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energy in the driven spin-boson model
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We investigate the conditional average and the conditional variance of dissipated energy considering, as a
prototypical example, a driven spin-boson system. We follow a measurement protocol in which the spin is
prepared in a certain initial state before undergoing a periodic driving. Subsequently, the spin is projected onto
a postselected final state. We compare the conditional average of dissipated energy to the lower bound, which
directly follows from the well-known fluctuation relations. We further report that a special selection of the initial
(preselected) and final (postselected) spin states leads to an enhanced energy emission with simultaneous noise
suppression at driving times of order of the relaxation time.
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I. INTRODUCTION

Recent developments in control and measurement tech-
niques of mesoscopic quantum circuits are expected to open
an avenue towards the thermodynamics in the quantum regime
[1]. In the last few years, it turned out that mesoscopic
quantum circuits offer suitable tools to study modern topics
of thermodynamics and statistical physics, such as fluctuation
relations [2–7] and the information thermodynamics [8–13].
It is now well recognized that in quantum systems, basic
quantities of thermodynamics such as work have to be carefully
defined, since they are intimately related to the measurement
problem [5,14]. A prototypical setup to measure work [15]
consists of a driven two-level system, i.e., a qubit, coupled
to a bosonic heat bath. In this setup, the work is related
unambiguously to the amount of heat emitted to the bath, which
works as a calorimeter. However, since a single-photon emis-
sion or absorption process effectively performs a projective
measurement of the qubit [16], the coherence would be lost as
the number of photons increases. Therefore, in order to detect
a signature of the quantum coherence in this setup, one would
need a high-precision calorimeter to resolve a single photon. In
the last few years, precise thermometry techniques aiming at a
single-photon detection have advanced dramatically [17–19].

In parallel with these developments, theoretical studies
of this setup have also been advanced [20–26]. Currently,
various effects related to the fluctuation relations are being
discussed. So, the non-Markovian effect induced by a strong
qubit-bath coupling [20] and that induced by a nonequilibrium
subsystem [21] have been analyzed. The effects of incomplete
measurements caused by discarding a subsystem [22] and by
a “dark” heat bath [23] are investigated. A finite-size heat bath
is also being considered [24,25], for a realistic model of a
calorimeter. In the regime of strong coupling driving-induced
coherences are reflected in the energy flow [26].

In our previous work [27], we analyzed this setup from a
different point of view. That is, we found that, with a proper
postselection, the probability distribution of the dissipated
energy contains significant corrections indicating quantum
coherence. We also demonstrated the quantum version of
the detailed fluctuation relation [28], which holds for the
probability distribution of dissipated energy ε conditioned

by the initial and the final qubit states |iS〉 and |fS〉. From
an experimental point of view, it would be less demanding
to measure lower-order cumulants rather than the probability
distribution itself. In the present paper we focus on the first
two cumulants, i.e., the average and the noise. We analyze
the general structure of the conditional average and variance
depending on the choice of initial and final states. In particular,
we find that interesting results occur when the system is
driven off resonance. For certain values of the detuning �,
the conditional average can even become negative. Another
interesting effect is observed in the case of the preselected
state being exited |e〉 while the postselection state is the ground
state |g〉. In this case, we show that, for finite detuning, the
conditional average of energy reaches its maximum while the
conditional variance is minimized.

Although our analysis focuses on the intermediate time
scales of order of the relaxation time, most of the observed
affects are attributed to the classical part of the characteristic
function (for a precise definition see Sec. IV and Ref. [27]).
The time-independent part of the latter turns out to be very
sensitive to the pre- and postselected spin states.

Concerning the effect of quantum coherences on the
conditional average of the dissipated energy, our analysis
shows that quantum contributions may still be detectable at
elevated temperatures. However, these contributions turn out
to be almost completely overshadowed by the classical con-
tributions. At temperatures well below the driving frequency,
T � ω, the quantum contributions become more pronounced.

This paper is organized as follows. In Sec. II we briefly
describe the system under consideration and explain the
proposed experimental protocol. This is followed in Sec. III
by an analysis of the first two conditional cumulants of the
dissipated energy. In Sec. IV we discuss the results of the
previous two sections and provide further analysis regarding
the asymptotic behaviors of the conditional average and
variance. Finally, in Sec. V we conclude.

II. MODEL AND PROTOCOL

The model we are using has already been discussed in
Refs. [27] and [29]. Nevertheless, we will briefly review the
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FIG. 1. Panel (a) shows a schematic describing the necessary
angles of the measurement protocol. In panel (b) the suggested
protocol is depicted.

most important parts. The system under consideration is a
periodically driven two-level system (TLS) which is weakly
coupled to an external heat bath. The full Hamiltonian is given
by H (t) = HS(t) + HI + HB , where HB is the Hamiltonian
of the bath. The system is transversally coupled to the bath via
HI = σx ⊗ B, where B denotes the bath part of the interaction.
The Hamiltonian of the driven system is given by HS(t) =
−ω0

2 σz + �R

2 [cos(ωt)σx − sin(ωt)σy], where σi are the Pauli
matrices, ω0 can be regarded as a static magnetic field in
z direction, ω is the driving frequency, and �R denotes the
Rabi frequency.

Transforming the system into the rotating frame yields
a time-independent Hamiltonian of the driven spin H̃S =
−�

2 σz + �R

2 σx , where � = ω0 − ω is the detuning, but shifts
the periodic time dependency onto the system-bath interaction.
The calculations are performed in the energy eigenbasis of the
driven spin, which is achieved by a further rotation of the
system around the y axis with angle θ . Here tan θ = �R/�

[see also Fig. 1(a)].
The suggested protocol is schematically shown in Fig. 1(b).

At time t = 0 the system is prepared in a certain initial state
|iS〉, which is obtained by rotating the ground state of H̃S

by the angle θi around the y axis as depicted in Fig. 1(a).
This preparation of the initial state may be achieved by a
strong resonant θi pulse around the y axis with amplitude
Jy . After the preparation the system is exposed to the possibly
off-resonant driving with Jx = �R and Jy = 0. Since changing
of the driving frequency ω may be cumbersome in a realistic
experimental situation, in order to perform off-resonant driving
one could adjust the TLS intrinsic energy splitting ω0. At t = τ

the driving is turned off and the system state is postselected
onto the desired final state |fS〉 by a second resonant pulse
with amplitude Jy , inducing a rotation around the y axis by
the angle θf and by the subsequent strong measurement.

The conditional average as well as the conditional variance
of dissipated energy are calculated using the method of full
counting statistics (FCS) [30]. More precisely, in the limit
of weak system-bath interaction, we adopt the two-point
measurement approach suggested in Ref. [31]. The necessary
counting field λ is incorporated via Hλ(t) = eiλHB H (t)e−iλHB .
The information about the conditional average of dissipated
energy is stored in the characteristic function (CF),

χτ (λ,f |i) = Tr[Xf ρ(λ,τ )], (1)

where ρ(λ,t) is the counting-field-dependent density oper-
ator of system plus bath and Xf = |fS〉〈fS | denotes the
projector onto the final state. The CF is connected to the

conditional probability distribution via Fourier transformation
χτ (λ,f |i) = ∫

dεe−iλεPτ (ε,f |i).
The time evolution of the density operator is derived using

a master equation [32],

d

dt
ρS(λ,t) = L(λ)ρS(λ,t), (2)

where L(λ) denotes the superoperator determining the time
evolution of the reduced system density matrix ρS(t). The
superoperator contains the relaxation rates as well as the
dephasing rates, which can be found in Ref. [27]. The master
equation is of Lindblad form for λ = 0. For later purposes it
is useful to rewrite the generating function,

χτ (λ,f |i) = �f T eL(λ)τ �ρi, (3)

where the time evolution of the density operator is written in
the superoperator space. Here, the initial density operator �ρi =
[ρgg(0),ρee(0),ρeg(0),ρge(0)]T and the final state projector �f
are represented by four-component vectors.

As shown previously [27], the CF splits into a classical
and a quantum part, χτ (λ,f |i) = χ

p
τ (λ,f |i) + δχτ (λ,f |i).

The former is determined by the diagonal elements of the
density matrix whereas the latter by the off-diagonal ones. This
enables a separate analysis of both the classical and quantum
contributions to the conditional average.

III. INVESTIGATION OF THE CONDITIONAL
CUMULANTS

A. Analysis of the conditional average

In the following we analyze the conditional average of
dissipated energy,

〈ετ 〉i→f ≡
∫

dε ε P̃τ (ε,f |i), (4)

where P̃τ (ε,f |i) = Pτ (ε,f |i)/Pτ (f |i) and Pτ (f |i) =∫
dεPτ (ε,f |i). We note that the detailed fluctuation relation

(FR) directly demands a lower bound on the conditional
average,

〈ετ 〉i→f � 1

β
ln

( Pτ (f |i)
Pτ,B(i|f )

)
, (5)

which can be understood as the second law of thermodynamics
for the pre- and postselected ensemble. Here the subscript
B indicates the time-reversed process (backward protocol).
Interestingly, the lower bound for the conditional average of
dissipated energy can in general be negative, depending on the
selection of the initial and final states of the system.

The parametrization for the initial density operator and the
final state projector of the system in the superoperator space
is chosen as

�ρi =
(

cos2 θi

2
, sin2 θi

2
,
sin θi

2
,
sin θi

2

)T

, (6)

�f =
(

cos2 θf

2
, sin2 θf

2
,
sin θf

2
,
sin θf

2

)T

, (7)

such that for θi = θf = 0 the system will be initially prepared
as well as postselected in the ground state |g〉 of the system.
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FIG. 2. The conditional average 〈ε〉i→f depicted at finite temper-
ature T = ω and finite driving time ωτ = 30 × 2π . In panel (a), we
have a finite detuning � = 0.2ω. Panel (b) corresponds to the case
of resonant driving with � = 0. The dimensionless coupling strength
between system and bath is set to γ0 = 0.01. The Rabi frequency
is set to �R = 0.2ω. Lines of equal energy have been included for
clarity. The energy is presented in units of the driving frequency ω.

In Fig. 2 the conditional average 〈ε〉i→f is depicted as
a function of the angles θi and θf for a finite driving time
ωτ = 30 × 2π and finite temperature T = ω. The driving
time is chosen to be fixed to a few multiples of the characterstic
relaxation times of the spin (the relaxation rates �rel and �ϕ

introduced later are of the order �rel ≈ �ϕ ≈ 0.015ω). At such
times the influence of pre- and postselection is significant.
At much longer times the statistics of the dissipated energy
is dominated by the properties of the stationary state, which
establishes in the system irrespective of the initial conditions.
We compare the conditional average in the case of finite
detuning, � = 0.2ω, in Fig. 2(a) and resonant driving, � = 0,
in Fig. 2(b). We observe that in the case of finite detuning
the state selection seems to have a significantly larger impact
on the amount of energy being dissipated. Additionally, in
contrast to the resonantly driven system, the case of finite
detuning exhibits regions where the conditional average is
negative. We see that in both cases the conditional average
reaches its highest value for θi = π and θf = 0, i.e., when
the system is initially prepared in its excited state and
finally projected onto its ground state (in rotating frame).
Interestingly, for this choice of driving time and temperature,
the absolute value of 〈ε〉e→g turns out to be larger at finite
detuning as compared to the case of resonant driving.

In order to achieve a deeper understanding of the results
of Fig. 2, we consider here certain special pairs of pre-
and postselected states. We start (in Fig. 3) from the case
of θi = 0 or π and θf = 0 or π , i.e., when both the pre- and
postselected states are the eigenstates of the rotating frame
Hamiltonian H̃S . In this case the initial density matrix of
Eq. (3) is purely diagonal and, as discussed in Ref. [27], the off-
diagonal elements are not generated by the evolution operator.
Thus the result is entirely determined by the classical part of
the CF. In particular, no quantum oscillations are expected.

In Fig. 3(a) the conditional average 〈ετ 〉g→e (corresponding
to θi = 0 and θf = π ) and its respective lower bound, cf.
Eq. (5), are plotted as a function of normalized temperature
T/ω for a fixed driving time ωτ = 30 × 2π . We observe a sign
change of the dissipated energy at a transition temperature
which we denote by T0. Above T0 the bath is more likely
to provide the energy necessary for the transition to the

FIG. 3. Conditional average of the energy dissipated to the bath
for various choices of the pre- and postselected states. In all panels
� = �R = 0.2ω. In panel (a) the conditional average 〈ετ 〉g→e (black)
and its lower bound (blue, dashed) is shown as a function of the
temperature T (driving time ωτ = 30 × 2π ). Panel (b) shows the
transition temperature T0/ω for the same pre and postselection
as a function of the driving time ωτ . In panels (c) and (d) we
show the behavior of the conditional average as a function of the
driving time. Panel (c) shows the conditional average 〈ετ 〉e→g (black)
and the corresponding lower bound (black, dashed), as well as
the the conditional average 〈ετ 〉g→e (blue) and the lower bound
(blue, dashed), respectively. In panel (d) we show the dependence
of the conditional average 〈ετ 〉e→e on the driving time for three
different temperatures: T = 0.01ω (black), T = 0.5ω (blue, dotted),
and T = ω (red, dashed).

energetically unfavorable final state. Below T0 the bath is not
capable of exciting the system. The system solely receives its
energy from the driving source, which is partly dissipated to the
environment. In Fig. 3(b) the transition temperature T0 defined
above (for 〈ετ 〉g→e) is shown as a function of the driving time.
For longer times T0 tends to diverge. Indeed, after enough
energy has been pumped into the system by the driving source,
the average dissipated energy to the bath becomes positive, no
matter how high the bath temperature itself is. In Fig. 3(c)
the conditional average and the corresponding lower bound is
plotted as a function of the driving time for two different pairs
of pre- and postselected states. In the case of the energetically
unfavorable process |g〉 → |e〉 the average dissipated energy
is negative and growing (it will become positive at longer
times). We further show the conditional average 〈ετ 〉e→e as a
function of ωτ for three different temperatures in Fig. 3(d). As
temperature grows the amount of energy dissipated to the bath
decreases. Indeed, the bath is more likely to transfer energy
back to the system as temperature increases [33].

Next we consider the pairs of pre- and postselected states
taken from the states |↑〉 and |↓〉 (along the z axis in the rotating
frame). For � = �R = 0.2ω, i.e., for θ = π/4 the preselected
state |↑〉 corresponds to θi = π/4, whereas the preselected
state |↓〉 is achieved for θi = 5π/4 (similarly for the posts-
elected states and the angle θf ). In Fig. 4 we provide results
analogous to those of Fig. 3. As the pre- and postselected states
are not the eigenstates of the rotating frame Hamiltonian, we
observe coherent oscillations that decay due to the relaxation
and dephasing processes. We conclude that the qualitative
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FIG. 4. Conditional average of the energy dissipated to the bath
for various choices of the pre- and postselected states. In all panels
� = �R = 0.2ω. In panel (a) the conditional average 〈ετ 〉↓→↑ (black)
and its lower bound (blue, dashed) (both measured in units of the
driving frequency ω) is shown as a function of temperature T (driving
time ωτ = 30 × 2π ). Panel (b) shows the transition temperature
normalized to the driving frequency T0/ω as a function of the driving
time ωτ . The transition temperature is plotted for the conditional
average 〈ετ 〉↓→↑. Panels (c) and (d) depict the time dependence of the
conditional average. In panel (c) we show the conditional averages and
the corresponding lower bounds for different pre- and postselected
states, i.e., 〈ετ 〉↓→↑ (blue, bottom) and its lower bound (blue, dashed,
bottom) as well as 〈ετ 〉↑→↓ (black, top) and its lower bound (black,
dashed, top). Finally, panel (d) depicts 〈ετ 〉↑→↑ as a function of ωτ for
different temperatures T = 0.01ω (black), T = 0.5ω (blue, dotted),
and T = ω (red, dashed).

features discussed in relation to Fig. 3 remain intact despite the
coherent oscillations. Moreover, at high enough temperatures
the amplitude of oscillations becomes relatively low.

Although the most pronounced features concerning the
sensitivity to the pre- and postselection are explained in terms
of classical contributions, we analyze the quantum contribution
to the conditional average. It is determined by the quantum
part of the CF δχτ (λ,f |i) [see Eq. (A4)]. Consequently, the
quantum part of the conditional average is obtained as

〈δετ 〉i→f ≡ ∂iλ δχτ (λ,f |i)|λ=0

Pτ (f |i)

= −e−�ϕ (0)τωτ cos �τ

4Pτ (f |i) sin2 θ sin θi sin θf AB(ω),

(8)

where AB(ω) ≡ 1
2 [γ (ω) − γ (−ω)] is the antisymmetrized

correlator. The correlation function γ (ω) as well as the
dephasing rate �ϕ(0) are defined in Appendix A. As expected,
the quantum features are most noticeable when the pre- and
postselected states of the system possess maximal coherence,
i.e., θi = θf = π/2. Furthermore, the quantum contributions
appear to be largest at driving times of order of the dephasing
rate τ ≈ �ϕ(0). As indicated in Fig. 4(d), the effect of the
coherences becomes more pronounced as the temperature
decreases. Accordingly, in Fig. 5 we show the conditional
average as a function of the pre- and postselection angles

0.50
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1.00

1.25

1.50

FIG. 5. Contribution of the quantum corrections to the con-
ditional average at low temperatures. In panel (a) we show the
conditional average of the dissipated energy where the quantum
contributions are fully included. In panel (b) the quantum corrections
are dropped. The plots are evaluated in the same parameter regime as
in Fig. 2, except that the temperature is much lower, i.e., T = 0.1ω.

θi and θf at decreased temperatures T = 0.1ω. In Fig. 5(a)
we show the full conditional average of dissipated energy,
whereas in Fig. 5(b) the quantum corrections are dropped,
i.e., the conditional average is calculated using Eq. (10).
Indeed, in the vicinity of the state selection corresponding
to maximum coherence, i.e., θi = θf = π/2 and θi = θf =
3π/2, the quantum contributions to the conditional average
become visible. Note that we restrict ourselves to the regime
of finite detuning � = 0.2ω.

B. Analysis of the conditional variance

We further investigate the impact of the pre- and postselec-
tion on the variance of dissipated energy:〈

�ε2
τ

〉
i→f

≡ 〈
ε2
τ

〉
i→f

− 〈ετ 〉2
i→f

= −∂2
λ ln[χτ (λ,f |i)]|λ=0. (9)

The related noise-to-signal ratio, also known as the Fano
factor, has previously been studied in similar setups, however,
regardless the pre- and postselection [16,34].

In Fig. 6 we show the results for the conditional variance af-
ter the driving time ωτ = 30 × 2π . We investigate the case of

0.75
1.00
1.25
1.50
1.75
2.00
2.25

FIG. 6. Conditional variance as a function of the initial and final
states characterized by the angles θi and θf . The conditional variances
are plotted at the time ωτ = 30 × 2π and temperature T = ω. In
panel (a) we consider a finite detuning � = 0.2ω. Panel (b) shows
the case of resonant driving. Lines indicating equal noise amplitude
have been included for clarity.
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finite detuning � = 0.2ω in Fig. 6(a), whereas in Fig. 6(b) we
show the resonant case, � = 0. As one could expect, the mag-
nitude of the noise is generally larger when the system is driven
resonantly. The variance for the resonantly driven system
reaches a maximum for the |e〉 → |g〉 pre- and postselection.
Interestingly, in the case of slight detuning Fig. 6(b), the exact
same choice of pre- and postselected system states yields sup-
pressed noise. This will be discussed in the subsequent section.

IV. DISCUSSION

Our main purpose here is to recover the main features of
the numerical results shown in Figs. 2 and 6 from the classical
part of the CF and to explain the qualitative picture behind
these features. It is reasonable to assume that the classical part
of the CF is responsible for most of the observed effects.
One of the reasons is that for driving times of order of
the relaxation and dephasing times the conditional dissipated
energy is strongly influenced by the difference in the energy
expectation values in the pre- and the postselected states.
The modulation of 〈ετ 〉i→f due to this difference should
survive even at τ → ∞. (It remains, of course, finite and is
completely overshadowed by the growing with time stationary
contributions.) Thus the information about the modulation of
〈ετ 〉i→f should be contained in the diagonal elements of the
density matrix, i.e., in the classical part of the CF. In addition,
as we have observed in Figs. 3 and 4, the quantum oscillations
originating in the quantum part of the CF are small at elevated
temperatures.

Thus we give here a detailed analysis of the classical CF,
which is given by

ln χp
τ (λ,f |i)

= τ

2
[−�gg(λ) − �ee(λ) + 2�(λ)]

− ln 2�(λ) + ln
A(λ,θf ,θi) + B(λ,θf ,θi)

4

+ ln

(
1 − A(λ,θf ,θi) − B(λ,θf ,θi)

A(λ,θf ,θi) + B(λ,θf ,θi)
e−2�(λ)τ

)
. (10)

All the quantities used here are defined in Appendix A.
The first line of Eq. (10) is related to the eigenvalue of the
Liouvillian superoperator L(λ) [cf. Eq. (2)] that vanishes at
λ = 0. This eigenvalue determines the long-time behavior of
the CF (see Appendix A). The second line of Eq. (10) yields a
time-independent offset, which carries the information about
the pre- and postselected states. The third line of Eq. (10)
represents the transient contributions, which decay on time
scales of order of the relaxation rate �rel = �eg + �ge. Using
Eqs. (A1), (A2), and (A3) it is easy to see that all cumulants
vanish at τ = 0.

To establish the relation between the classical part of the
CF given by Eq. (10) and the complete numerical results of

FIG. 7. Conditional average of energy for |e〉 → |g〉 pre- and
postselection shown in panel (a) for resonant driving � = 0 (black,
solid) and with finite detuning � = 0.2ω (blue, dashed). Panel
(b) depicts the average heat current limτ→∞〈ετ 〉i→f /τ as a function
of the detuning �.

Sec. III, we present in Fig. 7 results for the conditional average
of the dissipated energy calculated with Eq. (10). In Fig. 7(a)
we show the conditional average 〈ετ 〉e→g as a function of the
driving time both for the case of resonant driving as well as for
the detuned driving � = 0.2ω. For short enough driving times,
more energy is emitted in the detuned case than in the resonant
driving case (cf. Fig. 2). However, the longer the driving
lasts, the more energy tends to be dissipated during a resonant
drive.

In the long-time limit, we find, using Eq. (10), the average
heat current of dissipated energy to be given by

lim
τ→∞

〈ετ 〉i→f

τ
= sin2 θ ω

4�rel

[
�relγ (ω)(1 − e−βω)

+ sin2 θ

2
γ (ω + �)γ (ω − �)(1 − e−2βω)

]
.

(11)

All the quantities used here are defined in Appendix A. The
result is presented in Fig. 7(b). This heat current is completely
independent of the pre- and postselection but is determined by
the detuning of the drive. As expected, the heat current reaches
its maximum for resonant driving and tends to decrease as
detuning increases.

Next we study the time-independent contributions of the
second line of Eq. (10) to the conditional cumulants of the
dissipated energy. These are the leading terms which determine
the sensitivity of the cumulants of the dissipated energy to the
pre- and postselected spin states. These terms determine the
landscape of limτ→∞〈ετ 〉i→f as a function of θi and θf , as all
the other contributions dependent of the pre- and postselection
vanish at τ → ∞. We drop the first term of the second line of
Eq. (10) as it is independent of θi and θf and define

cn(θi,θf ) ≡ ∂n
iλ ln

A(λ,θi,θf ) + B(λ,θi,θf )

4

∣∣∣∣
λ=0

. (12)

The contribution to the conditional averages (first cumulant)
reads

c1(θi,θf ) = (1 − cos θf )(cos θi + 1)�′
eg + (cos θf + 1)(1 − cos θi)�′

ge + 2
�rel

(1 + cos θf cos θi)(�ge�
′
eg + �′

ge�eg)

2[�rel + cos θf (�ge − �eg)]
. (13)
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FIG. 8. Top panels: Selection-sensitive contribution c1(θi,θf ) to
the conditional average. Panel (a) depicts the situation with � = 0.2ω.
In panel (b) the situation for resonant driving � = 0 is shown. Bottom
panels: Selection-sensitive contribution c2(θi,θf ) to the conditional
noise. The panels compare the situation (c) with finite detuning � =
0.2ω and (d) resonant driving.

Here �′
ij ≡ ∂iλ�ij |λ=0. In Fig. 8 we present c1(θi,θf ) as a

function of the state selection angles for detuned driving [panel
(a)] and for the resonant driving [panel (b)]. We observe a
high degree of similarity to Fig. 2. In particular, we observe
a much stronger dependence on pre- and postselection in
the case of detuned driving [cf. Fig. 8(a) and Fig. 2(a)] as
compared to the regime of resonant driving [cf. Fig. 8(b) and
Fig. 2(b)].

To explain the higher sensitivity to the pre- and postselec-
tion in the regime of detuned driving, we analyze the specific
choice |e〉 → |g〉 (θi = π , θf = 0) in more detail. We obtain

c1(π,0) = �′
ge

�ge

= ω + � − 2ωγ (ω − �)

γ (ω − �) + eβ(ω−�) cot4 θ
2 γ (ω + �)

.

(14)

That is, the selection of θi = π and θf = 0 identifies the
processes contributing to �ge(λ), i.e., those corresponding to
the transition |e〉 → |g〉, as relevant ones. The transition rate
�ge(λ) is given by [27] [see Appendix, Eq. (A9)]

�ge(λ) = cos4 θ

2
γ (� + ω)eiλ(�+ω)

+ sin4 θ

2
γ (� − ω)eiλ(�−ω). (15)

The first term corresponds to processes in which a quantum of
energy � + ω is emitted to the bath. The second term describes
events in which energy ω − � is absorbed by the system from
the bath.

At elevated temperatures, T ≈ ω, and at resonance, θ =
π/2, both processes have comparable rates. Thus, on average,

energy of order � is dissipated. Indeed, the cumulant c1(π,0)
is of order � in this regime. In contrast, far from the resonance
the first process dominates (this means that at any driving
time one extra emission of ω + � quantum has to occur) and
we obtain c1(π,0) ≈ ω + �, i.e., a much bigger energy than in
the resonant regime. This also explains the enhancement of the
emitted energy in the detuned scenario for short driving times
compared to the resonant situation, as observed in Fig. 7(a).
Note that within this regime the enhancement is way larger than
the natural increase of the energy difference � =

√
�2 + �2

R

due to the detuning. The related effect of the detuning on the
Mollow triplet is discussed in Refs. [35–37].

Next, we analyze the selection-sensitive time-independent
contribution c2(θi,θf ) to the noise. The quantity c2(θi,θf )
is depicted in Fig. 8 for detuned driving [panel (c)] and
at resonance [panel (d)]. We again observe the qualitative
similarity with the full numerical result presented in Fig. 6. As
in Fig. 6, the noise is enhanced and quite insensitive to the state
selection in the regime of resonant driving. The structure for
finite detuning [cf. Fig. 6(a) and Fig. 8(c)] appears to be more
versatile and more sensitive to the state selection. Interestingly,
the noise turns out to be minimal in the vicinity of the |e〉 → |g〉
transition. Indeed, we find

c2(π,0) = �′′
ge

�ge

−
(

�′
ge

�ge

)2

= sin4 θeβ(ω−�)ω2γ (ω − �)γ (ω + �)

4
[
sin4 θ

2 γ (ω − �) + eβ(ω−�) cos4 θ
2 γ (ω + �)

]2 ,

(16)

which leads to a suppression of the conditional variance
as the detuning increases due to the sin4 θ dependency in
the numerator. The physical explanation of this behavior
of the selection-dependent noise is similar to that of the
time-independent contribution to the conditional average. The
state selection determines that the noise depends only on
the corresponding rate of the master equation �ge. When the
system is driven resonantly, the � + ω and � − ω transitions
appear to be equally alike. Thus the noise is enhanced. In the
detuned regime the � + ω transition is favored and the noise
is suppressed.

V. CONCLUSION

In this paper we study the effect on pre- and postselection
on the first two conditional cumulants of dissipated energy.
We report that not only the choice of initial and final states but
additionally driving off resonance yields interesting and rich
results.

The average heat current limτ→∞〈ετ 〉i→f /τ turns out to
be independent of choice of the pre- and postselection and
is only sensitive to the detuning of the drive. As one would
expect, it becomes maximal when the driving is resonant. For
finite detuning and an energetically unfavorable choice of pre-
and postselected system states, our analysis shows that the
conditional average becomes negative at times of order of the
relaxation times above a crossover temperature T0. Further
analysis shows that this temperature tends to diverge as a
function of the driving time. Thus, for a long enough driving
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time the system has to dissipate energy to the bath irrespective
of how high its temperature is.

Furthermore, we find that the state selection manifests
itself mostly in a time-independent contribution which turns
out to be sensitive to the detuning. In the vicinity of the
|e〉 → |g〉 transition a detailed analysis shows that the increase
of detuning favors a distinct transition rate and therefore a
distinct energy emission � + ω. This yields a suppression of
the conditional noise.

As the effect is time independent, it may be most easily
detectable after long driving times τ � �−1

rel (as a small
pre- and postselection-dependent correction to the selection-
independent contribution). At times of order of relaxation
times, τ ≈ �−1

rel , the selection-dependent contribution may
dominate.

Furthermore, our findings show that quantum corrections
to the conditional average become more pronounced at lower
temperatures and for pre- and postselected system states with
maximum coherence.
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APPENDIX A: CHARACTERISTIC FUNCTION

Within the Lindblad master equation approach, the char-
acteristic function χτ (λ,f |i) = χ

p
τ (λ,f |i) + δχτ (λ,f |i) sep-

arates [27] into a classical and a quantum part. The classical
part, which is determined by the diagonal elements of the

density matrix (populations), is given by

χp
τ (λ,f |i) = e− τ

2 (�gg(λ)+�ee(λ)−2�(λ))

2�(λ)

×
(

A(λ,θf ,θi) + B(λ,θf ,θi)

4

− A(λ,θf ,θi) − B(λ,θf ,θi)

4
e−2�(λ)τ

)
, (A1)

where

A(λ,θf ,θi) = (cos θi + cos θf )(�ge(0) − �eg(0))

− (cos θf − 1)(cos θi + 1)�eg(λ)

− (cos θf + 1)(cos θi − 1)�ge(λ), (A2)

B(λ,θf ,θi) = 2�(λ)(1 + cos θf cos θi), (A3)

and �ij (λ) are the transition rates. We also introduced �(λ) =
1
2

√
4�eg(λ)�ge(λ) + (�ee(λ) − �gg(λ))2. The quantum part

depends solely on the off-diagonal elements (coherences) and
is given by

δχτ (λ,f |i) = 1
2 cos(�τ ) sin θi sin θf e−�ϕ (λ)τ , (A4)

where �ϕ(λ) is the counting-field-dependent dephasing rate.
The transition probability of finding the system after driving

time τ in the desired final state |f 〉 given the preselected initial
state |i〉 is given by

Pτ (f |i) = Pp
τ (f |i) + δPτ (f |i), (A5)

where

Pp
τ (f |i) = χp

τ (0,f |i) = �rel + cos θf (�ge − �eg) + e−�relt cos θf (cos θi�rel − �ge + �eg)

2�rel
, (A6)

and

δPτ (f |i) = δχτ (0,f |i) = 1
2 cos(�t) sin θi sin θf e−�ϕ (0)t .

(A7)

For the sake of readability, we abbreviated �ij (0) ≡ �ij .
The rates have been calculated in Ref. [27] and are given

by

�gg(λ) = �eg(λ = 0) − γ −(ω,λ), (A8)

�ge(λ) = cos4 θ

2
γ (� + ω)eiλ(�+ω)

+ sin4 θ

2
γ (� − ω)eiλ(�−ω), (A9)

�eg(λ) = cos4 θ

2
γ (−� − ω)eiλ(−�−ω)

+ sin4 θ

2
γ (−� + ω)eiλ(−�+ω), (A10)

�ee(λ) = �ge(λ = 0) − γ −(ω,λ), (A11)

�ϕ(λ) = γ +(ω,λ) + 1
2 [�eg(0) + �ge(0)]. (A12)

Here

γ ±(ω,λ) = sin2 θ

4
[γ (ω)(eiλω ± 1) + γ (−ω)(e−iλω ± 1)],

(A13)

and γ (ω) = ∫
ds eiωs〈B(s)B(0)〉 is the Fourier transform of

the bath correlation functions.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
CONDITIONAL AVERAGE

For long enough driving times τ � �−1
rel ,�

−1
ϕ , the condi-

tional average of dissipated energy grows linear in the driving
time. At such time scales the coherences have already died
out. Hence, we can restrict the analysis to the dynamics of the
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populations. We determine the average heat current as

lim
τ→∞

〈ετ 〉i→f

τ

= lim
τ→∞

1

τ
∂iλ ln χp

τ (λ,f |i)|λ=0

= lim
τ→∞

1

τ
∂iλ

[
τ

2
( − �gg(λ) − �ee(λ) + 2�(λ)) − ln 2�(λ)

+ ln
A + B

4
+ ln

(
1 − A − B

A + B
e−2�(λ)τ

)]∣∣∣∣
λ=0

= ∂iλ

1

2
( − �gg(λ) − �ee(λ) + 2�(λ))

= �′
ge�eg + �ge�

′
eg

�rel
− �′

gg + �′
ee

2
, (B1)

where �′
ij ≡ ∂iλ�|λ=0. In the regime ω > � we find the

average heat current to be equal to

lim
τ→∞

〈ετ 〉i→f

τ

= sin2 θ ω

4�rel

[
�relγ (ω)(1 − e−βω)

+ sin2 θ

2
γ (ω + �)γ (ω − �)(1 − e−2βω)

]
, (B2)

where the angle θ is determined via tan θ = �R/�. With this
we immediately see that the largest heat current is achieved
for � = 0, where the sin(θ ) = 1.
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