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Gate-controlled ballistic conductance of magnetic nanowires with double point contacts
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Controlling the conductance and current flow through nanostructured magnetic point contacts is a key challenge
for future spintronic devices. This could be achieved by exploiting the Rashba spin-orbit coupling effect induced
by an external gate in the middle of two pinned domain walls at the point contacts. Here, I investigate the electrical
conductance of a half-metallic diluted magnetic semiconductor nanowire with a double point contact exploitable
in switching devices controlled by lateral gate voltage. The coherent quantum interference between forward-
and backward-scattered waves in the spin quantum well formed by the double point contact leads to quasibound
states with finite lifetimes. The energetic position of these quasibound states could be adjusted by the lateral
gate voltage so that the incident energy coincides with one of the quasibound energy levels in the spin quantum
well. Conductance calculations in the presence of an applied electric field perpendicular to the nanowire surface
exhibit typical resonant tunneling behavior, where the nanostructure switches to the low-resistance ON state by
tuning the Rashba coupling strength in the range of a few tens of meV nm. This study paves the way for utilizing
the gate-controlled Rashba spin-orbit coupling effect to design and develop practical spintronic devices.

DOI: 10.1103/PhysRevB.96.064403

I. INTRODUCTION

The study of spin-dependent transport in ferromagnetic
systems containing a domain wall has recently attracted much
attention from both fundamental and technological viewpoints
[1–12]. Special properties of the magnetic domain walls in
controllable generation, manipulation, and detection of spin
polarization have made them suitable candidates for memories
[13] and logic devices [14]. In particular, narrow domain
walls at sharp interfaces or point contacts have been the
subject of many studies as the key components of the next
generation spintronic devices, such as extremely high-density
magnetic recording devices [15–18] and microwave oscillators
[19]. Recent considerable interest in nanoscale domain walls
geometrically trapped in point contacts stems from their
ability to exhibit huge magnetoresistance (zero conductance)
[20–29]. The huge magnetoresistance or so-called ballistic
magnetoresistance (BMR) effect in point contacts can be
explained by the large value of the nonadiabaticity parameter
ξ−1 ≡ ωsdτW for narrow domain walls, in which ωsd = �ex

h̄
is the angular frequency of the pseudo-Larmor precession
of the electron spin about a rotating magnetic field that is
determined by the s − d exchange interaction energy �ex ,
τW = 2d

vF
refers to the time period of the wall magnetization

rotation in the rest frame of an electron moving at the Fermi
velocity vF , and d denotes the wall thickness. The degree
of nonadiabaticity could strongly be enhanced in the limit of
weak exchange coupling (�ex → 0) which is manifested in
diluted magnetic semiconductors. Indeed, the ferromagnetism
found in diluted magnetic semiconductors has opened up
a completely new road to combine magnetism and charge
transport in well-known semiconductor device structures. It
is anticipated that the coupling between ferromagnetism and
electronic transport in semiconductors would make the effect
of magnetism significantly stronger than the corresponding
phenomena observed in metals. Diluted magnetic semicon-
ductors could exhibit half-metallic ferromagnetism, which
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presents ideally zero conductance (infinite magnetoresistance
ratio) or 100% spin-polarized currents at the nanocontacts [30].

The conductance of a narrow domain wall pinned at the
nanocontact can be reproducibly switched between “open”
(zero conductance) and “closed” (nonzero conductance) states
by changing a magnetic field applied perpendicular or parallel
[31–33] to the wire axis. The dependence of the conductance
on the angle of the magnetic field applied to the nanocontact
has already been demonstrated by Shi et al. [34]. They argued
that the modification of the contact configuration by changing
the applied magnetic field could be responsible for abrupt steps
in conductance. Switching the conductance of a half-metallic
diluted magnetic semiconductor nanowire with a double point
contact could be alternatively accomplished by controlling the
distance between the point contacts as reported by Dugaev
et al. [35]. Such a double-point-contact structure exhibits a
resonant conductance, when the Fermi energy matches the
resonant energy levels (quasibound states) of the spin quantum
well formed between the point contacts [35,36]. Nevertheless,
tuning the conductance by changing the distance between
two point contacts is not practically possible since the point
contacts are pinned at their positions. In this paper, I propose an
alternative tuning technique based on the spin-orbit interaction
induced by Rashba effect in a laterally gated spin quantum
well. The energetic position of the quasibound states could
be controlled by a lateral gate voltage applied between two
magnetic point contacts. The dependence of the energy of
these quasibound states on the Rashba spin-orbit coupling
strength is employed to switch the conductance between ON
and OFF states. In the following, the full quantum scattering
theory is utilized to investigate the transmission probability
through diluted magnetic semiconductor nanowire containing
a double point contact. Then, the linear-response conductance
is calculated in the presence of Rashba spin-orbit interaction
induced by an external gate. Finally, a discussion of the results
and conclusions is provided.

II. THEORETICAL CONSIDERATIONS

Full quantum scattering theory is utilized to investigate
the conductance of a half-metallic ferromagnetic nanowire
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FIG. 1. The considered structure of two atomic-size domain walls
between two semi-infinite nanowires with a lateral confinement
potential, arising from the side gate in the system. The magnetizations
of the domain walls could be configured in either parallel or
antiparallel arrangements.

containing two atomic-size domain walls pinned at the
nanocontacts. The general configuration of the two 180◦ head-
to-head domain walls with lateral gate voltage applied between
them is illustrated in Fig. 1. It is assumed that the magnetization
direction depends only on the coordinate along the nanowire,
i.e., the unit vector parallel to the local magnetization is defined
by m(z) = [sin θ (z),0, cos θ (z)], where θ (z) abruptly rotates
counterclockwise from 0 to π at z = −L

2 and then makes a
counterclockwise/clockwise jump from π to 2π at z = +L

2 .
The central section of the nanowire is subjected to the Rashba
spin-orbit interaction brought about by an externally applied
transverse electric field. The one-dimensional Hamiltonian of
the system in the presence of the spin-orbit coupling interaction
can be written as

H = p2
z

2m∗ − �ex σ̂ · m(z) + α(z)

h̄
σ̂ypz, (1)

where �ex is the exchange integral, σ̂ denotes the spin
operators in terms of the Pauli spin matrices, and α(z) =
α0
(z + L

2 )
(L
2 − z) is the Heaviside step function with

Rashba coupling strength parameter (α0). The Rashba spin-
orbit coupling strength can be tuned by means of the lateral
external gate voltage applied between two nanocontacts.
In order to include a position-dependent Rashba field, the
corresponding Hamiltonian can be symmetrized to result in
a Hermitian operator as follows:

HR = α(z)

h̄
σ̂ypz − i

2
α0σ̂y

{
δ

(
z + L

2

)
− δ

(
z − L

2

)}
. (2)

The last term in the above equation ensures that the current
density is continuous across the interfaces. The full wave
functions of an incident carrier with the Fermi energy εF in
the left (L), middle (M), and right (R) regions are


(L)
k,σ (z) = I↑

(
1
0

)
eik↑z + r↑

(
1
0

)
e−ik↑z

+ I↓
(

0
1

)
eik↓z + r↓

(
0
1

)
e−ik↓z, (3a)


(M)
k,σ (z) = I+√

1 + ξ 2+

(
iξ+
1

)
eik+z

+ I−√
1 + ξ 2−

(
1

−iξ−

)
eik−z

+ R+√
1 + ξ 2+

(−iξ+
1

)
e−ik+z

+ R−√
1 + ξ 2−

(
1

iξ−

)
e−ik−z, (3b)

and


(R)
k,σ (z) = t↑

(
1
0

)
eik↑z + t↓

(
0
1

)
eik↓z, (3c)

in which I↑(↓) are the incoming up and down spin-wave in-

tensities, k↑(↓) =
√

k2
F ± k2

ex represents the longitudinal wave

vectors of the spin states at the Fermi surface, and k2
± =

k2
F + 2k2

R ±
√

k4
ex + 4k2

F k2
R + 4k4

R denotes the wave vectors
of the spin states in the middle region. The wave vectors kF ,
kex , and kR are defined as k2

F = 2m∗εF

h̄2 , k2
ex = 2m∗�ex

h̄2 , and kR =
m∗α0

h̄2 . The spin mistracking parameter is then given by ξ± =
2k±kR

k2±−k2
F ±k2

ex

. The coefficients t↑(↓) and r↑(↓) are the transmission
and reflection amplitudes, respectively. The scattering states


(L)
k,σ (z) and 

(R)
k,σ (z) describe the incoming spin waves from

z = −∞ to the right, which are partially reflected and partially
transmitted into the two spin channels. In order to calculate the
transmission amplitudes, I first assume the incoming wave to
be entirely “up” and then consider a purely “down” spin state.

In the case of a sharp domain wall, i.e., kF d 	 1, one
can consider the domain wall as a δ-like potential at z =
±L

2 to calculate the transmission amplitudes. Regarding this
δ-like potential, the first derivative of the scattering wave
functions shows a discontinuity at z = ±L

2 . By integrating
the Schrödinger equation over an infinitesimal region to span
the δ-like potential at the nanocontacts, between z = ±L

2 − ε

and z = ±L
2 + ε where d 	 ε 	 k−1

F , one can find

∂
(M)
k,σ

∂z

∣∣∣∣∣
z=− L

2

= ∂
(L)
k,σ

∂z

∣∣∣∣∣
z=− L

2

−
(

0 kLW + kR

kLW − kR 0

)


(L)
k,σ

∣∣∣
z=− L

2

and

∂
(M)
k,σ

∂z

∣∣∣∣∣
z=+ L

2

= ∂
(R)
k,σ

∂z

∣∣∣∣∣
z=+ L

2

+
(

0 kRW − kR

kRW + kR 0

)


(R)
k,σ

∣∣∣
z=+ L

2

,

in which k
R(L)
W = 2m∗�ex

h̄2

∫ ± L
2 +ε

± L
2 −ε

sin θ (z)dz, which could be

defined as the spin-flip wave vector transfer. Then, the trans-
mission and reflection amplitudes are obtained by matching
the continuity of the spin-wave functions and the above
discontinuity relations at the interfaces.

The transmission coefficients are evaluated as the ratio of
the transmitted to the incident probability current density. The
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probability current density is calculated using the following
form in the presence of the spin-orbit coupling tuned by a gate
voltage:

J = 1

m∗Re{〈|pz + h̄kR(z)σy |〉}, (4)

and subsequently, the transmission coefficients will be ob-
tained as follows:

T pq = J q
t

J p

i

�(kp)�(kq), p,q =↑ and ↓, (5)

in which J ↑(↓)
i and J ↑(↓)

t are incident and transmitted
probability current densities for up and down spin states,
respectively. Then, the total transmission coefficients for the
incoming up and down spin states will be equal to T ↑ =
T ↑↑ + T ↑↓ and T ↓ = T ↓↑ + T ↓↓, respectively. The Heaviside
function �(k↑(↓)) is considered in order to eliminate evanescent
spin-wave functions. In this way, �(k↑(↓)) will be equal to zero
in the case of Im(k↑(↓)) �= 0.

Assuming that the incoming electronic spin is an unpo-
larized statistical mixture, i.e., ρin = 1

2 (|↑〉〈↑| + |↓〉〈↓|), the
output will be obtained by ρout = 1

2 [(T ↑↓ + T ↓↓)|↑〉〈↑| +
(T ↓↑ + T ↑↑)|↓〉〈↓|] [37]. Therefore, the overall transmission
coefficient of the unpolarized electrons will be given by
T = 1

2 (T ↑ + T ↓). In the case reported here, it is not taken
into account the possibility that electrons could be partially
polarized before ballistic transport through the ferromagnetic
material is not taken into account.

At low bias voltage, the domain-wall conductance is
calculated according to the Landauer-Büttiker formalism
[38]. This approach, which is widely used in mesoscopic
physics, expresses the conductance in terms of the transmission
properties of coherent electron states as follows:

G = 2e2

h
T . (6)

So, the MR can be calculated using the following relation:

δρ

ρ0
= −δG

G = G0

G − 1, (7)

in which ρ0 = G−1
0 and G0 = 2e2

h
(�(k↑)+�(k↓)

2 ) is the conduc-
tance of the nanowire without the domain wall.

III. RESULTS AND DISCUSSION

In the calculations, I considered a diluted magnetic semi-
conductor Ga1−xMnxAs nanowire consisting of a double sharp
domain wall separated by a distance L. The ferromagnetic
semiconductors Ga1−xMnxAs with typical spin splitting en-
ergy �ex = 50 meV [39], and the valence hole effective
mass m = 0.47 (in units of the free electron mass m0) can
exhibit half-metallic ferromagnetic behavior with 100% spin-
polarized currents at the Fermi level 2mεF = (3π2h̄3p)

2/3
for

the hole concentration p � 1.65 × 1019 cm−3. In this case,
εF < �ex , the incoming minority spin would have a negative
kinetic energy and transmission is blocked in ferromagnetic
regions [40]. Instead, the holes in the majority spin states are
able to tunnel through the potential barrier formed between
two magnetic domain walls.

FIG. 2. The transmission probability through a double domain
wall plotted as a function of the separation distance between two
domain walls L in the presence of the spin-flip potential for the cases
where the magnetizations of the two domain walls are antiparallel
(solid line), parallel (dashed line), and in the absence of the spin-flip
potential (dotted line). The parameters used in the calculations are
d = 0.5 nm, �ex = 50 meV, p = 1 × 1019 cm−3, and α0 = 0. The
resonance peaks for the parallel and antiparallel aligned structures
coincide with each other at larger distances.

The dependence of the transmission probability on the
domain-wall separation distance is shown in Fig. 2 for
parallel and antiparallel aligned magnetic nanocontacts. The
probability of transmission in the absence of the spin-flip
potential is also depicted for more qualitative discussion.
As can be seen, in the limit L → 0, the incoming holes
from the left lead can pass through the structure without any
scattering in the antiparallel case where the two opposing spin-
flip potentials cancel each other out, while they experience
reflection by the nonzero effective spin-flip potential in the
parallel aligned domain walls. In the absence of the spin-flip
mechanism, the majority carriers traveling through a sharp
domain wall cannot change their spin orientation and hence
are effectively reflected from the exchange potential barrier.
In this case, the majority spin holes in the left lead actually
become the minority holes in the middle ferromagnetic region
that they would not be allowed to transmit, so transport of
holes would occur through nonresonant tunneling. It should
be noted that the exchange potential becomes zero in the limit
L → 0, and unity transmission is obtained. On the other hand,
the majority spin holes that experience spin-flip scattering in
transmission through the first domain wall remain the majority
spin holes that propagate in the middle ferromagnetic region
and would be either reflected or transmitted at the interfaces.
As a result, a set of the plane-wave functions is formed that
would be transmitted back into the left lead, resulting in either
constructive or destructive interference. The degree to which
these wave functions can cancel each other out is determined
by the separation distance between the two domain walls. For
some values of L, the interference is completely destructive, so
the unity transmission corresponding to resonant tunneling is
obtained. The resonance peaks corresponding to those values
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FIG. 3. The transmission probability through a double domain
wall with antiparallel configuration plotted as a function of the
separation distance L between two domain walls for different values
of the domain-wall thickness d . The other parameters are as in Fig. 2.

of L for which r↑ = ±t↑ are spaced approximately �L ∼= nπ
k↑

apart, which is the same as the Bragg condition in a periodic
medium.

The transmission probability as a function of L for different
values of the domain-wall thickness d is also depicted in Fig. 3.
It reveals a slight shift and broadening of the resonance peaks
with increasing the domain-wall thickness. Thick domain
walls exhibit smooth spin-flip potentials at which adiabatic
spin-flip scattering would take place. The adiabatic spin-flip
transition facilitates carrier tunneling and leads to broadening
of the transmission resonance peaks. Also, spatial spread of the
exchange potential by the domain-wall thickness contributes
to the peak shift.

The quantum confinement of the spin-down holes (majority
spins of the middle region) in the double-domain-wall structure
leads to the formation of discrete energy levels in the
energy range ε ≡ [−11]�ex . It is found that the resonant
transmissions are associated with the excitation of these
quasibound states localized in the finite exchange potential
well, or so-called spin quantum well. The spin-down quantum
levels are coupled to the continuous energy levels of the leads
via spin-flip transmission and reflection amplitudes, namely,
t↑ and r↑. A possible escape to the leads is responsible
for the broadening of these quasibound levels and hence a
finite lifetime (τ ), which is determined by the spin-mixing
parameter �L(R) = k

L(R)
W d for the domain walls residing in

the nanocontacts. The energetic position of these quasibound
states as well as their finite lifetimes can be calculated from
the probability of tunneling through the spin quantum well.
Figure 4 shows the contour plot of the transmission probability
as a function of incident energy εF and separation distance
L for different gate bias voltages. The logarithm of the
transmission probability versus incident energy εF is plotted
in the right panels of Fig. 4 for spin-up carriers traveling
through the double-domain-wall structure with antiparallel
configuration for L = 5,10 nm.
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FIG. 4. Left panels: Contour plot of the transmission probability
as a function of the incident energy εF and separation distance L

for different lateral gate bias voltages corresponding to the Rashba
parameters α0 = 0 meV nm (upper) and α0 = 50 meV nm (lower).
Right panels: The logarithm of the transmission probability through
the double-domain-wall structure as a function of energy for fixed
separation distances L = 5 nm and L = 10 nm. The domain-wall
thickness is d = 0.5 nm, and the spin splitting energy and the hole
density are �ex = 50 meV and p = 1 × 1019 cm−3, respectively.

At near-zero biasing voltage, the broadening of the reso-
nance peaks at high energy levels is clearly observed, which
can be demonstrated by the fact that the higher localized states
leak rapidly out of the middle region into the leads. Obviously,
at the finite Rashba coupling strength, the transmission peaks
show a broadening and redshift (toward lower energy). It
should be pointed out that applying the lateral gate voltage
tunes the Rashba spin-orbit coupling strength in consistence
with the well-known relation between α0 and average electric
field E = −〈∂V/∂x〉: α0 = eγR〈∂V/∂x〉. It has been shown
that the average value of intrinsic surface potential gradient
〈∂V/∂x〉 is of the order of 1mV/Å [41]. Taking into account
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FIG. 5. Logarithmic conductance of the double-domain-wall
structure as a function of the Rashba spin-orbit coupling strength
for the domain-wall separation distances L = 5 nm, L = 10 nm, and
L = 15 nm.
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FIG. 6. Logarithmic conductance of the double-domain-wall
structure as a function of Fermi energy for the domain-wall separation
distances L = 5 nm (top), L = 10 nm (middle), and L = 15 nm
(bottom). Resonance peaks for two antiparallel sharp magnetic
domain walls in the presence of the Rashba spin-orbit interaction
are shifted to lower energies.

the γR = 5 − 500Å
2

for III-V semiconductors [42], the value
of the intrinsic Rashba strength can vary in the range of a
few meV nm to a few tens of meV nm. On the other hand,
tuning the Rashba spin-orbit coupling strength is also possible
via biasing with a top gate. It has been demonstrated that
the Rashba coupling strength can be enhanced up to 50% by
the gate field [43]. In particular, electrolyte gating with only
1 V of gate bias voltage could make the Rashba coefficient
6 times larger [44]. Using the lowest value for γR , the data
in Fig. 4 (lower panels) correspond to the highest value for
E ≈ 10 MV/cm, experimentally generated at the surface of
the nanowire in the electrolyte gating. The gate-controlled
Rashba spin-orbit interaction would induce spin precession
of the hole tunneling through the spin quantum well with a
spin-dependent phase shift �ϕ = ±kRL. This phase shift is
responsible for the modulation of the quantum interference
at the well boundaries that would change the energetic
positions of the quasibound levels in the resonant tunneling.
Moreover, the spatial discontinuity of the Rashba spin-orbit
coupling imposes an additional spin-flip wave-vector transfer
±kR to the majority (minority) carriers impinging on the
walls at the nanocontacts. Indeed, the Rashba spin-orbit
interaction manipulates the spin-mixing parameter as �L(R) =

d(kL(R)
W ± kR) for the incoming majority (minority) carriers in

the antiparallel aligned domain walls. As a consequence, the
spin-mixing parameter increases as a function of the lateral
gate voltage for pure spin-up incident holes and thus broadens
the resonance peaks of the transmission.

According to the Landauer-Büttiker formula, the ballistic
conductance G is related to the transmission probability
T at the Fermi energy in the linear-response regime. The
conductance of the double-domain-wall structure is shown in
Fig. 5 as a function of the Rashba spin-orbit coupling strength.
As shown, the first sharp resonant peak of the conductance
shifts toward the lower values of the Rashba parameter as
the separation distance between two nanocontacts increases.
For a given double-domain-wall structure with parameters
d = 0.5 nm, p = 1 × 1019 cm−3, and �ex = 50 meV, the
conductance curves show two sharp resonance peaks at points
α0 ≈ 78 meV nm, α0 ≈ 70 meV nm and α0 ≈ 31.7 meV nm
for domain-wall separation distances L = 5 nm, L = 10 nm,
and L = 15 nm, respectively. As can be seen in Fig. 6,
these points correspond to those values of Rashba coupling
strength that push the energetic position of the quasibound
states downwards until one of them coincides with the Fermi
energy.

IV. CONCLUSION

In summary, the influence of the gate-controlled Rashba
spin-orbit coupling on the tunneling conductance of a half-
metallic magnetic semiconductor nanowire which contains
a double point contact has been investigated in the ballistic
regime. The quantum confinement of the holes between
two pinned domain walls at the point contacts leads to the
formation of the quasibound states. The resonance peaks in the
transmission probability as well as the conductance spectrum
have been observed near the energies of the quasibound
states. It has been shown that the spin precession of the hole
tunneling through the spin quantum well could be controlled
by the lateral gate voltage or the electric field via the effective
magnetic field generated by the Rashba spin-orbit interaction.
It has been found that the induced phase shift due to the Rashba
spin-orbit interaction is responsible for the modulation of the
quantum interference at the well boundaries that would change
the energetic positions of the quasibound levels in the resonant
tunneling. Furthermore, the spin-mixing parameter which
determines the lifetime of the quasibound states is changed due
to the spatial discontinuity of the Rashba spin-orbit interaction
at the well boundaries. Such findings highlight the potential
use of lateral gate voltage to switch the conductance of a
double-point-contact device as an active component of new
spintronic devices.
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