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Quantitative analytical theory for disordered nodal points
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Disorder effects are especially pronounced around nodal points in linearly dispersing band structures as
present in graphene or Weyl semimetals. Despite the enormous experimental and numerical progress, even a
simple quantity like the average density of states cannot be assessed quantitatively by analytical means. We
demonstrate how this important problem can be solved employing the functional renormalization group method,
and, for the two-dimensional case, we demonstrate excellent agreement with reference data from numerical
simulations based on tight-binding models. In three dimensions our analytic results also improve drastically on
existing approaches.
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I. INTRODUCTION

Two-dimensional graphene [1] and three-dimensional Weyl
materials [2] are important examples of Dirac-type semimet-
als. Their electronic structure features a nodal degeneracy
point where two linearly dispersing Bloch bands meet. Due
to the vanishing density of states (DOS), disorder effects can
be expected to be particularly pronounced in these materials
and have been actively studied (for reviews, see Refs. [3,4]).
Despite all this effort on the disorder problem for nodal points,
analytical results, even for a quantity as simple as the DOS, are
at best qualitatively correct but fail widely in their quantitative
predictions, even for weak disorder. This is surprising insofar
as exact answers can be obtained with ease from numerical
simulations of noninteracting lattice Hamiltonians. The scope
of this work is to show how tremendous progress on this
long-standing problem can be achieved by employing a variant
of the functional renormalization group (fRG).

We consider the minimal continuum model of a single
disordered node in d = 2 and 3 dimensions,

Hd = H0,d + Ud, (1)

where H0,2 = h̄v(σxkx + σyky) is a d = 2 Dirac Hamiltonian
and H0,3 = h̄v(σxkx + σyky + σzkz) is a d =3 Weyl Hamil-
tonian written with the standard Pauli matrices σi=x,y,z. The
disorder potential Ud (r), taken to be proportional to the unit
matrix, is commonly assumed to have Gaussian correlations
and zero mean. Explicitly, we assume a smooth form of the
correlator

Kd (r − r′) = 〈Ud (r)Ud (r′)〉 = K
(h̄v)2

(2π )d/2ξ 2
e−|r−r′ |2/2ξ 2

, (2)

where 〈· · · 〉 denotes the disorder average. As H0,d is lacking
any scale, the disorder correlation length ξ serves as the fun-
damental scale in the problem. The dimensionless parameter
K measures the disorder strength. In the Brillouin zone of real
materials, nodal points usually come in pairs. This is enforced
by symmetry (graphene) or topology (Weyl). However, these
pairs can have a sizable k-space separation �k. If ξ�k � 1
the intranode scattering dominates over internode scattering
and the model (1) is a reasonable low-energy approximation
for realistic materials.

While Eq. (1) with the correlator (2) has the advantage that
it can be easily approximated in tight-binding models if ξ � a

(a being the lattice scale), another common choice forKd more
convenient for analytical calculations is the white noise limit
ξ → 0,

KGWN
d (r) = K(h̄v)2ξd−2δ(r), (3)

along with the prescription that 1/ξ serves as an ultraviolet
cutoff for the clean dispersion H0,d . We use the white noise
approximation to make contact with known results.

The bulk DOS can be calculated as

ν(E) = − 1

π
ImTr

∫
k
GR

k (E), (4)

where
∫

k = (2π )−d
∫

dk and GR
k (E) is the retarded (matrix-

valued) Green function. For the clean Hamiltonian H0,d ,
one has ν0,d (E) = |E|d−1/(2π )d−1(h̄v)d , vanishing at the
degeneracy point. If disorder is thought of as a local chemical
potential creating carriers from conduction or valence bands,
a finite νd (E=0) can be expected (since disorder is a self-
averaging quantity, we omit 〈· · · 〉). In the following, we
distinguish between “numerical” approaches based on explicit
generation of a large number of random disorder realizations
Ud (r) in Eq. (1) and “analytical” methods starting from Eq. (2).
While the former are well established, up to now there has been
no known analytical method that could reproduce numerical
results with reasonable accuracy, not even for small K .

The scope of this work is to show how this long-standing
problem can be solved by a variant of the fRG which allows
one to rewrite the disorder problem as an—in principle,
infinite—hierarchy of coupled self-consistency equations for
vertex functions. We apply this technique to calculate the
DOS νd (E = 0) and find that even a simple truncation of
the above hierarchy yields results in very good quantitative
agreement with numerically exact data obtained from the
kernel polynomial method at much higher computational costs.
We acknowledge an earlier study by Katanin [5] with similar
objectives but a different variant of the fRG. However, our
results go significantly beyond those of Ref. [5], where only
d = 2 was investigated without comparison to numerically
exact results.

II. EXACT NUMERICAL DOS

To gauge the quality of analytical approaches discussed in
the remaining sections, let us start by obtaining numerically
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exact DOS data for the Dirac and Weyl systems with smooth
disorder, described by Eqs. (1) and (2). We apply the kernel
polynomial method (KPM) [6], a numerically efficient tool
to approximate the DOS of large lattice Hamiltonians H

represented as sparse matrices. The DOS ν(E) as a function
of energy E is expanded in Chebyshev polynomials and the
expansion coefficients μ(n) are expressed as a trace over a
polynomial in H . Using recursion properties of Chebyshev
polynomials, the μ(n) can be efficiently computed (up to
order N ) involving only sparse matrix-vector products and
a statistical evaluation of the trace.

The clean nodal Hamiltonian H0,d is approximated as the
low-energy theory of the following tight-binding models on a
square/cubic lattice (with constant a, size Ld )

H L
0,d = h̄v

a

{
σx cos akx + σy cos aky (d = 2),
σx sin akx + σy sin aky − σz cos akz (d = 3),

(5)

which feature four and eight nodal points for d = 2 and
d = 3, respectively, with minimal mutual distance �k = π

a
.

We apply periodic boundary conditions and add a correlated
disorder potential as in Eq. (2). If our disordered lattice model
faithfully emulates the continuum Hamiltonian (1), the DOS
at zero energy must be of the scaling form νd (E = 0) =
(h̄v)−1ξ 1−df (K), with f (K) being a dimensionless function.
We have checked that the KPM data based on the lattice
Hamiltonian (5) fulfills this scaling condition once ξ � a so
that (i) the smooth disorder correlations are well represented
on the discrete lattice, (ii) the disorder-induced energy scale
is well below the scale of order h̄v/a, where H L

0,d deviates
from H0,d , and (iii) the internode scattering rate is sufficiently
suppressed compared to the intranode rate (the factor is
exp[−(�k)2ξ 2/2]). Moreover, we require L � ξ to suppress
finite-size effects. Thus, the KPM data (normalized to a single
node) shown as dots in Fig. 1 (d = 2) and Fig. 2 (d = 3) can
be regarded as the exact zero energy DOS of the continuum
model (1). Simulation parameters are given in the figure
captions. Despite the abundant literature on similar numerical
studies for the DOS of disordered two-dimensional Dirac
(see Refs. [7–10]) and three-dimensional Weyl systems (see
Refs. [11–13]), we are not aware of existing high-precision
data obtained for a smooth disorder correlator and with the
required scaling properties fulfilled.

III. DISORDERED d = 2 DIRAC NODE

We proceed by discussing existing analytical approaches
to the disorder problem in the d = 2 Dirac case. The
self-consistent Born approximation (SCBA) determines the
disorder-induced self-energy � ≡ G−1 − G−1

0 (where G0

is the Green function of the clean system) according to
diagram (i) in Fig. 3 [14–16]. The corresponding self-
consistent equation can be solved in closed form for the
white noise correlator (3) and yields a disorder-induced
scale 	 = h̄v

ξ
e−2π/K (for K � 1) exponentially small in K

appearing in the imaginary self-energy � = ±i	 and a DOS
ν2(E = 0)h̄vξ ∝ e−2π/K/K [15]. In Fig. 1 (bottom panel), this
result (dashed line) compares well to the DOS obtained from
the SCBA with the smooth disorder correlator (2) (blue line).

FIG. 1. Top: Density of states ν2 for a two-dimensional disordered
Dirac node as a function of energy E as calculated by the KPM for
various disorder strengths K (for values of K cf. bottom panel). The
dashed line denotes the analytic result for the clean case. Bottom: The
zero energy density of states ν2(E = 0) from KPM (dots) compared
to the self-consistent Born approximation (SCBA) (blue line) and the
fRG (red line). The parameters for the simulation are ξ = 3a (except
for the two largest K , where ξ = 4a), linear system size L = 2000ξ ,
20 random vectors for calculating the trace, and an expansion order
of up to 15 000 moments. The data represent an average over 20
disorder realizations and are normalized to a single node. The dashed
lines denote fits to the white noise forms of the density of states from
the SCBA and the RG as discussed in the main text.

However, comparing to the exact KPM-DOS in Fig. 1 (dots),
we find that albeit the exponential form is correctly predicted
by the SCBA, the slope (prefactor in the exponent) is roughly
a factor of 2 off.

The failure of the SCBA can be attributed to interference
corrections from multiple disorder scattering events [17];
see Fig. 3, diagrams (ii.a) and (ii.b), for the lowest-order
corrections. While unimportant in ordinary metals (where
1/kF l 	 1, with kF being the Fermi wave vector and l the
mean free path serving as a small parameter), for Dirac mate-
rials these diagrams provide corrections of order ln [h̄v/ξ	].
Accordingly, their contribution vanishes for strong disorder
where the SCBA becomes reliable (cf. Fig. 1).

To go beyond the SCBA, Refs. [15,17] used the super-
symmetry method. Alternatively, the replica trick [18] can
be employed: It takes a disorder average over R copies
(replicas) of the original problem seeing the same disorder
potential. The resulting action S = Sd,0 + Sd,dis is transla-
tional invariant but contains, besides the free part Sd,0 =∑R

α=1

∫
ω

∫
k

∑
σ,σ ′ ψ̄

α
ωkσ ′(iω − H0,d )σ ′σψα

ωkσ , an attractive
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FIG. 2. Top: Density of states ν3 for a three-dimensional disor-
dered Weyl node as a function of energy E as calculated by the KPM
for disorder strengths K = 0,1,2, . . . ,11 (bottom to top). The dashed
line denotes the analytic result for the clean case. Bottom: The zero
energy density of states ν3(E = 0) from the KPM (dots) compared
to the SCBA (blue line) and the fRG (red line). The parameters for
the simulation are ξ = 4a, linear system size L = 180ξ , 20 random
vectors for calculating the trace, and an expansion order of up to 2000
moments. The data represent an average over 40 disorder realizations
and are normalized to a single node. The semitransparent data points
for K � 4 suffer from finite-L effects and overestimate the true bulk
DOS.

interreplica interaction which is elastic (i.e., without frequency
transfer):

Sd,dis =
R∑

α,β=1

∫
ω1,ω2

∫
k′

1,k1,k′
2,k2

2πδk′
1−k1+k′

2−k2

× −Kd (k′
1 − k1)

2

∑
σ,σ ′

ψ̄α
ω1k′

1σ
ψα

ω1k1σ
ψ̄

β

ω2k′
2σ

′ψ
β

ω2k2σ ′ .

(6)

(i)

+
(ii.a) (ii.b)

+

FIG. 3. Diagrammatic representation of the self-consistency
equation (8) for the disorder-induced self-energy � as obtained from
the O(K2) truncation of the fRG. Diagram (i) is the first-order term
equivalent to SCBA while diagrams (ii.a) and (ii.b) are of second
order in K . Dashed lines denote disorder correlators and double lines
self-energy-dressed Green functions.

Assuming the white noise correlator (3) that comes with
the UV cutoff 1/ξ in k-space, this action is susceptible
to a Wilsonian momentum-shell RG analysis [15,17,19].
Successively integrating out high-energy modes down to
λ−1/ξ (λ � 1) perturbatively, the action can be approximately
mapped to itself with rescaled momenta, fields, and coupling
constants. If the velocity is kept constant, the two-loop RG
equation for the flowing disorder strength K̃(λ) reads [19]

dK̃/d lnλ = K̃2/π + K̃3/(2π2). (7)

Starting with the initial condition K̃(1) = K the flow is to
strong coupling where the perturbation theory leading to
Eq. (7) breaks down. To find the energy scale 	 where this
happens (and below which the DOS is presumably constant),
let us assert K̃(h̄v/	ξ ) ∼ 1, which, in the limit of K 	 1,

leads to 	 ∝ h̄v
ξ

√
1
K

e−π/K [19] correcting for the factor of
2 in the exponent as found from the SCBA. The DOS at the
nodal point is expected to be governed by this emergent energy
scale, ν2(E = 0)h̄vξ ∝ 	, in agreement with the KPM results
in Fig. 1.

The Wilsonian RG calculation gave the correct exponential
scale governing the disorder problem. However, it is not
quantitative in the sense that numerical estimates for, say,
the DOS could be obtained in the strong-coupling limit. We
now show how the fRG method overcomes the difficulties
mentioned above and use it to obtain quantitative results for
the disorder-induced DOS at the nodal point without any fitting
parameters.

IV. FRG APPROACH

The fRG [20] introduces a flow parameter � in the bare
propagator and rewrites the many-body problem in a hierarchy
of coupled flow equations for vertex functions with respect
to �. The flow parameter is chosen such that for � = ∞
the vertex functions are known exactly and for � = 0 the
original problem is retained. We relegate a detailed discussion
of technicalities to the Appendix and only highlight the most
important points and modifications related to use of the fRG
with the replicated action.

To actually calculate expectation values and vertex func-
tions from the replicated action, the replica limit 〈O〉 =
lim
R→0

1
R

∑R
α=1 〈O(ψ̄α,ψα)〉ψ is required, where 〈O(ψ̄,ψ)〉ψ =∫

D(ψ̄,ψ)O(ψ̄,ψ)e−S[ψ̄,ψ] stands for the standard functional
average over a polynomial of fields O(ψ̄,ψ) [18]. In a
perturbative expansion (which is also at the heart of the
fRG flow equations), only diagrams without closed fermion
loops have a finite contribution in the replica limit. This also
means that mixing of replica indices in the relevant diagrams
is avoided. One can also show that the elastic nature of the
interaction vertex derived from Eq. (6) is maintained along the
flow. As a consequence, on the right-hand side (rhs) of the flow
equations the frequency integral as required for inelastic (true)
interactions is absent. Thus introducing � via a Matsubara
frequency cutoff scheme results in a Dirac δ function on the
rhs which allows for a direct integration of the corresponding
flow equations and results in a self-consistent hierarchy of
equations for the vertices. So far no approximations have been
made. To proceed, we truncate the hierarchy to order K2. This
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is a pragmatic choice, which still goes beyond all diagrammatic
schemes previously applied to disordered Dirac materials
explicitly. Subsequently, we eliminate the interaction vertex
in favor of the self-energy. The remaining self-consistency
equation reads

�(k) = K(h̄v)2
∫

q
G(q)e− 1

2 ξ 2|q−k|2

+K2(h̄v)4
∫

q,p
e− 1

2 ξ 2(|k−p|2+|q−p|2)

×G(p) · G(q) · [G(k + q − p) + G(p)] (8)

and is displayed in Fig. 3 diagrammatically: The term of order
K represents the SCBA approximation, cf. diagram (i), the
two second-order terms are shown in diagrams (ii.a) and (ii.b),
respectively. Although these diagrams would also appear in
perturbation theory, the fRG approach (i) rigorously justifies
the use of the self-energy dressed propagators and (ii) indicates
how we could consistently go beyond order K2 by allowing
feedback for the vertex self-consistency equation.

To solve Eq. (8), we parametrize the self-energy using
polar (d = 2) or spherical (d = 3) coordinates and proceed
by iteration. We compute the DOS from Eq. (4). Further
details are given in the Appendix. In the d = 2 Dirac case,
the resulting DOS (red line) shows excellent agreement with
the numerically exact KPM data and justifies the used order
K2 truncation a posteriori, well capable of capturing the
exponential scale derived from Eq. (7).

On the pragmatic side, let us note that our fRG method also
has advantages over the KPM method besides being analytic.
For example, in Fig. 1, the KPM data for ν2(E) shows a dip
around E = 0 that can only be resolved for small K if the
system size L and expansion order N are taken to be large.
In comparison, the solution of Eq. (8) requires only a small
fraction of computational effort.

V. DISORDERED d = 3 WEYL NODE

We now turn to the disorder-induced DOS for a d = 3 Weyl
node. Here, weak disorder is irrelevant so that the DOS is
maintained at zero. Only for K > Kc, disorder induces a finite
DOS [see Fig. 2 for the KPM data (dots)]. These qualitative
features were correctly predicted by the SCBA (Fig. 2,
blue line, see Refs. [21–24]) and by the momentum-shell
RG treatment (see Refs. [25,26]). From the KPM, we find
KKPM

c = 4 ± 0.5 (the precision is limited by finite-size effects)
while KSCBA

c � 11 (blue line) is off by more than a factor of
2. The one-loop RG result KRG1

c = π2 � 10 can be improved
with respect to the KPM value by adding two-loop corrections
KRG2

c = π2/2 � 5. However, quantitative predictions for the
DOS in the strong-disorder phase cannot be obtained with the
RG approach.

When compared to the d = 2 case, the additional challenge
for the fRG approach in the Weyl case is that the interesting
disorder strengths K � Kc are not numerically small. Thus we
assume that our O(K2) truncation of the fRG equations might
cause a sizable error. Surprisingly, the fRG results (Fig. 2, red
line) yield K

f RG
c � 6 and predict the available exact DOS for

K > 7 within an error of a few percent. On the one hand, we
expect that the remaining numerical error of the fRG method

could be systematically reduced by considering the fRG flow
of the interaction vertex, which we leave for future research.
On the other hand, this might not improve the accuracy for
K � Kc where rare region effects, which lie beyond any order
of perturbation theory, are expected to dominate the DOS
[27–30]. However, it is known that their influence can be
suppressed by choosing a different disorder model [31].

VI. CONCLUSION

We applied the fRG to treat the disorder problem at
nodal points in two and three dimensions. From the resulting
hierarchy of self-consistency equations, we calculate the bulk
DOS and show that it is superior in accuracy to any other
existing analytical approach. Suprisingly, for two dimensions,
a truncation of the self-consistency equation at second order
of K is sufficient, while in three dimensions the accuracy
could probably be increased with increasing order. We leave
this suggestion for future work, along with the calculation
of other experimentally relevant transport properties from the
fRG. More complicated disorder models, in particular vector
disorder in two dimensions and its characteristic ν(E) behavior
or scattering between multiple nodal points, as present in
realistic materials, could also be studied in the future.
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APPENDIX: fRG WITH REPLICATED ACTION AND
SOLUTION OF THE SELF-CONSISTENCY EQUATION

fRG flow equations and vertex structure for the replica
interaction. The fRG flow equations for the self-energy � and
the interaction vertex 	 have the forms [20]

∂���(1′; 1) = −
∫

2,2′
[Ġ�]2,2′	�(1′,2′; 1,2) (A1)

and, in three-particle vertex truncation,

∂�	�(1′,2′; 1,2)

=
∫

3,3′,4,4′
	�(1′,2′; 3,4)([G�]3,3′ [Ġ�]4,4′ )	�(3′,4′; 1,2)

+	�(1′,4′; 3,2)([G�]3,3′ [Ġ�]4,4′ + [G�]4,4′ [Ġ�]3,3′ )

×	�(2′,3′; 4,1) − 	�(1′,4′; 3,1)([G�]3,3′ [Ġ�]4,4′

+ [G�]4,4′ [Ġ�]3,3′ )	�(2′,3′; 4,2), (A2)

where Ġ� = G�(∂�[G−1
0,�])G� is the single-scale propagator

and the multi-index {α1iω1k1σ1} ≡ 1 includes the relevant
single-particle indices: replica index, Matsubara frequency,
momentum, and spin, respectively. We also use the notation
1αj

≡ {αj iω1k1σ1} and 1αj iωk
≡ {αj iωkk1σ1} at our conve-

nience and also abbreviate integrals and sums on the rhs as∫
1 ≡ ∑

α1

1
2π

∫
dω1

1
(2π)d

∫
dk1

∑
σ1

.
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Starting from the inter-replica interaction Sdis, Eq. (6) in the main text, we find the bare vertex by antisymmetrization:

	∞(1′,2′; 1,2) = 2πδiω′
1−iω1δα′

1,α1 2πδiω′
2−iω2δα′

2,α2 A∞(k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2)

− 2πδiω′
2−iω1δα′

2,α1 2πδiω′
1−iω2δα′

1,α2 A∞(k′
1σ

′
1,k

′
2σ

′
2; k2σ2,k1σ1), (A3)

where we define

A∞(k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2) ≡ −2πδk′

1+k′
2−k1−k2 K(h̄v)2e− 1

2 ξ 2|k′
1−k1|2δσ ′

1σ1δσ ′
2σ2 , (A4)

which is symmetric under the simultaneous exchange k′
1σ

′
1 ↔ k′

2σ
′
2 and k1σ1 ↔ k2σ2.

It is easy to see from the vertex flow equation (A2) that the locking of the replica and frequency indices, as present in the bare
vertex (A3), is preserved in the flow (since the Green functions are frequency diagonal and replica diagonal). This means the
flowing vertex is always of the form 	�(1′

α1iω1
,2′

α2iω2
; 1α1iω1 ,2α2iω2 ) or 	�(1′

α1iω1
,2′

α2iω2
; 1α2iω2 ,2α1iω1 ). Hence, in analogy to the

bare vertex, we can write

	�

(
1′

α′
1iω

′
1
,2′

α′
2iω

′
2
; 1α1iω1 ,2α2iω2

) = 2πδiω′
1−iω1 2πδiω′

2−iω2δα′
1,α1δα′

2,α2A
α′

1iω
′
1,α

′
2iω

′
2

� (k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2)

− 2πδiω′
2−iω1 2πδiω′

1−iω2δα′
2,α1δα′

1,α2A
α′

1iω
′
1,α

′
2iω

′
2

� (k′
1σ

′
1,k

′
2σ

′
2; k2σ2,k1σ1), (A5)

with A
α′

1iω
′
1,α

′
2iω

′
2

� (k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2) being symmetric under the simultaneous exchange α′

1iω
′
1 ↔ α′

2iω
′
2 as well as k′

1σ
′
1 ↔

k′
2σ

′
2 and k1σ1 ↔ k2σ2 like A∞.

Next, we need to leave out all terms on the rhs of Eqs. (A1) and (A2) where the sums
∑

α3,α4
on the rhs provide an extra factor

of R as these vanish in the replica limit, limR→0
1
R

∑R
α=1 〈O(ψ̄α,ψα)〉ψ ∝ limR→0

1
R

∑R
α=1 R ∝ limR→0R = 0. Note that fixing

1α2iω2 ,2α1iω1 in the first line of Eq. (A2) we can associate α1 with the replica index from multi-index 3 or 4, in the second line
we have no such choice, and the third line is always ∝R and vanishes. If we were to draw diagrams to represent Eq. (A2), the
replica limit condition would be the equivalent of leaving out diagrams with internal fermion loops. We find

∂�	�

(
1′

α1iω1
,2′

α2iω2
; 1α1iω1 ,2α2iω2

)

=
∫

3,3′,4,4′
	�(1′

α1iω1
,2′

α2iω2
; 3α1iω1 ,4α2iω2 )([G�(α1iω1)]3,3′[Ġ�(α2iω2)]4,4′ + Ġ ↔ G)	�

(
3′

α1iω1
,4′

α2iω2
; 1α1iω1 ,2α2iω2

)

+	�

(
1′

α1iω1
,4′

α2iω2
; 3α1iω1 ,2α2iω2

)
([G�(α1iω1)]3,3′ [Ġ�(α2iω2)]4,4′ + Ġ ↔ G)	�

(
3′

α1iω1
,2′

α2iω2
; 1α1iω1 ,4α2iω2

)
. (A6)

Self-energy and vertex flow. Eventually, for the DOS we are interested in the Green function which involves the self-energy.
Employing the replica-frequency locking of the vertex for the self-energy flow equation (A1), we find

∂���(α1iω1k1)σ ′
1,σ1 = −

∫
22′α2,iω2

[Ġ�(α2iω2)]2,2′	�(1′
α1iω1

,2′
α2iω2

; 1α1iω1 ,2α2iω2 ).

Applying Eq. (A5), we find that only the second part avoids the replica sum leading to ∝ R. The Green function locks all
frequencies and replica indices appearing on the rhs of the self-energy flow equation:

∂���(αiωk1)σ ′
1,σ1 =

∑
σ2,σ

′
2

∫
k2

[Ġ�(αiωk2)]σ2,σ
′
2
A

αiω,αiω
� (k1σ

′
1,k2σ

′
2; k2σ2,k1σ1). (A7)

In Eq. (A7), the function A only appears with equal replica and frequency indices. We insert this structure in Eq. (A6) and
obtain

∂�A
αiω,αiω
� (k′

1σ
′
1,k

′
2σ

′
2; k1σ1,k2σ2)

=
∫

k3,k4

∑
σ ′

3σ3,σ
′
4σ4

A
αiω,αiω
� (k′

1σ
′
1,k

′
2σ

′
2; k3σ3,k4σ4)([G�(αiωk3)]σ3,σ

′
3
[Ġ�(αiωk4)]σ4,σ

′
4
+Ġ ↔ G)Aαiω,αiω

� (k3σ
′
3,k4σ

′
4; k1σ1,k2σ2)

+A
αiω,αiω
� (k′

1σ
′
1,k4σ

′
4; k3σ3,k2σ2)([G�(αiωk3)]σ3,σ

′
3
[Ġ�(αiωk4)]σ4,σ

′
4
+ Ġ ↔ G)Aαiω,αiω

� (k3σ
′
3,k

′
2σ

′
2; k1σ1,k4σ4). (A8)

We can now drop the replica index α from our intermediate flow equations (A7) and (A8) and proceed to specify the flow
parameter � which has been general so far.

Matsubara frequency cutoff. In its standard application to systems with inelastic (true) interactions, the fRG flow equations
contain frequency integrals on the rhs [20]. This integral is absent in Eq. (A8) due to the elastic structure of the disorder-induced
interaction vertex. We can use this to our advantage and choose a Matsubara cutoff scheme which will allow exact
integration of the flow equations. In the Matsubara cutoff scheme a multiplicative cutoff to the bare Green function is em-
ployed, G0,�(1iω1 ) = θ (|iω1| − �)G0(1iω1 ). The corresponding single scale propagator reads Ġ�(1iω1 ) = δ(|iω1| − �)G̃�(1iω1 )

and Ġ�(1iω1 )G�(1iω2 ) = δ(|iω1| − �)�(|iω2| − �)G̃�(1iω1 )G̃�(1iω2 ), where G̃�(1iω1 ) = [G−1
0 (1iω1 ) − ��(1iω1 )]

−1
[20] and

θ (0) = 1/2 is understood by the Morris lemma [32].

064203-5



SBIERSKI, MADSEN, BROUWER, AND KARRASCH PHYSICAL REVIEW B 96, 064203 (2017)

We find

∂���(iωk1)σ ′
1,σ1

= δ(|iω| − �)
∑
σ2,σ

′
2

∫
k2

G̃�(iω,k2)σ2,σ
′
2
A

iω,iω
� (k1σ

′
1,k2σ

′
2; k2σ2,k1σ1),

∂�A
iω,iω
� (k′

1σ
′
1,k

′
2σ

′
2; k1σ1,k2σ2) = 2δ(|iω| − �)�(|iω| − �)

∫
k3,k4

∑
σ ′

3σ3,σ
′
4σ4

A
iω,iω
� (k′

1σ
′
1,k

′
2σ

′
2; k3σ3,k4σ4)

× (
[G̃�(iωk3)]σ3,σ

′
3
[G̃�(iωk4)]σ4,σ

′
4

)
A

iω,iω
� (k3σ

′
3,k4σ

′
4; k1σ1,k2σ2)

+A
iω,iω
� (k′

1σ
′
1,k4σ

′
4; k3σ3,k2σ2)

(
[G̃�(iωk3)]σ3,σ

′
3
[G̃�(iωk4)]σ4,σ

′
4

)
×A

iω,iω
� (k3σ

′
3,k

′
2σ

′
2; k1σ1,k4σ4).

Assuming |ω| > 0, we can now integrate both flow equations exactly over � from � = ∞ to � = 0 to find the physical
self-energy � = ��=0 and the vertex function A = A�=0. The initial condition for the interaction vertex is the bare interaction.
Writing simply G instead of G̃�=0, we find

�(iωk1)σ ′
1,σ1

= −
∑
σ2,σ

′
2

∫
k2

G(iωk2)σ2,σ
′
2
Aiω,iω(k1σ

′
1,k2σ

′
2; k2σ2,k1σ1), (A9)

Aiω,iω(k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2) = A∞(k′

1σ
′
1,k

′
2σ

′
2; k1σ1,k2σ2) −

∫
k3,k4

∑
σ ′

3σ3,σ
′
4σ4

Aiω,iω(k′
1σ

′
1,k

′
2σ

′
2; k3σ3,k4σ4)

× (
[G(iωk3)]σ3,σ

′
3
[G(iωk4)]σ4,σ

′
4

)
Aiω,iω(k3σ

′
3,k4σ

′
4; k1σ1,k2σ2)

+Aiω,iω(k′
1σ

′
1,k4σ

′
4; k3σ3,k2σ2)

(
[G(iωk3)]σ3,σ

′
3
[G(iωk4)]σ4,σ

′
4

)
Aiω,iω(k3σ

′
3,k

′
2σ

′
2; k1σ1,k4σ4).

(A10)

Instead of the usual coupled fRG flow equations that have to be integrated, we thus have rephrased the disorder problem in terms
of the coupled self-consistent equations (A9) and (A10). Note that the above derivation did not depend on the three-particle (or
N -particle) vertex truncation in Eq. (A2), and thus, an extended set of coupled self-consistency equations would still be exact.

We turn back to our initial goal to find the DOS at the nodal point E = 0. For this, we need the retarded real frequency
self-energy, see Eq. (4) in the main text, that is connected to �(iω) by an analytical continuation iω = 0 + i0+, where 0+ is a
positive real infinitesimal. After this step, we drop the frequency variable from now on. Let us emphasize that the appearance of
a single frequency in the hierarchy of self-consistent equations is a remnant of the elastic nature of disorder scattering.

Solution correct to order K2. Even the set of self-consistency equations (A9) and (A10) (with the three-particle vertex
dropped) is difficult to solve without further approximations. To obtain the self-energy correct to at least O(K2), on the rhs of
Eq. (A10), it is sufficient to use the bare vertex equation (A4). This is a pragmatic approach, which, however, still goes beyond
existing studies in the literature. We obtain the following from Eqs. (A4) and (A10),

A(k′
1σ

′
1,k

′
2σ

′
2; k1σ1,k2σ2) = A∞(k′

1σ
′
1,k

′
2σ

′
2; k1σ1,k2σ2) − K2(h̄v)4

∫
k3

e− 1
2 ξ 2|k′

1−k3|2

[G(k3)]σ ′
1,σ1

(
[G(k′

1 + k′
2 − k3)]σ ′

2,σ2

+ [G(k3 + k2 − k′
1)]σ ′

2σ2

)
e− 1

2 ξ 2|k1−k3|2 ,

and further specialize to the spin-momentum structure needed for the self-energy flow equation (A7) as follows,

A
(
k1σ

′
1,k2σ

′
2; k2σ2,k1σ1

) = −K(h̄v)2e− 1
2 ξ 2|k2−k1|2δσ ′

1σ1δσ ′
2σ2 − K2(h̄v)4

∫
k3

e− 1
2 ξ 2|k1−k3|2 [G(k3)]σ ′

1,σ1

(
[G(k′

1 + k′
2 − k3)]σ ′

2,σ2

+ [G(k3 + k2 − k′
1)]σ ′

2σ2

)
e− 1

2 ξ 2|k2−k3|2 . (A11)

We combine Eq. (A11) with Eq. (A9) and find the final self-consistency equation. Relabeling k1 → k, k2 → q and k3 → p
and using “·” to indicate matrix products for the 2 × 2 matrix-valued Green functions, we arrive at Eq. (8) from the main text:

�(k) = K(h̄v)2
∫

q
e− 1

2 ξ 2|q−k|2 G(q) + K2(h̄v)4
∫

q,p
e− 1

2 ξ 2(|k−p|2+|q−p|2) G(p) · G(q) · [G(k + q − p) + G(p)]. (A12)

If the feedback of the flowing vertex A to the rhs of its own flow equation were considered, this would yield two equations for
� and A to be solved self-consistently.

Numerical solution of self-consistency equations. The self-consistency equation (A12) can be solved numerically by iteration.
We use dimensionless units (measuring momenta in 1/ξ and energies in h̄v/ξ ) and the dimensionless self-energy in d = 2 (at
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the nodal point) can be parametrized as

�d=2(x = kξ )

h̄v/ξ
= m2(x){σx cos [φ] + σy sin [φ]} + iM2(x), (A13)

with x and φ being polar coordinates. The term M2(x) has to be purely real (to avoid a spontaneous creation of chemical
potential) and >0 for the retarded self-energy. As a result, on the rhs of Eq. (A12), we can chose k in, say, the x direction and
also take only the σx component of the product of Green functions (it can be checked that all other components vanish). The final
self-consistency loop is then only for the functions m2(x) and M2(x), which turn out to be rather smooth. They can be discretized
on a geometric grid for the variable x, and the angular integrations can be done using a linearly spaced integration grid for the
angles. We made sure that our results are converged with respect to the resolution of the discretization grids. Once m2 and M2

do not change any more under insertion on the rhs of Eq. (A12), the DOS is computed from Eq. (4) using interpolation of the
integrand and quadrature integration. Likewise, in d = 3, the same strategy is applied using a parametrization in the spherical
coordinates x, φ, and θ :

�d=3(x = kξ )

h̄v/ξ
= m3(x)(sin[θ ]{σx cos[φ] + σy sin[φ]} + σz cos[θ ]) + iM3(x). (A14)
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