (b) to (c) does, however,
violate the ice rule, giving a much larger total change in energy equal
to 0.302 eV.

The observation of emergent monopole-antimonopole pairs
that remain confined can be explained by the point-dipolar
model described in Sec. II D. The energetics of the local
reorientation of moments, which is required to generate an
emergent monopole-antimonopole pair, are shown in Fig. 4.
To create an initial emergent monopole-antimonopole pair
from the initial out-of-equilibrium spin ice II magnetic state
[Fig. 4(a)], one moment is reoriented [Fig. 4(b)]. As a result,
there has also been an exchange of the neighboring vertex
charge. Via the definitions given in Sec. II C and Ref. [10], this
deviation from perfect vertex charge order creates an emergent
monopole-antimonopole pair bounded by the rectangular
frames in Figs. 4(b) and 4(c).

According to the point-dipolar model described in Sec. II D,
the total change in energy due to this reorientation is 0.045 eV.
In order to propagate one of the emergent magnetic monopoles,
a second moment must reorient to achieve the magnetic state
shown in Fig. 4(c). However, this leads to a violation of the
ice rule (a vertex charge of −3q is created). The total-energy
change associated with this reorientation is 0.302 eV. This
second reorientation, which is the first step to deconfinement
of the pair, is costly in energy and therefore unlikely to occur
at the temperature of 420 K at which the measurements were
performed.

The inability to deconfine is also reflected in the corre-
sponding reorientation rates, which control the dynamics in a
KMC simulation. The rate of occurrence of a particular mo-
ment reorientation is given by 
 = ν0 exp(−E/kBT ), where
E = E0 + 1/2(Ef − Ei)—see Sec. II D. For the reorientation,
which creates the emergent monopole pair at T = 420 K
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FIG. 5. Experimentally obtained moment relaxation at 420 K, characterized by instantaneous (τ = 0) course-grained correlation functions
[Eq. (3)] for the (a) αβ, (b) αγ , (c) αδ, and (d) αν neighbor shells [see Fig. 1(a)], plotted as a function of time t . At t = 0 the artificial kagome
spin ice is in the out-of-equilibrium moment configuration where all moments are aligned in the direction of the applied saturating field shown
in Figs. 2(a) and 2(d) (corresponding to the initial out-of-equilibrium charge ordered state). In all figures, the corresponding connected curves
are four KMC simulated relaxation realizations. The dashed lines correspond to the equilibrium values expected for the spin ice I phase derived
by Wills et al. [7] and also the KMC asymptotes obtained by extending the KMC simulations to up to 2000 min.

[Figs. 4(a) and 4(b)], the corresponding barrier energy is
E = 1.26 + 0.045/2 = 1.2825 eV, giving a rate of 
 =
0.024/min—a value which is characteristic of the reorientation
of an individual moment within the spin ice sector. This
should be compared with the reorientation rate associated with
the ice rule violation [Figs. 4(b) and 4(c)], 
 � 0.0007/min,
arising from the larger barrier energy E = 1.26 + 0.302/2 =
1.411 eV. Thus it will be rare for the deconfinement to occur.
Moreover, if it were to occur, the barrier energy associated with
returning to the nearest-neighbor configuration would be E =
1.26 − 0.302/2 = 1.109 eV, giving a rate of 
 � 3.0/min. In
other words, the deconfined pair would return rapidly to its
initial confined configuration. Both the high-energy barrier
and low reorientation rates explain why deconfinement of the
emergent monopole pairs is not seen.

B. Magnetic moment and vertex charge correlation functions

To quantify the out-of-equilibrium relaxation dynamics,
instantaneous (τ = 0 minutes) moment and vertex charge
correlation functions are extracted from the XMCD images
as a function of time, t , after the saturating magnetic field
is switched off. Using the coarse-grained moment correlation
function up to the third-neighbor shell [see Sec. II B, Eq. (3)],
we observe relaxation in the moment spatial correlation func-

tions to values that start to approach those characteristic of the
spin ice I phase. In Fig. 5, we plot the first-neighbor (CMcg

αβ),
second-neighbor (CMcg

αγ ), and third-neighbor (CMcg
αδ and

CMcg
αν) coarse-grained moment correlations along with the spin

ice I equilibrium values (CMcg
αγ = −0.118, CMcg

αδ = −0.072,
and CMcg

αν = 0.101) originally predicted by Wills et al. [7]
(see also Ref. [9]) using a nearest-neighbor interaction model.
Also shown are the KMC asymptotic values taken directly
from the simulations at approximately 1500 minutes, which
are somewhat larger and consistent with past work taking into
account more distant neighbors [9,11]. Inspection of Fig. 5(a)
reveals a nearest-neighbor correlation of precisely 1/3, con-
firming that the spin ice manifold is never left. The scatter
seen in Figs. 5(b)–5(d) is mainly due to the finite field of view
of the PEEM/XMCD images. An uncertainty associated with
these fluctuations can be estimated by assuming this scatter is
statistically independent and normally distributed. Assuming
a confidence interval of 95%, the derived uncertainties are
included as error bars in Figs. 5(b)–5(d).

For the vertex charge, the corresponding, τ = 0, instanta-
neous nearest- and next-nearest-neighbor correlation functions
CQAB and CQAC are shown in Fig. 6. The initial long-range
charge order entails a nearest-neighbor charge correlation
equal to −1 (each charge has three neighbors of opposite
sign) and a next-nearest-neighbor charge correlation equal to 1.
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FIG. 6. Experimentally observed vertex charge relaxation char-
acterized by instantaneous (τ = 0) correlation functions [Eq. (2)]
plotted as a function of time (t), starting from the initial out-of-
equilibrium charge ordered state shown in Figs. 2(a) and 2(d). The
connected curves of the same color are four corresponding KMC
simulated relaxation realizations. The dashed line associated with
the nearest-neighbor vertex charge correlation indicates the expected
asymptotic behavior of one-third reflecting local charge neutrality.

During relaxation towards the equilibrium spin ice I phase, the
magnitude of the nearest-neighbor charge correlation (CQAB)
decreases and eventually limits to a value of approximately
one-third (see purple horizontal dashed line in Fig. 6). This
reflects the desire of the system to maintain local charge neu-
trality at the scale of any charge and its three nearest neighbors.
In Fig. 6, the next-nearest-neighbor charge correlation (CQAC)
rapidly becomes negligible due to the lack of long-range charge
order of the spin ice I phase. A similar error analysis procedure
as that implemented in Fig. 5 is used to derive an error estimate
for the experimental vertex charge correlation.

KMC simulations of this relaxation process are also shown
in Figs. 5 and 6 and demonstrate good agreement with
experiment for both the moment and charge spatial correlation
functions. These simulations are performed by beginning with
the perfect charge ordered configuration associated with the
moments having a component pointing parallel to one of the
three equivalent symmetry axes of the kagome lattice (as in the
experiment). Four statistically independent KMC simulations
of the relaxation are shown using a sample size similar to the
experimental field of view. It is seen that all simulation data
are well within the confidence limits of the experimental data.

The τ = 0 correlation functions shown in Figs. 5 and 6
are a measure of how the instantaneous structure evolves after
removal of the external field. To see how the magnetic degrees
of freedom decorrelate with the initial out-of-equilibrium spin
ice II configuration, the temporal correlation functions of
Eqs. (1) and (2) are evaluated as a function of τ , with t =
0—the time at which the external magnetic field is switched
off. This is performed for the moment and charge correlation
functions, and for both experiment and simulation. For the
moment relaxation [Fig. 7(a)], the initial values depend on
the τ = 0 moment configuration and the angle between the
moments in each neighbor shell [Eq. (1)]. For the charge
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FIG. 7. Experimentally obtained (a) magnetic moment and (b)
vertex charge correlations [Eqs. (1) and (2)] plotted as a function of
time, τ , with t = 0, starting from the initial out-of-equilibrium charge
ordered state (at τ = 0) shown in Figs. 2(a) and 2(d). In both (a) and
(b), the connected curves are four corresponding KMC simulated
relaxation realizations.

relaxation, the initial sign depends on the initial alternating
charge order between neighbor shells. The time scale at which
these correlation functions decay to zero indicates the point
at which the magnetic structure is statistically decorrelated
from the initial configuration and true equilibrium of the spin
ice I phase is reached. In Fig. 7(a) we demonstrate that, in
terms of the moment degrees of freedom, the last experimental
configuration (at approximately 120 min) is still far from fully
relaxed. Indeed KMC simulations indicate that approximately
1000 min are needed to obtain a well-equilibrated spin ice
I system that is fully decorrelated from the initial out-of-
equilibrium spin ice II configuration.

Inspection of Fig. 5 indicates a characteristic moment
relaxation time of approximately 30 to 40 min. This compares
well to the inverse of a typical moment reorientation rate
which does not break the ice rule. For example, the inverse
rate associated with reorientation in Figs. 4(a) and 4(b) is
1/
 = 1/0.024 ≈ 40 min. By comparing the moment and
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charge relaxation time scales in Figs. 5–7, it can be seen that
the dynamic time scale of the vertex charges is faster than
that of the underlying magnetic moments, which have mostly
relaxed within approximately 20 min. This is compatible
with the notion that for each charge configuration there is a
variety of compatible moment configurations, and therefore
more than one reorientation pathway exists between one
charge configuration and another. Thus the underlying moment
dynamics are expected to result in a faster vertex charge
dynamics.

Closer inspection of Fig. 7(a) reveals differences be-
tween the experimental and simulated moment correla-
tion functions—beyond 60 min the experimental data drop
abruptly. This deviation is also present in the coarse-grained
correlation functions of Figs. 5(b)–5(d), albeit to a lesser
extent, where after 60 min the experimental correlation
functions are approximately constant. The observed deviation
is unlikely to originate from natural variations due to the finite
field of view, since the different KMC simulation realizations
in Figs. 5(b)–5(d) differ to an extent that is much less than the
deviation in the experiment. One possible source of deviation
is the presence of a time-dependent external field at the sample
location, which selects a preferred configuration. In addition
to the Earth’s magnetic field in the PEEM at the Swiss Light
Source, which gives an in-plane component of 13–15 μT,
we have found contributions arising from the sample holder
filament used for heating (measured to be <20 μT) as well
as in the surrounding environment (measured to be <10 μT).
Thus, a sporadic magnetic field of up to 40 μT can be expected
under nominal “zero-field” conditions. Whilst still small, we
have seen from our KMC simulations that such fields can
modify our artificial kagome spin ice, which has a saturation
field of approximately 90 mT. This suggests that external stray
fields varying at the time scale of several tens of minutes could
be responsible for the observed deviation seen in Figs. 5 and 7.

IV. CONCLUDING REMARKS

We have observed the relaxation of a thermally active
mesoscopic kagome ice system from an external-field-selected
initial out-of-equilibrium spin ice II configuration towards the
equilibrium spin ice I phase in a small but non-negligible
external field. The magnetic degrees of freedom are fully
resolvable both spatially and temporarily using x-ray PEEM,

and the dynamics can be understood within the framework of
a model normally associated with microscopic moments. In
particular, we have demonstrated the following:

(1) We can satisfactorily rationalize the observed relaxation
of an initial out-of-equilibrium spin ice II configuration
towards the spin ice I phase with a point-dipolar interaction
[Eq. (4)] between the nanomagnets.

(2) The time scale characterizing vertex charge relaxation
is shorter by a factor of approximately two when compared
to the underlying magnetic moment relaxation (Figs. 5 and
6), reflecting that each charge configuration can arise from a
number of different magnetic moment configurations.

(3) Thermal relaxation from a nonequilibrium spin ice I
configuration, which strictly adheres to the ice rule leading to
emergent magnetic monopole confinement (Fig. 2 and Fig. 3),
is fundamentally different from driven relaxation via athermal
protocols [10,23].

In summary, a thermally active artificial kagome spin ice
system has been realized and studied at a temperature for which
spin ice I is the equilibrium phase. By applying an external
magnetic field, an initial charge ordered out-of-equilibrium
spin ice II configuration is created and allowed to relax under
approximate zero-field conditions. This relaxation has been
quantified through the calculation of spatial and temporal
magnetic moment and vertex charge correlations, and a point-
dipole moment model is found to describe well the observed
relaxation. The present paper demonstrates that thermally
active artificial kagome spin ice can exhibit complex and
collective dynamics, which is well described by a simplified
model system normally associated with microscopic degrees of
freedom. Such thermally active magnetic metamaterials offer
a flexibility not possible in microscopic magnetic systems, and
can be tailor made to address both fundamental and applied
aspects of magnetism.
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