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Hopping processes explain linear rise in temperature of thermal conductivity in thermoelectric
clathrates with off-center guest atoms
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Type-I clathrate compounds with off-center guest ions can be used to realize the concept of phonon-glass
electron-crystal because they exhibit lattice thermal conductivities κL that are almost identical to those observed
in network-forming glasses. This is in contrast with type-I clathrates with on-center guest ions, which show κL of
conventional crystalline structures. Glasslike κL stems from the peculiar THz frequency dynamics in off-center
type-I clathrates, in which there appear three kinds of modes classified as extended, weakly localized (WL) and
strongly localized (SL) modes, as demonstrated by Liu et al. [Phys. Rev. B 93, 214305 (2016)]. Our calculated
results based on the hopping mechanism of SL modes via anharmonic interactions show fairly good agreement
with the observed T-linear rise of κL above the plateau at a few tens Kelvin. We emphasize that both the magnitude
and the temperature dependence are in accord with the experimental data of off-center type-I clathrates.
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I. INTRODUCTION

Lattice thermal conductivity constitutes a key element to
improve the efficiency of thermal-to-electrical conversion in
thermoelectric (TE) devices as understood from the material’s
figure of merit describing the efficiency Z = S2σ/κtot (K−1).
The numerator contains the Seebeck coefficient S(T ) (V/K)
and the electrical conductivity σ (T ) [1/(�m)], while the
denominator κtot(T ) [W/(mK)] consists of the sum of electrical
κel and lattice κL thermal conductivity. Hence, the high
performance of thermoelectricity can be achieved for materials
with the lowest possible thermal conductivity κtot, the highest
possible electrical conductivity σ , and the highest possible
Seebeck coefficient S. Provided that the Wiedemann-Franz
law κel(T ) ∝ σ (T ) holds, κL becomes a crucial parameter to
improve the performance of TE conversion. In this framework,
Slack [1] has proposed the concept of a “phonon-glass
electron-crystal”. This has been one of the guiding principles
for exploring high-performance TE materials [2,3].

Type-I clathrates with “off-center” guest ions, such as
R8Ga16Ge30 (R = Ba,Sr,Eu) [4–9], Ba8Ga16Sn30 [10,11], and
Sr8Ga16Si30−xGex [12], are particularly interesting in this
respect since these systems exhibit lattice thermal conductiv-
ities that are almost identical to those of structural glasses,
which consist of four specific regions characterized by (i)
T ∼2 dependence below a few Kelvin, (ii) the plateau region
between a few K and a few 10 K, (iii) the subsequent rise
proportional to T, and (iv) its saturation above T ∼ 100 K.
These characteristics of κL exhibit a remarkable uniformity that
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appears to be insensitive to chemical compositions, suggesting
the existence of a unified mechanism [13]. However, this issue
remains an open and challenging problem due to the difficulty
to identify relevant entities or elements at the atomistic level
caused by their complex microscopic structures. Surprisingly
enough, though “off-center” clathrates are crystalline with
regularly network structure, the temperature dependence as
well as the magnitudes of their thermal conductivities are
almost identical to those of structural glasses over the full
temperature range. In contrast, type-I clathrates with “on-
center” guest ions show conventional crystalline κL [2].

This paper is organized as follows. Section II surveys
the characteristics of vibrational modes according to the
results of the spectral density of states, eigenvalues, and their
eigenvectors [14]. We claim in this section that the onset of
the plateau is due to the delocalization-localization (weak
localization) transition of acoustic modes. In addition, we
point out that the temperature region showing the subsequent
T-linear rise is associated with the energy range where strongly
localized (SL) modes are fully excited. Section III describes
the construction of the anharmonic interaction Hamiltonian
between SL and extended modes. The second-quantized form
of the anharmonic Hamiltonian is given in Sec. IV. In Sec. V,
a theory is developed regarding the mechanism governing the
T-linear rise of κL(T ) above a few 10 K. Excited modes in
this temperature region are mostly SL modes satisfying the
Ioffe-Regel condition, as is evident from the mode pattern
obtained by large-scale numerical simulations [14]. These
are hybridized modes between acoustic phonons associated
with network cages and local vibrations of guest ions in
cages. Based on this numerical evidence, we explain in a
quantitative manner κL(T ) proportional to T by introducing
the quantum-mechanical process of hopping of SL modes
due to anharmonic interactions, first proposed for fracton
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FIG. 1. (a) Illustration of type-I clathrate. The fourfold in-
version axes are directed along the x, y, and z axes. Red and
blue balls represent off-center guest ions in tetrakaidecahedron
cages and centered guest ions in dodecahedron cages, respectively.
(b) Two off-center guest ions along the y axis are depicted. (c) The
configuration of eight-nearest-neighbor guest ions connected by an
equilateral triangle. The sites A, B, and C in (c) are seated on
the chains parallel to x, y, and z, respectively: A = (a/4,0,a/4),
B = (0,a/4,3a/4), and C = (a/2,a/2,a/2). (d) The molecular unit
composed of a tetrakaidecahedron cage with off-center guest ion (2)
at a 24k site and a smaller dodecahedral cage with guest ion (1) at a
2a site.

excitations [15]. Summary and conclusions are given in
Sec. VI.

II. CHARACTERISTICS OF EXCITED PHONONS
IN THE THZ FREQUENCY REGION

Type-I clathrates form a primitive cubic structure (Pm3̄n)
consisting of 6 tetrakaidecahedron (14-hedrons) and 2 dodec-
ahedron (12-hedrons) per unit cell, in which the group-I or -II
elements in the Periodic Table are encaged in the polyhedrons
as guest ions. See Fig. 1. The THz frequency phonon dynamics
of off-center type-I clathrates has been investigated in terms
of large-scale numerical simulations. They have illustrated
type-I Ba8Ga16Sn30 (BGS) exhibiting glasslike κL(T ) as a
prototype material with off-center guest ions, in which the
guest ion Ba(2) in a tetrakaidecahedron cage has mass m, and
the molecular unit composed of one tetrakaidecahedron and
1/3 dodecahedron has total mass M excluding the off-center
guest ion. The coarse-grained picture, an operation of reducing
the degrees of freedom of the original system, is valid for our
purposes due to the following reasons. First of all, extended
acoustic modes at THz frequencies play a dominant role in heat
transport since optical modes concerning to the vibrations of
cages themselves do not contribute to thermal conductivity.
Second, the wavelength λ of phonons in the frequency regime
ν � 2.5 THz (E � 10 meV) becomes λ � 1.6 nm, which is
larger than the size of a unit cell of a0 � 1 nm in type-I
clathrates, as estimated from the relation λ = v/ν using the
sound velocity v ≈ 4 × 103 m/s. These validate the coarse-
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FIG. 2. (a). Calculated phonon density of states (DOS) of off-
center type-I BGS for the system size of 99 × 99 × 99 under a
periodic boundary condition. (b) Calculated participation ratio P (εq )
defined in Eq. (1) as a function of eigenenergy εq in the energy range
marking by the blue shadow in (a) for the system size of 20 × 20 × 20
under a periodic boundary condition.

grained Hamiltonian for describing THz frequency dynamics
rather than treating all microscopic constituents as equally
relevant degrees of freedom.

Extremely large system sizes are required in computer sim-
ulations on disorder systems in order to distinguish localized
modes from extended modes. However, the present status of
first-principles calculations (FPC) is limited to insufficient sys-
tem sizes for properly incorporating the disorder attributed to
off-centeredness of guest atoms in off-center type-I clathrates
consisting of a unit cell with “54” atoms. Thus, it is difficult
not only to include realistic disorder reproducing glasslike
thermal conductivities, but also to exclude the finite-size
effect for propagating acoustic phonons. Liu et al. [14] have
performed calculations for three-dimensional (3D) systems
of (20 × 20 × 20) ∼ (100 × 100 × 100) molecular units, for
which they have employed a powerful numerical method
called the forced oscillator method [16,17]. They have also
studied the localization nature of excited modes by taking the
participation ratio (PR) as a criterion. The PR of a relevant
mode {ϕ	(εq); 	 = 1,2, . . . ,N} belonging to the eigenenergy
εq is defined by

P (εq) =
(∑N

	=1 |ϕ	(εq)|2)2

N
∑N

	=1 |ϕ	(εq)|4 , (1)

where 	 denotes the 	th molecular unit depicted in Fig. 1(d),
and N is the total mode number. For extended modes, P (εq)
take values close to ≈0.6 when εq �= 0, and P (εq) becomes
≈1/N for SL modes [18]. Figure 2(a) is the calculated phonon
density of states (DOS), and Fig. 2(b) shows the results of
P (εq) for the size of a 20 × 20 × 20 lattice of off-center type-I
BGS. It is remarkable that P (εq) ranges from a value of
SL modes P (εq) ≈ 0 to extended modes of P (εq) ≈ 0.6. We
should emphasize that there appear three kinds of modes in
the THz frequency region and below, classified into extended,
weakly localized (WL), and SL modes. SL modes with PR
values much smaller than unity are realized in the energy
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FIG. 3. The mode pattern of SL modes belonging to the eigenen-
ergy εq = 2.6 meV. Both the color scale and the cubic size indicate
the strength of amplitudes at each site. The mode pattern is obtained
from the system size 20 × 20 × 20 under a fixed boundary condition.

range from 2 to 3 meV as found from calculated mode patterns.
Figure 3 depicts the mode patterns of a SL mode at εq = 2.6
meV.

The calculations of the PR for excited modes depicted
in Fig. 2 have demonstrated that there is a delocalization-
localization transition at a “finite” frequency ωc distinguishing
extended and WL modes with the nature of acoustic modes
vibrating “in-phase” between guest ions and cages. Further-
more, it has been found [14] that WL modes convert to SL
modes at higher frequencies with the nature of optical modes
vibrating “out-of-phase” between guest ions and cages. In this
aspect, we note that Nakayama [19] had demonstrated the
clear existence of the transition from WL to SL modes for the
quasi-one-dimensional (1D) coarse-grained model consisting
of a host network and guest atoms connected by random
springs. It was found [19] that WL modes vibrate in-phase
between network atoms and guest atoms, while SL modes
manifest optical modes vibrating out-of-phase. However, there
are no extended modes due to the “quasi-1D” model. This
manifests the Anderson weak-localization criteria where the
critical frequency ωc takes a finite value in 3D systems while
it vanishes for 1D and 2D systems, suggesting there are no
extended modes in 1D and 2D disordered systems. The quasi-
1D model [19] should be thought of as the simplest theoretical
model for cage-guest systems with broad implications for the
dynamics of those systems.

The observed delocalization-localization transition at εq ≈
1.3 meV is in agreement with the observed onset temperature
of the plateau of κL in BGS at TP ≈ 1.3 meV/3.84kB ≈ 3.9 K
as estimated from Wien’s displacement law for lattice thermal
conductivities. Due to the weak localization of acoustic modes,
the contribution of extended phonons “saturates” at TP for off-
center type-I BGS. We note here that the random orientation
of guest ions in cages plays a crucial role in the localization.

FIG. 4. The definition of the position vectors: R	 + r	(t) is the
position vector of the 	th molecular unit at time t , where R	 is
the equilibrium position of the 	th cage center, and the vector r	(t)
represents a small displacement from R	 at time t . The position vector
of the guest ion(2) is defined by the vector R	 + U	 + u	(t), where
U	 is the equilibrium position of guest ion(2) from R	, and u	(t) is a
small displacement from R	 + U	.

With increasing temperature further above a few 10 K, κL

shows a linear rise in temperature [2]. These types of anoma-
lous thermal conductivities have been clearly observed in
off-center type-I clathrates [4,5,7,8,10–12]. SL modes are fully
excited above the temperature T � 10 K ≈ 3 meV/3.84kB

from Wien’s displacement law. This indicates that the T-linear
rise can be attributed to the excitations of SL modes. In the
following sections, we present a theoretical interpretation of
the underlying mechanism of the linear rise on temperature
above the plateau region for κL.

III. COARSE-GRAINED HAMILTONIAN FOR TYPE-I
OFF-CENTER CLATHRATES

A. Harmonic Hamiltonian

The Hamiltonian for off-center type-I clathrates under
a coarse-grained picture consists of the kinetic energy of
networked cages KC and off-center guest ions in cages KG

in addition to the potential energy of the cage-cage interaction
VCC and the cage-guest interaction VCG. This is expressed by

H0 = KC + KG + VCC + VCG. (2)

The explicit form of the total kinetic energy is given by the
sum of KC and KG such as

K = 1

2

∑
	

[M ṙ	(t)2 + mu̇	(t)2], (3)

where m and M are masses of the guest ion in a tetrakaidec-
ahedron cage and the remaining molecular unit, respectively.
The vectors r	(t) and u	(t) represent small displacements of
cage and guest ions from their equilibrium positions, R	 and
R	 + U	, at the site 	 as depicted in Fig. 4. Note here that guest
ions take random orientation U	(φ	) in tetrakaidecahedron
cages.

The molecular unit composed of a tetrakaidecahedron and
a dodecahedron is elastically connected with neighboring ones
by the force constants f‖,f⊥. These are related to the sound
velocities of longitudinal (μ = ‖) and transverse (μ =⊥)
acoustic modes via the relation vμ = a[fμ/(m + M)]1/2 with
a = a0/2, where a0 is the lattice spacing of the primitive cubic
structure (Pm3̄n) of type-I clathrates. Thus, we can estimate
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the force constants f‖,f⊥ from the observed data of sound
velocities. Note here that six molecular units are included in
the unit cell in type-I clathrates. In terms of these quantities,
the potential energy of network cages becomes

VCC =
∑

	′>	,μ

f	,	′,μ

2
[r	,μ(t) − r	′,μ(t)]2, (4)

where μ = ‖, ⊥ , ⊥′. Hereafter, we keep up to the nearest-
neighbor coupling (	′ = 	 + 1) between molecular units,
which are denoted by f‖, f⊥, and f⊥′ . The effect of randomly
orientated guest ions is included in the following cage-guest
interaction Hamiltonian.

The Hamiltonian should satisfy the symmetry of infinites-
imal translation invariance as a whole, i.e., r	 = u	 = δa,
which guarantees acoustic phonons as the Nambu-Goldstone
boson with the eigenfrequency ωk → 0 for k → 0. This
symmetry principle also holds for the potential of cage-guest
interaction. Hence, the potential function for the cage-guest
interaction VCG should be given by relative coordinates
between the cage and the guest ion of w	(t) = u	(t) − r	(t),
which is expressed by

VCG =
∑

	,m=in,out

ξm

2
w2

	,m(t), (5)

where ξm represents the force constants between the cage
and the guest ion depending on in-plane (parallel) or out-
of-plane motion (perpendicular) to the hexagonal face in
the tetrakaidecahedron cage. The guest ions execute in-plane
vibration parallel to the x-y plane in addition to out-of-plane
motions [10] because of the anisotropic shape of tetrakaideca-
hedron cages, which distinguishes the vibrations of off-center
guest ion(2) in the plane parallel and perpendicular to the
hexagonal face of the cage. Mori et al. [20] observed by means
of THz time-domain spectroscopy that the lowest-lying peak of
off-center BGS at 0.71 THz splits into double peaks, ωφ

0 /2π =
0.5 THz and ωr

0/2π = 0.72 THz, for off-center type-I BGS
below T � 100 K. These spectra should be assigned to the
libration and stretching modes of Ba(2) associated with ξφ and
ξr . The peak around 1.35 THz is assigned as the out-of-plane
motion of Ba(2) to the hexagonal faces of a tetrakaidecahedron,
which should be concerned with ξθ . The Raman spectra of
off-center Sr8Ga16Ge30 (SGG) have shown the A1g stretching
mode as 48 cm−1, and for off-center Eu8Ga16Ge30 (EGG) as
36 cm−1 at 2 K [21]. Using these data, we can estimate the
force constants via the relation ξr,(φ,θ) = m′ω2

r,(φ,θ), where m′

is the reduced mass defined by 1/m′ = 1/M + 1/m.
By taking account of this aspect, the quasiharmonic Hamil-

tonian valid at T � 100 K, attributed to coupled vibrations
between cages and guest atoms, can be expressed in vector
form as

VCG = 1

2

∑
	

ξr (Û	 · w‖,	 )
2 + 1

2

∑
	

ξφ(Û	 × w‖,	 )
2

+ 1

2

∑
	

ξθ (w⊥ ,	)2, (6)

where Û	 = (Û x
	 ,Û

y

	 ) is the unit vector for the vector U	.
{φ	} and {θ	} represent the azimuthal and the polar angle in

spherical coordinates. The effect of a “random” orientation
of guest ions {φ	} induced by off-centeredness is involved in
{U	}. The relation between off-centeredness and disorder in
Eq. (6) is described in detail in the supplemental material [22].

B. Anharmonic coupling between acoustic
phonons and SL modes

When acoustic modes (LA and TA) are propagating along
networked cages, the cages are distorted and these change the
states of guest ions, which are realized via the change of the
force constants ξr and ξφ in Eq. (6). The in-plane (stretching
and libration) modes are sensitive to temperature/pressure
compared with out-of-plane modes as shown in the optic
spectroscopy data below T � 100 K [20,21]. Thus, the
anharmonic effect between acoustic modes and in-plane modes
in the first and the second terms in Eq. (6) becomes relevant in
comparison with the third term. The expansions of ξr and ξφ

with respect to the strain tensor eαβ for α,β = x,y,z provide

ξr,(φ) = ξ
(0)
r,(φ) +

∑
α=x,y,z

Dr,(φ)eαα +
∑

α,β=x,y,z

α �=β

Sr,(φ)eαβ + · · · .

(7)

Here the coefficients are defined by Dr,(φ) =
∂ξr,(φ)/∂eαα and Sr,(φ) = ∂ξr,(φ)/∂eαβ(α �=β), where
eαβ = 1/2(∂uα/∂xβ + ∂uβ/∂xα) is the component of
the strain tensor. It should be noted that eαα expresses the
compression or expansion, and eαβ(α �=β) expresses the shear
distortion. The expansion in Eq. (7) leads to the following
anharmonic interaction, expressed in vector form as

V ′
CG = 1

2

∑
	,α �=β

(Dreαα + Sreαβ)(Û	 · w‖,	)2

+ 1

2

∑
	,α �=β

(Dφeαα + Sφeαβ)(Û	 × w‖,	)2. (8)

Here we note that Eq. (8) satisfies the condition of infinitesimal
translational invariance as a whole; V ′

CG → 0 under the long-
wavelength limit kμ → 0. We emphasize again that Eq. (8)
is valid at temperatures T � 100 K where the guest atoms
execute coupled vibrations with cages [20,21], while at T �
100 K, κL(T) saturates without exhibiting the appreciable
T dependence, where guest atoms behave like rattlers in
cages termed by the “rattling” motion, where the concept of
vibrational modes is invalid [20,21].

IV. THE SECOND-QUANTIZED FORM
OF THE INTERACTION HAMILTONIAN

A. Acoustic phonons resulting from networked cages

Provided that extended acoustic phonons with wavelengths
λ much larger than the lattice spacing a0 propagate through
networked cages, the molecular units and guest ions vibrate
“in phase.” The displacement at site 	 is expressed by the sum
of plane waves as given by

r	(t) =
∑
kμ

√
h̄

2ρωkμ

êkμ

(
φkμ

(R	)b†kμ
(t) + H.c.

)
. (9)
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Here the symbols b
†
kμ

(bkμ
) express the creation (annihilation)

operator for an acoustic phonon of the mode (kμ) with
μ =‖ , ⊥, which represent longitudinal and transverse modes,
respectively. The vector R	 expresses the equilibrium position
of the 	th molecular unit as depicted in Fig. 4, and H.c.
denotes the Hermitian conjugate. The mass density is defined
as ρ = 6(m + M)/a3

0 with the size of the unit cell of a0 since
six molecular units are involved in the unit cell of type-I
clathrates. See Sec. I in the supplemental material [22] for
details on the definitions employed in this paper.

The function φkμ
(R	) in Eq. (9) takes the form

φkμ
(R	) =

√
1

V
eikμ·R	 . (10)

The normalization condition for φkμ
(R	) is given by∫ ∣∣φkμ

(R	)
∣∣2

d R	 = 1. (11)

B. SL modes due to guest ions

Figure 3 provides the mode belonging to the eigenenergy
εq = 2.6 meV obtained for the system size 20 × 20 × 20.
This mode pattern indicates that the localization length Lλ is
comparable with the wavelength 2π/kλ, i.e., localized within
several molecular units, manifesting the Ioffe-Regel condition
of strong localization. On the basis of these numerical findings,
we can express the form of SL modes in terms of the relative
coordinate w	(t) = ul(t) − r l(t) as

w	(t) =
∑

λ

√
h̄

2m′ωλ

êλ(ψλ(R	)c†λ(t) + H.c.). (12)

Here the mass m′ is the reduced mass defined by 1/m′ =
1/M + 1/m, where M is the mass of the molecular unit given
in Fig. 1, much larger than the mass of the guest ion m, e.g.,
M = 6.01m for off-center type-I BGS. The symbol c

†
λ (cλ)

represents the creation (annihilation) operator for the localized
mode λ. We put forward the ansatz for the amplitude ψλ(R	)
of the form

ψλ(R	) = A cos[kλ · (R	 − Rλ)]e−|R	−Rλ|/Lλ, (13)

where Rλ represents the center of the SL mode λ. This
wave function has vanishing group velocities vg characterizing
localized modes.

The prefactor A in Eq. (13) can be determined from the
normalization condition of∑

	

| ψλ(R	) |2= 1

�

∫
d R	 | ψλ(R	) |2= 1, (14)

where � = V/N is the volume of the molecular unit depicted
in Fig. 1(d). This yields, by combining with the Ioffe-Regel
condition,

A ∼=
√

2�

πL3
λ

. (15)

The above has been obtained by using the formula
cos2(k · R) = [cos(2k · R) + 1]/2. According to the Ioffe-
Regel condition k ≈ 2π/Lλ, the first term in the integral

becomes negligible compared with the second term since the
first term yields a rapidly oscillating function in the integrand.
This leads to Eq. (15). Thus, the normalized wave function of
the SL mode λ becomes

ψλ(R	) =
√

2�

πL3
λ

cos[kλ · (R	 − Rλ)]e−|R	−Rλ|/Lλ . (16)

C. Anharmonic Hamiltonian between SL
and extended modes

We consider here the effect of incoming extended acoustic
phonons with the polarization vector êkμ

to SL modes with the
polarization vectors êλ′ and êλ′′ . These are included in Eq. (8) as
the scalar product (êλ′ · Û	)(êλ′′ · Û	) and the product (êλ′ ×
Û	) · (êλ′′ × Û	). At first, we fix the direction of the wave
vector of incoming extended phonons kμ, and later we include
the contributions from three components of the wave vector kμ.
We should note that the deformation (normal or shear strain)
of cages resulting from incoming acoustic phonons occurs in
every direction of the polarization vector of SL modes, which
provides both the interaction between the same polarization
and different polarizations of SL modes, as shown below.

The second-quantized anharmonic Hamiltonian is obtained
by substituting Eqs. (9) and (12) into Eq. (8) by using the
relations given in Sec. II in the supplemental material [22]. The
product of the field operators bkμ

cλ′cλ′′ consists of eight terms.

The two involving the combinations b
†
kμ

c
†
λ′c

†
λ′′ and bkμ

cλ′cλ′′

are irrelevant to the hopping processes because they do not
conserve the total energy. Furthermore, the other two terms
b
†
kμ

cλ′cλ′′ and bkμ
c
†
λ′c

†
λ′′ do not contribute to the scattering

processes since the energies of extended modes are smaller
than those of SL modes. Hence, the relevant second-quantized
anharmonic Hamiltonian for the process on extended + SL →
SL is given by

H ′
CG =

∑
kμ,λ′,λ′′

(
Akμ,λ′,λ′′bkμ

cλ′c
†
λ′′ + H.c.

)

+
∑

kμ,λ′′′,λ′′′′

(
Bkμ,λ′′′,λ′′′′bkμ

cλ′′′c
†
λ′′′′ + H.c.

)

+
∑

kμ,λ′,λ′′′

(
Ckμ,λ′,λ′′′bkμ

cλ′c
†
λ′′′ + H.c.

)
, (17)

where Akμ,λ′,λ′′ is associated with the interaction between the
modes with the x polarization, Bkμ,λ′′′,λ′′′′ corresponds to the
interaction between the y polarization, and Ckμ,λ′,λ′′′ corre-
sponds to the interaction between two different polarizations.
See Fig. 5.

By taking the unit vectors x̂,ŷ,ẑ the same as the directions
of the polarizations ê‖,ê⊥,ê⊥′ of extended acoustic modes, we
have

Akμ,λ′,λ′′

= −1

4

∑
l

i

√
h̄

2ρωkμ

√
h̄

2m′ωλ′

√
h̄

2m′ωλ′′

×φkμ
ψλ′ψλ′′ [(Dr + Dφ)k‖δμ,‖ + (Sr + Sφ)k⊥δμ,⊥],

(18)
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(a) (b)

FIG. 5. The diagrams showing the hopping process for SL modes
arising from anharmonic interaction between SL modes and extended
modes: (a) SL → extended + SL and (b) extended + SL → SL. The
solid lines denote the SL mode and the wavy lines the extended mode.

and the term on Bkμ,λ′′′,λ′′′′ becomes the same as Akμ,λ′,λ′′ by
setting (λ′,λ′′ −→ λ′′′,λ′′′′). The last one should be

Ckμ,λ′,λ′′′

= − 1

π

∑
l

i

√
h̄

2ρωkμ

√
h̄

2m′ωλ′

√
h̄

2m′ωλ′′′

×φkμ
ψλ′ψλ′′′ [(Dr − Dφ)k‖δμ,‖ + (Sr − Sφ)k⊥δμ,⊥].

(19)

The squared quantity on Eq. (18) is given by

A2
kμ,λ′,λ′′ = CI 2

1

V L3
λ′L

3
λ′′

1

ωkμ
ωλ′ωλ′′

× [(Dr + Dφ)k‖δμ,‖ + (Sr + Sφ)k⊥δμ,⊥]2, (20)

where the coefficient C is defined as

C = h̄3�2

25ρm′2 . (21)

The expression of B2
kμ,λ′′′,λ′′′′ takes the same form as

A2
kμ,λ′,λ′′ since they both correspond to the interaction

between SL modes with the same polarization, while
C2

kμ,λ′,λ′′′ corresponding to the interaction between dif-

ferent polarizations has an additional factor (4/π )2 and
[(Dr − Dφ)k‖δμ,‖ + (Sr − Sφ)k⊥δμ,⊥]2.

V. HOPPING PROCESS

A. Relaxation time of SL modes

This subsection gives the formula for the relaxation time of
a SL mode due to the scattering process extended + SL → SL
(hopping process) together with its reverse process shown in
Fig. 5 by applying the Fermi golden rule. To obtain the total
transition rate of the SL mode in λ′, we have to incorporate
all four processes for each polarization as given below. These
provide the decay of the Bose-Einstein distribution function
nλ′ for the occupied state λ′,

dnλ′

dt
= 2π

h̄2

∑
kμ,λ′′

∣∣Akμ,λ′,λ′′
∣∣2[

nλ′′
(
1 + nkμ

)
(1 + nλ′)

− nkμ
nλ′(1 + nλ′′ )

]
δ(ωλ′′ − ωλ′ − ωkμ

)

+ ∣∣Akμ,λ′′,λ′
∣∣2[

nkμ
nλ′′ (1 + nλ′) − nλ′

(
1 + nkμ

)
× (1 + nλ′′ )]δ(ωλ′ − ωλ′′ − ωkμ

)

+ [
Akμ,λ′,λ′′ −→ Ckμ,λ′,λ′′′ ,λ′′ −→ λ′′′]. (22)

We consider, at first, the decay due to the hopping process
between the same polarization, i.e., the contribution from the
first two terms of Eq. (22). By separating the distribution
function into two parts, n = n(0) + n(1), where n(0) is the Bose-
Einstein distribution function in an equilibrium state and n(1) is
its deviation due to the scattering processes, and by employing
the relaxation-time approximation, dn

(1)
λ′ /dt = −nλ′ (1)/τλ′ , we

have the inverse of relaxation time from Eq. (22) for the same
polarization process,

1

τ same
λ′

∼= 2π

h̄2

CI 2
1

V L6

∑
kμ,λ′′

1

ωkμωλ′ωλ′′

× [(Dr + Dφ)k‖δμ,‖ + (Sr + Sφ)k⊥δμ,⊥]2

× [
δ(ωλ′′ − ωλ′ − ωkμ)

(
n

(0)
kμ − n

(0)
λ′′

)
+ δ(ωλ′ − ωλ′′ − ωkμ)

(
1 + n

(0)
kμ + n

(0)
λ′′

)]
, (23)

where the explicit form of the summation I1 arising from the
overlapping of wave functions ψλ′ and ψλ′′ is given by

I1 =
∑

	

e−ikμ·Rl cos[kλ′ · (Rl − Rλ′)]e−|R	−Rλ′ |/Lλ′

× cos[kλ′′ · (Rl − Rλ′′)]e−|R	−Rλ′′ |/Lλ′′ . (24)

The above sum I1 can be reduced, by taking the origin of the
sum as Rλ′ = 0 and the nearest-neighbor position from the
origin as Rλ′′ = �Rλ′′ , to

I1 =
∑

	

f (R	)f (R	 − �Rλ′′ )e−ikμ·R	 , (25)

where the even function f (X	) is defined as

f (X	) = cos(kλ′ · X	) e−|X l |/Lλ′ . (26)

Since the localization lengths of SL modes are the same,
e.g., Lλ′ ∼= Lλ′′ , hereafter we denote this as L. As f (X	) is
concerned with SL modes, the relevant sum should be made in
the region | X	 |� L, so we can approximate the summation
by

I1
∼= 1

�

∫
|X	|<L

d R	f (R	)f (R	 − �Rλ′′)e−ikμ·R	

∼= 1

�

∫
|X	|<L

d R	 e
−|R	 |−|R	−�R

λ′′ |
L e−ikμ·R	

×
[

1

2
cos (2kλ′ · R	 − kλ′ · �Rλ′′) + 1

2
cos (kλ′ · �Rλ′′)

]

∼= |�Rλ′′ |πL2 1

2�
e−|�Rλ′′ |/L, (27)

where we have used the approximation cos(kλ′ · �Rλ′′ ) ≈
cos(kλ′nL) ≈ 1 from the Ioffe-Regel condition L ≈ 2π/kλ′

for SL modes and e−ikμ·R	 ≈ 1 due to | kμ |� 2π/L for the
wave number of extended acoustic modes. The term containing
cos (2kλ′ · R	 − kλ′ · �Rλ′′) becomes negligible since it yields
a rapidly oscillating function in the integrand.

This gives the squared hopping integral of the form

I 2
1 �

(
π�Rλ′′L2

2�

)2

e−2�Rλ′′ /L, (28)

where �Rλ′′ is the hopping distance.
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In the temperature regime T � a few 10 K, i.e., kBT >

h̄ωλ′ ,h̄ωλ′′ > h̄ωkμ, the inverse of the relaxation time takes the
following form under the above conditions and by employing
the linear dispersion relation for the extended phonon mode
ωkμ = vμkμ,

1

τ same
λ′

∼= 2πkBT (Dr + Dφ)2CI 2
1

h̄3V L6v2
‖

×
∑
k‖,λ′′

[
δ(ωλ′′ − ωλ′ − ωk‖)

ω2
λ′′

+ δ(λ′ � λ′′)
ω2

λ′′

]

+ [2 × (D −→ S, ‖−→⊥) in the above]. (29)

Here the coefficient C is defined in Eq. (21). We have
omitted the temperature-independent term providing only
small contributions.

B. Thermal conductivity due to the hopping of SL modes

In the previous subsection, we have formulated the relax-
ation rate of SL modes due to the anharmonic interaction
between SL modes and extended modes. This is a quantum
process realizing the decay of the SL′ mode to the SL′′ mode as-
sisted by the extended mode: SL′ + extended → SL′′. Without
anharmonic interaction, SL modes cannot diffuse/contribute
to thermal transport. This means that the plateau region
should continue at higher temperatures after its emergence,
i.e., the contribution from extended modes to lattice thermal
conductivity is saturated at higher temperatures due to the weak
localization of acoustic modes, as explained in Sec. II. Thus,
the T-linear rise of κL(T ) cannot recover without anharmonic
interaction between SL modes and extended modes.

In addition, we emphasize that disorder, induced by off-
centeredness as shown in the supplemental material [22], is
essential to generate the hopping of SL modes. This occurs
only in the case in which the SL′ mode belonging to the
eigenfrequency ωSL′ can hop to a site of the SL′′ mode with
a different eigenfrequency ωSL′′ via absorption or emission
of the extended mode with finite frequency ±(ωSL′ − ωSL′′ ).
This finite frequency is created by level repulsion between
eigenfrequencies due to disorder, i.e., localized modes never
belong to the same eigenfrequency according to the level
repulsion.

Let us provide the formula of κL(T ) due to the diffusion
process, where SL modes serve as primary heat carriers. In this
process, the characteristic length scale should be the hopping
distance �Rλ′′ from the site of the SL′ mode to that of the
SL′′ mode, and the characteristic time scale is the relaxation
time τλ′ of the SL′ mode. This leads to the following formula
of the lattice thermal conductivity due to the hopping process,
which was first proposed for fracton excitations by Alexander
et al. [15],

κhop(T ) = 1

3V

∑
λ′

Cλ′(T )
�R2

λ′′

τλ′
, (30)

where �R2
λ′′/τλ′ is the thermal diffusivity of the SL mode λ′,

and Cλ′(T ) is the specific heat associated with the SL mode λ′.
In the high-temperature regime T � a few 10 K, the specific
heat follows the Dulong-Petit relation of the form Cλ′(T ) = kB

per the mode λ′. Note that 1/τλ′ = 1/τ same
λ′ + 1/τ dif

λ′ . We first

calculate the hopping process between the same polarization
by

κsame
hop (T ) = kB

3V

∑
λ′

�R2
λ′′

τ same
λ′

. (31)

The substitution of Eq. (29) into Eq. (31) together with Eq. (28)
yields

κsame
hop (T ) ∼= kB

3V 2

π3kBT (Dr + Dφ)2C

2h̄3v2
‖L2�2

∑
k‖,λ′,λ′′

�R4
λ′′

ω2
λ′′

× e−2�Rλ′′ /L[δ(ωλ′′ − ωλ′ − ωk,‖) + δ(λ′ � λ′′)]

+ [2 × (D −→ S, ‖−→⊥) in the above]. (32)

Transforming the sum
∑

kμ
for extended phonon modes to

the integral V/(2π )3
∫

dkμ = V/(2π2v3
μ)

∫
ω2

kμ
dωkμ

, we have

κsame
hop (T ) = πk2

BT C

12h̄3V �2L2

[
(Dr + Dφ)2

v5
‖

+ 2
(Sr + Sφ)2

v5
⊥

]

×
∑
λ′′,λ′

�R4
λ′′e

−2�Rλ′′ /L (ωλ′′ − ωλ′)2

ω2
λ′′

. (33)

The sum on λ′ and λ′′ above should include the density of
states of SL modes DSL(ωλ′) and DSL[ωλ′′(�Rλ′′)] for the
same polarization process. The volume � should contain
two independent SL modes corresponding to two independent
in-plane mode, say, stretching or libration, in the bandwidth of
�ωsl, which leads to

DSL(ωλ′)��ωsl = 2 (34)

and

DSL[ωλ′′(�Rλ′′)]��ωsl = 1, (35)

where the volume � contains at least one possible SL mode λ′′
with the same (different) polarization as (from) mode λ′. Since
the term �R4

λ′′e−2�Rλ′′ /L in Eq. (35) achieves its maximum at
�Rλ′′ = 2L and it decays fast with further increasing of �Rλ′′ ,
the sum of λ′′ could be estimated within the sphere region
�Rλ′′ � �R,

∑
λ′′,λ′

�R4
λ′′e

−2�Rλ′′ /L (ωλ′′ − ωλ′)2

ω2
λ′′

∼=
4π
3 �R32V

�2
�R4e−2�R/L × (10−2). (36)

Here the sum on SL modes is done by
∑

λ′′ =
4π�R3/3

∫ ωsl+�ωsl

ωsl
D[ωλ′′(�Rλ′′)]dωλ′′ and

∑
λ′ =

V
∫ ωsl+�ωsl

ωsl
D(ωλ′)dωλ′ , where the factor 4π�R3/3�

from Eq. (35) means the total number of hopping sites
from λ′ to λ′′ for the same polarization process, and
2V/� from Eq. (34) is the total number of λ′ contributing
to the thermal conductivity κhop. The numerical factor
10−2 arises from the magnitude estimation of the integral∫ ωsl+�ωsl

ωsl
dωλ′

∫ ωsl+�ωsl

ωsl
dωλ′′ (ωλ′′ −ωλ′ )2

�ω2
slω

2
λ′′

.
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The formula of the thermal conductivity due to the hopping
mechanism between the same polarization is given by

κsame
hop (T ) = π2k2

BT �R7

144ρm′2�2L2
e−2�R/L(10−2)

×
[

(Dr + Dφ)2

v5
‖

+ 2
(Sr + Sφ)2

v5
⊥

]
. (37)

The same procedure for the hopping process due to
anharmonic interaction between different polarizations leads
to

κdif
hop(T ) = 42k2

BT �R7

144ρm′2�2L2
e−2�R/L(10−2)

×
[

(Dr − Dφ)2

v5
‖

+ 2
(Sr − Sφ)2

v5
⊥

]
. (38)

The total thermal conductivity due to the hopping mechanism
is given by the sum of these components as

κhop(T ) = κsame
hop (T ) + κdif

hop(T ). (39)

C. Evaluation of anharmonic coupling constants D and S

Here we estimate the anharmonic coupling constants Dr(φ) and
Sr(φ) by illustrating type-I BGS. The coupling constants Dr (Sr )
and Dφ(Sφ) are associated with the stretching and libration
motion of guest-cage vibrations identified by the force constant
ξr and ξφ in Eq. (6) by the relation ξr(φ) = m′ω2

r(φ), where m′

is the reduced mass defined by 1/m′ = 1/m + 1/M . In our
coarse-grained Hamiltonian introduced in Sec. III, the guest
ion Ba(2) in the tetrakaidecahedron cage has mass m, and
the molecular unit composed of 1 tetrakaidecahedron and 1/3
dodecahedron has total mass M excluding the off-center guest
ion.

We first evaluate the coupling constants Dr(φ) from the
Raman spectroscopy data of the pressure dependence [23].
The Dr can be related to the pressure P by

Dr = ∂ξr

∂eαα

= 3B
∂ξr

∂ωr

∂ωr

∂P
= 3B(2m′ωr

0)
∂ωr

∂P
. (40)

Here B = �P
(�V/V ) is the bulk modulus, where the dilation is

given by �V/V = ∑
α eαα for cubic structure. The coupling

constant Dφ can be defined in a similar manner to Eq. (40) as

Dφ = ∂ξφ

∂eαα

= 3B
(
2m′ωφ

0

)∂ωφ

∂P
. (41)

In the pressure range from 0.8 to 5.8 GPa, the Eg mode
spans from 20 to 27 cm−1, while for T2g mode it ranges
from 17 to 27 cm−1. The observed spectra of these two
modes are overlapped/mixed, indicating the narrowing of the
spectra with increasing pressure. Taking account of these
aspects, we have ∂ωr/∂P = 2π × 4.2 × 1010 s−1 GPa−1 and
∂ωφ/∂P = 2π × 6.0 × 1010 s−1 GPa−1. We then obtain the
coupling constants Dr = m′π2 × 3.0 × 1025 kg s−2 and Dφ =
m′π2 × 3.0 × 1025 kg s−2 using the observed bulk modulus
B = 41.3 GPa [24]. To the best of our knowledge, the
experiment data for estimating the coupling coefficients Sr(φ)

are not available, so we assume Sr ≈ Dr and Sφ ≈ Dφ at the

present stage. The above coupling constants yield

κhop = 3.3 × 10−3T (W m−1 K−1), (42)

where we have employed the values of parameters in Eq. (39)
as the localization length L = 2a0, the hopping distance
�R = 3.5L, the volume of molecular unit � = (a0)3/6, the
lattice spacing a0 = 11.68 Å, and the mass density ρ =
6.01 × 103 kg/m3, in addition to the velocities of acoustic
phonons v‖ = 3369 m/s and v⊥ = 1936 m/s [9]. The value of
κhop in Eq. (42) is smaller than the observed value of κhop =
9.2 × 10−3T (W m−1 K−1) for type-I BGS. This mainly arises,
as will be demonstrated below by means of FPC, from the
underestimated shear coupling constants Sr(φ) obtained by
assuming the relations Sr(φ) ≈ Dr(φ).

Due to the lack of experiment data for the shear coupling
coefficients Sr(φ), we have performed FPC for type-I BGS to
obtain the coupling constants from the shift of eigenfrequen-
cies at the �-point of the low-lying optical mode by imposing
strain to the cage structure. The normal strain is isotropic
and defined as eαα = (a0 − a)/a0, where a0 and a are the
lattice constant for the unstrained and strained unit cell [25],
respectively. The shear strain is also isotropic and defined as
eαβ = [1 − √

1 − (2 cos θ − 1) cos θ ]/(2 cos θ − 1), where θ

is the acute angle between edges after deformation.
We have performed the FPC using the VASP code [26] with

the Perdew-Burke-Ernzerhof functional and the PAW method
[27], the plane-wave cutoff energy 250 eV, and the force
convergence less than 10−7 eV/Å. The phonon frequencies
are calculated using the PHONOPY code [28] with the 4 × 4 × 4
Monkhorst-Pack k grids and for a unit cell containing 54 atoms.
The coupling constants obtained from normal strain are Dr =
m′π2 × 2.1 × 1025 kg s−2, Dφ = m′π2 × 1.5 × 1025 kg s−2,
and from a sheared unit cell they are Sr = m′π2 × 4.2 ×
1025 kg s−2, Sφ = m′π2 × 2.9 × 1025 kg s−2, respectively. The
Dr(φ) are smaller than those estimated from the Raman spec-
troscopy data of pressure dependence, though Sr(φ) are larger
than the values obtained from the assumption Sr(φ) ≈ Dr(φ).
The above coupling constants yield the thermal conductivity
due to the hopping of SL modes of

κhop = 4.8 × 10−3T (W m−1 K−1). (43)

We remark here that our FPC provides the results for the
on-center positioned Ba(2) because the optimization for off-
center structure is quite time-consuming and may require
us to take into account the dipole-dipole interaction due to
off-centeredness and the temperature effect. The on-center
structure gives rise to the underestimated coupling constants
S since on-center guest ions should respond more weakly to
shear distortion than off-center guest ions. Then, the actual
Sr(φ) should be larger than the above estimation. Under
these situations, the calculated value in Eq. (43) provides
sufficient agreement to claim the relevance of the hopping
process of SL modes, with the observed κhop = γ T with
γ = 9.2 × 10−3 W m−1 K−2 for type-I BGS [9,10] and γ =
9.0 × 10−3 W m−1 K−2 for type-I EGG [8]. For type-I SGG,
several different values around γ ∼ 8.0 × 10−3 W m−1 K−2

have been reported [4–6,12], indicating that the experimental
data of SGG depend on sample qualities according to synthesis
methods. In that respect, it has been reported [6] that a
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flux-grown sample shows a glasslike plateau, while a zone-
melted sample has a crystalline peak.

VI. SUMMARY AND CONCLUSIONS

Off-center type-I clathrates show lattice thermal conductiv-
ities κL that are almost identical to those of structural glasses
[4,5,7,8,10–12]. In addition, off-center type-I clathrates show
the excess density of states at THz frequencies manifesting
the boson peak that are identical to those of network-forming
glasses [9–11]. These indicate that the symmetry-broken guest
ions in cages take charge of the emergence of glasslike
κL(T ). In structural glasses, many key aspects of a detailed
quantitative description are still missing. This is due to the
difficulty in identifying relevant entities or elements at the
atomic scale caused by their complex microscopic structures.

In Sec. II, we have pointed out that the PR shown in Fig. 2
provides evidence that extended acoustic phonons carrying
heat convert to WL modes at ∼1.3 meV in off-center BGS.
This energy corresponds to the temperature 3.9 K ≈ 1.3
meV/3.84kB from Wien’s displacement law, so that this
conversion should be associated with the onset of the plateau
observed at several K in off-center type-I clathrates [4,5,7–12].

With further increasing temperature, thermal conductivities
above a few 10 K show a linear rise in temperature. This is one
of the prominent hallmarks of glasslike thermal conductivity
since crystals with translational invariance never show these
features. Rather, lattice thermal conductivities of crystalline
structures decrease with increasing temperature proportional
to κ(T ) ∝ 1/T [29].

The theoretical elucidation of the linear rise in temperature
“above” the plateau region has been the main subject of the

present paper. Our calculated results given in Sec. V, based
on the hopping process, show fairly good agreement with
observed thermal conductivities. We emphasize in particular
that the anharmonic coupling constants obtained from FPC
yield a remarkable agreement with the experimental data of
κ(T ) in both the magnitude and the temperature dependence
[4,5,7–12]. At much higher temperatures, the T-linear rise in
κ(T ) does not continue, but κ(T ) saturates above T � 100 K
[8–10,12]. In this temperature regime, the treatment based on
the quantum-mechanical process does not hold because the
lifetime of the excited modes becomes much smaller than the
inverse of their frequencies, where the guest ions become free
from the constraint of atoms constituting cages. This subject
will be discussed elsewhere.

In conclusion, the phenomenon of the T-linear rise of κL(T )
above a few 10 K in off-center type-I clathrates has been
explained quantitatively by analytic theory on the grounds that
off-center clathrates possess definite microscopic structure.
Our successful quantitative clarification is due to the fact that
the systems are more tractable than network-forming glasses
which are difficult to identify relevant constituents at the atom-
istic level caused by their complex microscopic structures.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China Grants No. 11334007 and No. 51506153.
J.Z. is supported by the program for Professor of Special
Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning No. TP2014012. T.N. acknowledges the
support from a Grant-in-Aid for Scientific Research from the
MEXT in Japan, Grant No. 26400381.

[1] G. A. Slack, in CRC Handbook of Thermoelectrics, edited by
D. M. Rowe (CRC, Boca Raton, FL, 1995), pp. 407–440.

[2] For example, see the review T. Takabatake, K. Suekuni, T.
Nakayama, and E. Kaneshita, Rev. Mod. Phys. 86, 669 (2014),
and references therein.

[3] M. Beekman, D. T. Morelli, and G. S. Nolas, Nat. Mater. 14,
1182 (2015).

[4] G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Appl.
Phys. Lett. 73, 178 (1998).

[5] J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A.
Slack, Phys. Rev. Lett. 82, 779 (1999).

[6] S. Christensen, M. S. Schmokel, K. A. Borup, G. K. H. Madsen,
G. J. McIntyre, S. C. Capelli, M. Christensen, and B. B. Iversen,
J. Appl. Phys. 119, 185102 (2016).

[7] S. Paschen, W. Carrillo-Cabrera, A. Bentien, V. H. Tran, M.
Baenitz, Y. Grin, and F. Steglich, Phys. Rev. B 64, 214404
(2001).

[8] B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and
D. Mandrus, Phys. Rev. B 63, 245113 (2001).

[9] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka,
and T. Takabatake, Phys. Rev. B 74, 125109 (2006).

[10] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka,
S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901
(2008).

[11] K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T.
Nakagawa, and T. Takabatake, Phys. Rev. B 77, 235119 (2008).

[12] K. Suekuni, M. A. Avila, K. Umeo, and T. Takabatake, Phys.
Rev. B 75, 195210 (2007).

[13] See, for example, T. Nakayama, Rep. Prog. Phys. 65, 1195
(2002).

[14] Y. Liu, Q. Xi, J. Zhou, T. Nakayama, and B. Li, Phys. Rev. B
93, 214305 (2016).

[15] S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. B
34, 2726 (1986).

[16] M. L. Williams and H. J. Maris, Phys. Rev. B 31, 4508 (1985);
K. Yakubo, T. Nakayama, and H. J. Maris, J. Phys. Soc. Jpn. 60,
3249 (1991).

[17] See, for example, T. Nakayama and K. Yakubo, Phys. Rep. 349,
239 (2001).

[18] J. B. Suck, M. Schreiber, and P. Häussler, Quasicrystals: An
Introduction to Structure, Physical Properties and Applications
(Springer, Berlin, 2002), pp. 403.

[19] T. Nakayama, Phys. Rev. Lett. 80, 1244 (1998); T.
Nakayama and N. Sato, J. Phys.: Condens. Matter 10, L41
(1998).

[20] T. Mori, K. Iwamoto, S. Kushibiki, H. Honda, H. Matsumoto,
N. Toyota, M. A. Avila, K. Suekuni, and T. Takabatake, Phys.
Rev. Lett. 106, 015501 (2011).

064306-9

https://doi.org/10.1103/RevModPhys.86.669
https://doi.org/10.1103/RevModPhys.86.669
https://doi.org/10.1103/RevModPhys.86.669
https://doi.org/10.1103/RevModPhys.86.669
https://doi.org/10.1038/nmat4461
https://doi.org/10.1038/nmat4461
https://doi.org/10.1038/nmat4461
https://doi.org/10.1038/nmat4461
https://doi.org/10.1063/1.121747
https://doi.org/10.1063/1.121747
https://doi.org/10.1063/1.121747
https://doi.org/10.1063/1.121747
https://doi.org/10.1103/PhysRevLett.82.779
https://doi.org/10.1103/PhysRevLett.82.779
https://doi.org/10.1103/PhysRevLett.82.779
https://doi.org/10.1103/PhysRevLett.82.779
https://doi.org/10.1063/1.4948334
https://doi.org/10.1063/1.4948334
https://doi.org/10.1063/1.4948334
https://doi.org/10.1063/1.4948334
https://doi.org/10.1103/PhysRevB.64.214404
https://doi.org/10.1103/PhysRevB.64.214404
https://doi.org/10.1103/PhysRevB.64.214404
https://doi.org/10.1103/PhysRevB.64.214404
https://doi.org/10.1103/PhysRevB.63.245113
https://doi.org/10.1103/PhysRevB.63.245113
https://doi.org/10.1103/PhysRevB.63.245113
https://doi.org/10.1103/PhysRevB.63.245113
https://doi.org/10.1103/PhysRevB.74.125109
https://doi.org/10.1103/PhysRevB.74.125109
https://doi.org/10.1103/PhysRevB.74.125109
https://doi.org/10.1103/PhysRevB.74.125109
https://doi.org/10.1063/1.2831926
https://doi.org/10.1063/1.2831926
https://doi.org/10.1063/1.2831926
https://doi.org/10.1063/1.2831926
https://doi.org/10.1103/PhysRevB.77.235119
https://doi.org/10.1103/PhysRevB.77.235119
https://doi.org/10.1103/PhysRevB.77.235119
https://doi.org/10.1103/PhysRevB.77.235119
https://doi.org/10.1103/PhysRevB.75.195210
https://doi.org/10.1103/PhysRevB.75.195210
https://doi.org/10.1103/PhysRevB.75.195210
https://doi.org/10.1103/PhysRevB.75.195210
https://doi.org/10.1088/0034-4885/65/8/203
https://doi.org/10.1088/0034-4885/65/8/203
https://doi.org/10.1088/0034-4885/65/8/203
https://doi.org/10.1088/0034-4885/65/8/203
https://doi.org/10.1103/PhysRevB.93.214305
https://doi.org/10.1103/PhysRevB.93.214305
https://doi.org/10.1103/PhysRevB.93.214305
https://doi.org/10.1103/PhysRevB.93.214305
https://doi.org/10.1103/PhysRevB.34.2726
https://doi.org/10.1103/PhysRevB.34.2726
https://doi.org/10.1103/PhysRevB.34.2726
https://doi.org/10.1103/PhysRevB.34.2726
https://doi.org/10.1103/PhysRevB.31.4508
https://doi.org/10.1103/PhysRevB.31.4508
https://doi.org/10.1103/PhysRevB.31.4508
https://doi.org/10.1103/PhysRevB.31.4508
https://doi.org/10.1143/JPSJ.60.3249
https://doi.org/10.1143/JPSJ.60.3249
https://doi.org/10.1143/JPSJ.60.3249
https://doi.org/10.1143/JPSJ.60.3249
https://doi.org/10.1016/S0370-1573(00)00115-0
https://doi.org/10.1016/S0370-1573(00)00115-0
https://doi.org/10.1016/S0370-1573(00)00115-0
https://doi.org/10.1016/S0370-1573(00)00115-0
https://doi.org/10.1103/PhysRevLett.80.1244
https://doi.org/10.1103/PhysRevLett.80.1244
https://doi.org/10.1103/PhysRevLett.80.1244
https://doi.org/10.1103/PhysRevLett.80.1244
https://doi.org/10.1088/0953-8984/10/2/002
https://doi.org/10.1088/0953-8984/10/2/002
https://doi.org/10.1088/0953-8984/10/2/002
https://doi.org/10.1088/0953-8984/10/2/002
https://doi.org/10.1103/PhysRevLett.106.015501
https://doi.org/10.1103/PhysRevLett.106.015501
https://doi.org/10.1103/PhysRevLett.106.015501
https://doi.org/10.1103/PhysRevLett.106.015501


XI, ZHANG, CHEN, ZHOU, NAKAYAMA, AND LI PHYSICAL REVIEW B 96, 064306 (2017)

[21] Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila,
K. Suekuni, I. Ishii, T. Suzuki, and T. Takabatake, Phys. Rev. B
74, 174303 (2006).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.96.064306 for the relation between off-
centeredness and disorder in Eq. (6).

[23] T. Kume, T. Sukemura, S. Nakano, S. Sasaki, K. Suekuni,
and T. Takabatake, Photon Factory Activity Report No. 32,
2014, 2015 (retrive from http://pfwww.kek.jp/acr/2014pdf/
part_b/pf14b0145.pdf); T. Sukemura, T. Kume, T. Matsuoka,
S. Sasaki, T. Onimaru, and T. Takabatake, J. Phys.: Conf. Ser.
500, 182022 (2014).

[24] I. Ishii, Y. Suetomi, T. K. Fujita, K. Suekuni, T. Tanaka, T.
Takabatake, T. Suzuki, and M. A. Avila, Phys. Rev. B 85, 085101
(2012).

[25] J. Chen, J. H. Walther, and P. Koumoutsakos, Nano Lett. 14, 819
(2014).

[26] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

[27] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[28] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
[29] E. M. Lifshitz and L. P. Pitaevskii, in Physical Kinetics (Elsevier,

Amsterdam, 1979), Chap. 68.

064306-10

https://doi.org/10.1103/PhysRevB.74.174303
https://doi.org/10.1103/PhysRevB.74.174303
https://doi.org/10.1103/PhysRevB.74.174303
https://doi.org/10.1103/PhysRevB.74.174303
http://link.aps.org/supplemental/10.1103/PhysRevB.96.064306
http://pfwww.kek.jp/acr/2014pdf/part_b/pf14b0145.pdf
https://doi.org/10.1088/1742-6596/500/18/182022
https://doi.org/10.1088/1742-6596/500/18/182022
https://doi.org/10.1088/1742-6596/500/18/182022
https://doi.org/10.1088/1742-6596/500/18/182022
https://doi.org/10.1103/PhysRevB.85.085101
https://doi.org/10.1103/PhysRevB.85.085101
https://doi.org/10.1103/PhysRevB.85.085101
https://doi.org/10.1103/PhysRevB.85.085101
https://doi.org/10.1021/nl404182k
https://doi.org/10.1021/nl404182k
https://doi.org/10.1021/nl404182k
https://doi.org/10.1021/nl404182k
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021



