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Enhanced acousto-optic properties in layered media
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We present a rigorous procedure for evaluating the photoelastic coefficients of a layered medium in which the
periodicity is smaller than the wavelengths of all optical and acoustic fields. Analytical expressions are given for
the coefficients of a composite material comprising thin layers of optically isotropic materials. These photoelastic
coefficients include artificial contributions that are unique to structured media and arise from the optical and
mechanical contrast between the constituents. Using numerical examples, we demonstrate that the acousto-optic
properties of layered structures can be enhanced beyond those of the constituent materials. Furthermore, we show
that the acousto-optic response can be tuned as desired.
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I. INTRODUCTION

Since the first phenomenological descriptions of the pho-
toelastic effect by Pockels [1–3], acousto-optics has played a
significant role in optics and materials science. Acousto-optic
effects are critical for radio-frequency modulators [3–5], and
the photoelastic effect is frequently used to determine stress
distributions surrounding cracks and material defects [6]. More
recently, acousto-optics has found applications in modern
nanophotonics: photoelasticity is the fundamental effect that
underpins cavity optomechanics [7,8] and stimulated Brillouin
scattering (SBS), which is critical for a diverse range of devices
such as ultranarrow linewidth filters and high-resolution
sensors [5,9,10]. These devices, however, rely on the existing,
fixed, photoelastic response of the material platform, which in
technologically important cases can be small [11,12]. At the
same time, SBS is problematic for optical fiber systems [13],
so there is considerable interest in both the suppression and the
enhancement of photoelasticity, depending on the application.

It is well known that composite materials, such as layered
media, can possess aggregate quantities that are markedly
different from their constituents [14,15]. Recent work [16–18]
has shown that this principle applies to the acousto-optic
properties of composites. In contrast to the intricate and
exotic designs seen in the optical metamaterials community,
layered materials are among the simplest structures to fabri-
cate, yet a complete picture of the acousto-optic properties of
layered media has not yet been reported. To the best of our
knowledge, the only other study concerning the photoelastic
tensor of layered media is by Rouhani and Sapriel [19], where
analytical expressions for an orthorhombic composite com-
prising orthorhombic layers were derived. However, nearly all
of the expressions for the effective photoelastic coefficients
are incomplete, as they do not include artificial photoelastic
contributions (discussed below).

It has been widely accepted that acousto-optic interactions
in uniform, nonpiezoelectric dielectric media are captured by
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the photoelastic tensor pijkl defined by

�(ε−1)ij = pijklskl, (1)

where �(ε−1)ij denotes a change in the inverse permittivity
tensor and skl is the linear strain tensor for small displacements
from equilibrium. In this definition, the photoelastic tensor
is treated as symmetric with respect to the first and second
index pairs, i.e., pijkl = p(ij )(kl). However, the definition in
(1) is sufficient to describe only the interaction between
electromagnetic and acoustic waves in dielectrics possessing
isotropic or cubic symmetry. This definition was sufficient in
early research on light-sound interactions since the first solid
materials examined either were of sufficiently high symmetry
or possessed low optical anisotropy [5]. However, Nelson and
Lax [20] established that this form of the photoelastic response
omitted the contributions of local rotations that arise whenever
acoustic shear waves propagate within the material; the effects
of these local rotations on the permittivity tensor vanish for
isotropic and cubic materials but are nonzero for media that
possess lower levels of structural symmetry such as tetragonal
lattices [21]. This roto-optic effect can be strong compared
to the symmetric photoelastic effect and is directly related to
the optical anisotropy of the material. The total photoelastic
response of the material is given by [20]

�(ε−1)ij = Pijkl∂luk

= pijklskl + rijklrkl, (2)

where Pijkl is the full photoelastic tensor, ∂luk = skl + rkl

denotes the gradient of the displacement vector, p(ij )(kl) and
r(ij )[kl] are the symmetric and antisymmetric components
of Pijkl , respectively, and rkl is the infinitesimal rotation
tensor (where round- and square-bracket notations represent
symmetric and antisymmetric index pairs, following Nelson
and Lax [20], and we now omit bracket notation on index pairs
for convenience). The definition (2) captures the potentially
large influence that the antisymmetric component of the full
photoelastic tensor (otherwise known as the roto-optic tensor)
can have on the scattering of light by an acoustic shear
wave [20].
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The analytic form of the roto-optic tensor in uniform
materials was given in [3,20,22], where the tensor coefficients
were found to be directly linked to the optical anisotropy of
the medium (for materials that do not possess monoclinic or
triclinic symmetry). Subsequently, it is important to consider
the effects of both strains and rotations when studying acousto-
optic interactions in optically anisotropic materials. Although
a wide selection of natural uniform materials exhibits strong
optical anisotropy (such as calcite [23]), it is also possible to
achieve selective control over the optical birefringence of a
medium by constructing composite materials [15].

In recent years, it has also been established that the
photoelastic properties of structured materials exhibit a unique
effect known as artificial photoelasticity. This effect was first
recognized in composite materials comprising cubic arrays of
spheres suspended in an otherwise uniform material by Smith
et al. [16–18]. Artificial photoelasticity can be physically
understood as follows: under an imposed strain, the different
mechanical responses of the constituent materials alter the
filling fraction and, in turn, contribute to changes in the
permittivity of the composite. Such artificial contributions
have been shown to play a significant role in the photoelastic
properties of composites [17] and cannot be omitted, even for
high-symmetry structured materials.

The two main contributions to an acousto-optic interaction
are photoelasticity, describing changes in permittivity induced
from bulk strains, and moving-boundary effects, describing
permittivity changes due to boundary strains (e.g., the bound-
ary between a waveguide or a cavity and the surrounding
air) [3,24]. There is extensive literature examining interface-
motion (moving-boundary) contributions in acousto-optics
for layered media [25–27], periodic structures [28,29], and
general structures [24,30], for example. However, the precise
relationship between the moving-boundary effect and artificial
photoelasticity is presently unclear. Both effects relate to
interface motions, and both require a permittivity contrast in
order to feature in an acousto-optic interaction. However, if the
stiffness tensors of all layers are identical Cijkl = C ′

ijkl , then
artificial photoelasticity is zero, whereas moving-boundary
contributions are not necessarily vanishing [24,25].

In place of photoelasticity and the moving-boundary effect,
it is also possible to describe acousto-optic interactions in
terms of electrostriction, which describes bulk stresses induced
by an electromagnetic field, and radiation pressure, describing
boundary stresses across dielectric interfaces [3]. Analytical
expressions for the electrostrictive response of high symmetry
structures (arrays of spheres), under the approximation that the
shear contribution is negligible, were given in Smith et al. [16],
and a rigorous numerical investigation followed soon after
in Smith et al. [17,18]. In all instances, the electrostrictive
properties of the composite were observed to be enhanced
above and beyond the intrinsic electrostrictive properties of
the constituents, indicating that strong effects may also be
observed in structured materials with reduced symmetry, such
as layered media.

In this paper, we derive the photoelastic coefficients of
a layered medium, as shown in Fig. 1, giving the artificial
contribution to the symmetric photoelastic tensor explicitly,
in addition to an explicit representation for the roto-optic
tensor. These expressions are obtained from the closed-

FIG. 1. Schematic of layered material investigated (infinitely
extending in the x-y plane) with periodicity along the z axis and
constituent parameters labeled.

form expressions for the effective permittivity and stiffness
tensors, where we do not consider frequency dependence
in the materials properties [31]. The procedure we outline
for the effective permittivity tensor is a generalization of
that presented in Bergman [32], which was extended to
the effective stiffness tensor by Smith et al. [18], and is
analogous to the approach by Grimsditch [33]. We demonstrate
photoelastic coefficients with values above and beyond that of
either constituent material, strong roto-optic coefficients, and
non-negligible contributions from artificial photoelasticity for
a silica-silicon and a silica-chalcogenide glass medium.

The outline of this paper is as follows. In Sec. II A we
present the procedure for calculating the effective permittivity
tensor εeff

ij . In Sec. II B we consider the analogous procedure
for the effective stiffness tensor Ceff

ijkl . In Sec. II C we determine
the symmetric photoelastic coefficients peff

ijkl , and in Sec. II D
we give the antisymmetric photoelastic coefficients reff

ijkl . This
section is followed by a numerical study of layered materials
in Sec. III, before concluding remarks are given in Sec. IV.

II. EFFECTIVE MATERIAL PARAMETERS

In this section, we outline a compact procedure for calcu-
lating effective materials tensors, starting with the effective
permittivity tensor [18,32] and the effective stiffness tensor
[18]. In this work, the layered medium is constructed as a
one-dimensional stack of optically isotropic dielectric slabs,
with periodicity in z, that forms a medium with tetragonal
(4/mmm) symmetry [21], as shown in Fig. 1. Results for pijkl

are presented explicitly for this case, although the procedure is
readily generalizable to consider layered materials made with
optically anisotropic constituents.

The effective-medium procedure outlined here essentially
replaces the layered material with a hypothetical effective
material exhibiting the same boundary information on the
edges of the unit cell and possessing the same energy as the
layered material per unit cell. It is assumed that acousto-optic
interactions are the only nonlinear effect that the effective
medium exhibits. In the derivation that follows, we use the
convention of unprimed notation for the first layer in the unit
cell, primed notation for the second layer, and “eff” for the
effective medium. It is assumed that the thicknesses of the
two layers, a and a′, are small relative to the wavelength of all
electromagnetic and acoustic fields (see Fig. 1). In other words,
we examine the intrinsic bulk properties of the material in both
the optical and acoustic long-wavelength regimes.
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It is also assumed that the optical and acoustic contrast
between layers does not induce a perturbation to the mag-
netic field, i.e., μij = μ′

ij = μeff
ij = δij , where δij denotes the

Kronecker delta and μij is the relative permeability.

A. Effective permittivity tensor

We begin by computing the effective permittivity tensor for
a layered medium and impose conventional electromagnetic
boundary conditions across the layers; continuity of the
tangential E field and normal D field for our layered medium
requires that

Ex = E′
x, Ey = E′

y, Dz = D′
z, (3)

where we further impose that the effective medium must take
the same static field values at all boundaries,

Eeff
x = Ex = E′

x, Eeff
y = Ey = E′

y, Deff
z = Dz = D′

z.

(4)

We then require that the effective energy density [34]

U eff = 1
2Eeff

i Deff
i (5)

is equivalent to the total energy density over the unit cell

U = 1
2 [f EiDi + (1 − f )D′

iE
′
i], (6)

where f = a/(a + a′) is the volume filling fraction, which
gives rise to

Deff
x = f Dx + (1 − f )D′

x, (7a)

Deff
y = f Dy + (1 − f )D′

y, (7b)

Eeff
z = f Ez + (1 − f )E′

z. (7c)

Using (4) and (7) with the constitutive relations

Deff
i = ε0ε

eff
ij Eeff

j , Di = ε0εijEj , D′
i = ε0ε

′
ijE

′
j , (8)

where εij denotes the permittivity tensor and ε0 is the vacuum
permittivity, it follows almost immediately that

εeff
xx = f εxx + (1 − f )ε′

xx − f (1 − f )(εxz − ε′
xz)2

f ε′
zz + (1 − f )εzz

, (9a)

εeff
yy = f εyy + (1 − f )ε′

yy − f (1 − f )(εyz − ε′
yz)2

f ε′
zz + (1 − f )εzz

, (9b)

1

εeff
zz

= f

εzz
+ (1 − f )

ε′
zz

, (9c)

εeff
yz = f εyzε

′
zz + (1 − f )ε′

yzεzz

f ε′
zz + (1 − f )εzz

, (9d)

εeff
xz = f εxzε

′
zz + (1 − f )ε′

xzεzz

f ε′
zz + (1 − f )εzz

, (9e)

εeff
xy = f εxy + (1 − f )ε′

xy

− f (1 − f )(εxz − ε′
xz)(εyz − ε′

yz)

f ε′
zz + (1 − f )εzz

. (9f)

The expressions for εeff
ij above are equivalent to those presented

in Rouhani and Sapriel [19] and are valid for layered materials
comprising fully anisotropic layers. Despite the equivalence of

certain εeff
ij coefficients in a tetragonal material (i.e., εeff

xx = εeff
yy

and εeff
yz = εeff

xz = εeff
xy = 0), all permittivity coefficients are

required to determine the photoelastic coefficients for the
composite in Sec. II C. For reference, we represent elements
of an inverse tensor by (ε−1)ij and reciprocal values by 1/εij .

B. Effective stiffness tensor

We now obtain closed-form expressions for the stiff-
ness tensor of a layered material and begin by imposing
conventional acoustic boundary conditions [35]: continuity
of transverse velocity (or transverse displacement for time-
harmonic fields in the long-wavelength limit) and continuity
of the normal component of the stress field, which requires
that

ux = u′
x, uy = u′

y, (10)

in addition to

σxz = σ ′
xz, σyz = σ ′

yz, σzz = σ ′
zz, (11)

respectively. We then impose that the effective displacement
and effective stress fields possess the same static values at
the boundary as per the conditions above, for example, ueff

x =
ux = u′

x and σ eff
xz = σxz = σ ′

xz. In analogy with Sec. II A, we
require that the strain energy density for the effective medium

U eff
s = 1

2σ eff
ij seff

ij (12)

is equivalent to the total strain energy density

Us = 1
2 [f σij sij + (1 − f )σ ′

ij s
′
ij ], (13)

where sij = 1
2 (∂iuj + ∂jui). This is satisfied provided

∂xu
eff
z = f ∂xuz + (1 − f )∂xu

′
z, (14a)

σ eff
xx = f σxx + (1 − f )σ ′

xx, (14b)

∂yu
eff
z = f ∂yuz + (1 − f )∂yu

′
z, (14c)

σ eff
yy = f σyy + (1 − f )σ ′

yy, (14d)

∂zu
eff
z = f ∂zuz + (1 − f )∂zu

′
z, (14e)

σ eff
xy = f σxy + (1 − f )σ ′

xy, (14f)

where, for convenience, we now differentiate (10) and compile
these with the derivatives of the displacement fields in (14)
along with the stress fields to obtain

σ eff
xx = f σxx + (1 − f )σ ′

xx, seff
xx = sxx = s ′

xx,

σ eff
yy = f σyy + (1 − f )σ ′

yy, seff
yy = syy = s ′

yy,

σ eff
zz = σzz = σ ′

zz, seff
zz = f szz + (1 − f )s ′

zz,

σ eff
yz = σyz = σ ′

yz, seff
yz = f syz + (1 − f )s ′

yz,

σ eff
xz = σxz = σ ′

xz, seff
xz = f sxz + (1 − f )s ′

xz,

σ eff
xy = f σxy + (1 − f )σ ′

xy, seff
xy = sxy = s ′

xy. (15)

Using (15) along with the constitutive relations

σ eff
ij = Ceff

ijkls
eff
kl , σij = Cijklskl, σ ′

ij = C ′
ijkls

′
kl, (16)

where Cijkl denotes the linear stiffness tensor, we recover
the effective stiffness coefficients. Here the layers comprise
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optically isotropic media, from which we obtain all six unique
nonvanishing parameters of the mechanical stiffness tensor
Ceff

ijkl for an effective tetragonal (4/mmm) material [21] as

Ceff
xxxx = f Cxxxx + (1 − f )C ′

xxxx

− f (1 − f )(Cxxyy − C ′
xxyy)2

f C ′
xxxx + (1 − f )Cxxxx

, (17a)

Ceff
xxyy = f Cxxyy + (1 − f )C ′

xxyy

− f (1 − f )(Cxxyy − C ′
xxyy)2

f C ′
xxxx + (1 − f )Cxxxx

, (17b)

Ceff
xxzz = f CxxyyC

′
xxxx + (1 − f )CxxxxC

′
xxyy

f C ′
xxxx + (1 − f )Cxxxx

, (17c)

1

Ceff
zzzz

= f

Cxxxx
+ (1 − f )

C ′
xxxx

, (17d)

1

Ceff
yzyz

= f

Cyzyz
+ (1 − f )

C ′
yzyz

, (17e)

Ceff
xyxy = f Cyzyz + (1 − f )C ′

yzyz. (17f)

The expressions in (17) are equivalent to those presented
in Rouhani and Sapriel [19] and Grimsditch [33], after
considering the symmetry properties of the constituent layers.

C. Effective symmetric photoelastic tensor

In this section we evaluate the symmetric photoelastic
tensor peff

ijkl defined by

�
(
ε−1

eff

)
ij

= peff
ijkls

eff
kl , (18a)

or, equivalently,

�(εeff)ij = −εeff
ii εeff

jj peff
ijkl s

eff
kl , (18b)

provided the medium does not possess triclinic or monoclinic
symmetry [22]. Expressions for the effective photoelastic
tensor elements peff

ijkl are obtained by differentiating the
effective permittivity expressions εeff

ij in (9) with respect to
individual strain fields seff

ij while holding other effective strain
fields constant. For example, (18a) for an effective tetragonal
(4/mmm) material is given by

�εeff
zz = −(

εeff
zz

)2 [
peff

zzxxs
eff
xx + peff

zzxxs
eff
yy + peff

zzzzs
eff
zz

]
, (19)

and subsequently,

∂εeff
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= −(
εeff

zz

)2
peff

zzxx, (20a)

∂εeff
zz

∂seff
yy

∣∣∣∣
seff

xx ,seff
zz

= −(
εeff

zz

)2
peff

zzxx, (20b)

∂εeff
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= −(
εeff

zz

)2
peff

zzzz. (20c)

Therefore, an analytical expression for peff
zzzz is recovered by

differentiating εeff
zz (9c) with respect to seff

zz , with both seff
xx and

seff
yy held constant. The resulting expressions are then reduced

using the tensor definitions for the constituent materials

�εij = −εii εjj pijkl skl, (21a)

�ε′
ij = −ε′

ii ε′
jj p′

ijkl s
′
kl, (21b)

the mechanical constitutive relations (16), and the mechanical
boundary conditions in (15). We remark that the permittivities
εij and ε′

ij are functions of their constituent strain fields alone
[see Eq. (21)]. The derivation for all seven unique nonvanishing
photoelastic constants necessary to describe a layered structure
is extensive, and we feel that there is little merit in providing
a complete outline for all terms. Accordingly, we consider
the derivations for peff

zzxx and peff
zzzz alone and present the final

expressions for all remaining coefficients.
As identified in (20a) above, we now implicitly differentiate

the effective permittivity expression (9c) with respect to seff
xx ,

holding the strain fields seff
yy and seff

zz constant, which admits

1(
εeff

zz

)2

∂εeff
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= f

(εzz)2

∂εzz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ (1 − f )

(ε′
zz)2

∂ε′
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

−
(

1

εzz
− 1

ε′
zz

)
∂f

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

. (22)

The first derivative in (22) follows immediately from the
definition in (20a). The next derivative is evaluated using the
definition of the photoelastic tensor (21a) in the first optically
isotropic layer. An application of chain rule then admits

∂εzz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= ∂εzz

∂sxx

∣∣∣∣
seff

yy ,seff
zz

∂sxx

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ ∂εzz

∂syy

∣∣∣∣
seff

yy ,seff
zz

∂syy

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ ∂εzz

∂szz

∣∣∣∣
seff

yy ,seff
zz

∂szz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

. (23)

Using the acoustic boundary conditions sxx = seff
xx and syy =

seff
yy from (15), we have that

∂sxx

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= 1,
∂syy

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= 0, (24)

respectively. The boundary condition σzz = σ eff
zz and the

constitutive relations for the constituent layers (16) give

Ceff
xxzzs

eff
xx + Ceff

xxzzs
eff
yy + Ceff

zzzzs
eff
zz

= Cxxyysxx + Cxxyysyy + Cxxxxszz, (25)

which after implicit differentiation, where we also hold the
strain fields seff

yy and seff
zz constant, takes the form

Ceff
xxzz

∂seff
xx

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ Ceff
xxzz

∂seff
yy

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ Ceff
zzzz

∂seff
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= Cxxyy
∂sxx

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+Cxxyy
∂syy

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+Cxxxx
∂szz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

.

(26a)
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The boundary conditions in (15) and constant field require-
ments evident from (20a) reduce (26a) to the form

Ceff
xxzz = Cxxyy + Cxxxx

∂szz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

(26b)

and ultimately admits

∂szz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= Ceff
xxzz − Cxxzz

Cxxxx
. (26c)

Substituting (24) and (26c) into the derivative (23) gives

∂εzz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= −(εzz)2pxxzz − (εzz)2pxxxx

[
Ceff

xxzz − Cxxzz

Cxxxx

]
,

(27a)

after using (21a), and analogously, we have that

∂ε′
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= −(ε′
zz)2p′

xxzz − (ε′
zz)2p′

xxxx

[
Ceff

xxzz − C ′
xxzz

C ′
xxxx

]
,

(27b)

for the second optically isotropic layer, following the boundary
condition σ ′

zz = σ eff
zz (15).

The derivative of the filling fraction in (22), through an
application of the chain rule, gives rise to

∂f

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= a
∂f

∂a

∣∣∣∣
seff

yy ,seff
zz ,a′

∂szz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

+ a′ ∂f
∂a′

∣∣∣∣
seff

yy ,seff
zz ,a

∂s ′
zz

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

, (28a)

following from the definitions f = a/(a + a′), �szz = �a/a,
and �s ′

zz = �a′/a′. Using (26c) and the analogous expression
for the second layer, we obtain

∂f

∂seff
xx

∣∣∣∣
seff

yy ,seff
zz

= f (1 − f )

[
Ceff

xxzz − Cxxyy

Cxxxx
− Ceff

xxzz − C ′
xxyy

C ′
xxxx

]
.

(28b)

Substituting (20a), (27a), (27b), and (28b) into expression (22)
gives

peff
zzxx = fpxxyy + (1 − f )p′

xxyy

− f (1 − f )(pxxxx − p′
xxxx)(Cxxyy − C ′

xxyy)

f C ′
xxxx + (1 − f )Cxxxx

−f (1 − f )

(
1

εzz
− 1

ε′
zz

)(
Cxxyy − C ′

xxyy

f C ′
xxxx + (1 − f )Cxxxx

)
.

(29)

Having determined the analytical expression for peff
zzxx, we now

turn to the derivation of the peff
zzzz coefficient. Similarly, implicit

differentiation of the effective permittivity expression (9c) with
respect to seff

zz , with seff
xx and seff

yy held constant, admits

− 1(
εeff

zz

)2

∂εeff
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

=− f

(εzz)2

∂εzz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

− (1−f )

(ε′
zz)2

∂ε′
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+
(

1

εzz
− 1

ε′
zz

)
∂f

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

, (30)

where the first derivative is given by (20c). In a procedure
analogous to above, we have that

∂εzz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= ∂εzz

∂sxx

∣∣∣∣
seff

xx ,seff
yy

∂sxx

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ ∂εzz

∂syy

∣∣∣∣
seff

xx ,seff
yy

∂syy

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ ∂εzz

∂szz

∣∣∣∣
seff

xx ,seff
yy

∂szz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

, (31)

where the boundary conditions (15) and constant-field require-
ments give rise to

∂sxx

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= ∂syy

∂seff
zz

∣∣∣∣
seff

yy ,seff
zz

= 0. (32)

The remaining boundary condition σzz = σ eff
zz and constitutive

relations (16) give the expression (25) once more. Implicit
differentiation with respect to seff

zz and the new constant-field
requirements admits

Ceff
xxzz

∂seff
xx

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ Ceff
xxzz

∂seff
yy

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ Ceff
zzzz

∂seff
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= Cxxyy
∂sxx

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ Cxxyy
∂syy

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

+ Cxxxx
∂szz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

,

(33)

and ultimately, we find that

∂szz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= Ceff
zzzz

Cxxxx
. (34)

Subsequently, substituting (32) and (34) into (31), we obtain

∂εzz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= −(εzz)2pxxxx

(
Ceff

zzzz

Cxxxx

)
, (35a)

after using (21a), and analogously, we have

∂ε′
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= −(ε′
zz)2p′

xxxx

(
Ceff

zzzz

C ′
xxxx

)
. (35b)

The derivative of the filling fraction in (30) takes the form

∂f

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

= f (1 − f )

[
∂szz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

− ∂s ′
zz

∂seff
zz

∣∣∣∣
seff

xx ,seff
yy

]

= f (1 − f )

[
Ceff

zzzz

Cxxxx
− Ceff

zzzz

C ′
xxxx

]
, (36)

following (34) and the corresponding expression for the second
layer. Substituting (35a), (35b), and (36) into (30), we obtain

peff
zzzz

Ceff
zzzz

= f

(
pxxxx

Cxxxx

)
+ (1 − f )

(
p′

xxxx

C ′
xxxx

)

+ f (1 − f )

(
1

εzz
− 1

ε′
zz

)(
1

Cxxxx
− 1

C ′
xxxx

)
. (37)

The expressions for peff
zzxx in (29) and peff

zzzz in (37)
are presented below along with all other remaining
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coefficients:

(εeff
xx )2peff

xxxx = f (εxx)2pxxxx + (1 − f )(ε′
xx)2p′

xxxx

− f (1 − f )(Cxxyy − C ′
xxyy)[(εxx)2pxxyy − (ε′

xx)2p′
xxyy]

f C ′
xxxx + (1 − f )Cxxxx

+ f (1 − f )(εxx − ε′
xx)(Cxxyy − C ′

xxyy)

f C ′
xxxx + (1 − f )Cxxxx

, (38a)

peff
zzzz

Ceff
zzzz

= f

(
pxxxx

Cxxxx

)
+ (1 − f )

(
p′

xxxx

C ′
xxxx

)
+ f (1 − f )

(
1

εzz
− 1

ε′
zz

)(
1

Cxxxx
− 1

C ′
xxxx

)
, (38b)

(
εeff

xx

)2
peff

xxzz

Ceff
zzzz

= f
(εxx)2pxxyy

Cxxxx
+ (1 − f )

(ε′
xx)2p′

xxyy

C ′
xxxx

− f (1 − f )(εxx − ε′
xx)

(
1

Cxxxx
− 1

C ′
xxxx

)
, (38c)

(
εeff

xx

)2
peff

xxyy = f (εxx)2pxxyy + (1 − f )(ε′
xx)2p′

xxyy

− f (1 − f )(Cxxyy − C ′
xxyy)[(εxx)2pxxyy − (ε′

xx)2p′
xxyy]

f C ′
xxxx + (1 − f )Cxxxx

+ f (1 − f )(εxx − ε′
xx)(Cxxyy − C ′

xxyy)

f C ′
xxxx + (1 − f )Cxxxx

, (38d)

peff
zzxx = fpxxyy + (1 − f )p′

xxyy

− f (1 − f )(pxxxx − p′
xxxx)(Cxxyy − C ′

xxyy)

f C ′
xxxx + (1 − f )Cxxxx

− f (1 − f )

(
1

εzz
− 1

ε′
zz

)(
Cxxyy − C ′

xxyy

f C ′
xxxx + (1 − f )Cxxxx

)
, (38e)

εeff
yy peff

yzyz

Ceff
yzyz

= f
εyypyzyz

Cyzyz
+ (1 − f )

ε′
yyp

′
yzyz

C ′
yzyz

, (38f)

εeff
xx εeff

yy peff
xyxy = f εxxεyypxyxy + (1 − f )ε′

xxε
′
yyp

′
xyxy. (38g)

We remark that in the expressions above, the photoelastic co-
efficients possess the form peff

ijkl = αqrst pqrst + α′
qrst p′

qrst +
part

ijkl , where αqrst and α′
qrst are functions of material parameters

but may be regarded as weightings for the photoelastic
coefficients of the constituent layers. Following the convention
established in earlier work [16], the final contribution part

ijkl is
termed artificial photoelasticity, as this represents a nontrivial
contribution to the photoelastic properties of the composite
when pqrst = p′

qrst = 0. These artificial contributions are
directly proportional to the contrast in relevant components
of the permittivity and stiffness tensors and have been shown
to play a significant role in the photoelastic properties of other
subwavelength structured designs [17,18]. Note that for peff

yzyz

and peff
xyxy above, there is no artificial photoelastic component,

as shear waves do not change the volume of the unit cell when
the constituent and effective material are oriented with the
Cartesian coordinate frame, i.e.,

∂f

∂seff
yz

= ∂f

∂seff
xz

= ∂f

∂seff
xy

= 0; (39)

however, we emphasize that this result holds only for high-
symmetry composites.

The derivation outlined in this section gives results for
the symmetric photoelastic strain tensor; expressions for the
symmetric photoelastic stress tensor may be found through a
straightforward application of Hooke’s law [21]. However,
the photoelastic strain coefficients peff

ijkl may be expressed
in terms of both effective stress and strain fields; if chosen
appropriately, the photoelastic coefficients are then derived
in terms of acoustic fields that are everywhere continuous in
the layered medium. Such an approach is analogous to that
outlined in Rouhani and Sapriel [19]. For example, substituting

one line of the constitutive relation (16) into the photoelastic
tensor definition (19), we obtain

�εeff
zz = −(

εeff
zz

)2
[{

peff
zzxx − Ceff

xxzz

Ceff
zzzz

peff
zzzz

}
seff

xx

+
{
peff

zzxx − Ceff
xxzz

Ceff
zzzz

peff
zzzz

}
seff

yy + peff
zzzz

Ceff
zzzz

σ eff
zz

]
, (40)

where photoelastic strain coefficients are now obtained
through differentiation (as before), but with effective stress and
effective strain fields held constant. However, such a procedure
gives final expressions for peff

ijkl identical to those presented in
(38). As a final remark, the pijkl coefficients presented in (38),
with part

ijkl = 0, are identical to those tabulated in Rouhani and
Sapriel [19] after considering symmetry reductions of tensor
coefficients [21].

D. Effective antisymmetric photoelastic tensor

In this section, we evaluate the antisymmetric component
of the photoelastic tensor reff

ijkl defined by

�
(
ε−1

eff

)
ij

= reff
ijklr

eff
kl , (41)

where rkl = 1
2 (∂luk − ∂kul) denotes the infinitesimal rotation

tensor. The derivation for the roto-optic tensor of a uniform
material is given in [3,20] and extends to the case of a
subwavelength structured material as

reff
ijkl = 1

2

[(
ε−1

eff

)
il
δkj + (

ε−1
eff

)
lj
δik

− (
ε−1

eff

)
ik
δlj − (

ε−1
eff

)
kj

δil

]
. (42a)
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FIG. 2. (a) Symmetric photoelastic coefficients peff
ijkl corresponding to simple strains, (b) roto-optic coefficient reff

yzyz and symmetric
photoelastic coefficients peff

yzyz and peff
xyxy, (c) artificial photoelastic terms part

ijkl , (d) stiffness tensor coefficients Ceff
ijkl , (e) permittivity coefficients

εeff
ij , and (f) symmetric electrostriction coefficients γ eff

ijkl as a function of filling fraction f for silica and Si [100] layers with a + a′ = 50 nm and
labels in Voigt notation.

This simplifies to the form [22]

reff
ijkl = 1

2

(
1

εeff
jj

− 1

εeff
ii

)
(δikδjl − δilδjk), (42b)

provided the layered material does not possess triclinic or
monoclinic symmetry. For our tetragonal (4/mmm) layered
structure, there are only eight nonvanishing rijkl terms, which
all take the same value modulo a sign change that arises from
the antisymmetric nature of the tensor rijkl = −rij lk . From the
expressions for the effective permittivity presented in Sec. II A,
we have that

reff
xzxz = 1

2

(
f ε′

zz + (1 − f )εzz

εzzε′
zz

− 1

f εxx + (1 − f )ε′
xx

)
(43)

for layers of optically isotropic media.

III. NUMERICAL EXAMPLES

In this section, we present the effective permittivity,
stiffness, and photoelastic tensors for a selection of material
combinations, where constituent parameter values are taken
from Table 1 of Smith et al. [17]. Here values are presented
at a vacuum wavelength of λ = 1550 nm and for a total layer
cell width of a + a′ = 50 nm.

We begin by considering the material properties of a
fused silica and silicon [100] layered medium in Fig. 2. In
Fig. 2(a) we present the symmetric photoelastic coefficients
peff

xxxx (blue curve), peff
xxyy (cyan curve), peff

xxzz (solid red curve),

peff
zzzz (black curve), and peff

zzxx (dashed red curve) as a function
of filling fraction. Here the coefficients exhibit a varied
dependence on filling fraction, with enhancement in the
peff

xxxx and peff
zzzz elements beyond either of the constituent

values to peff
zzzz = 0.135 at f = 0.275 and peff

xxxx = −0.121
at f = 0.32. For reference, we describe such behavior as
extraordinary enhancement (i.e., when a composite material
possesses material values that are beyond the values for either
of the constituents). Interestingly, the off-diagonal elements
peff

xxyy, peff
xxzz, and peff

zzxx do not demonstrate extraordinary
enhancement for this material combination. We also have
peff

xxxx = 0 at f = 0.045 along with peff
zzzz = 0 at f = 0.87,

which implies that longitudinal acoustic waves traveling along
x at f = 0.045 and longitudinal acoustic waves traveling
along z at f = 0.87 will not alter the optical properties of
the medium. Reassuringly, symmetry-required degeneracies
are recovered at f = 0 and f = 1, where the layered medium
returns to a uniform material (i.e., pxxxx = pzzzz and pxxyy =
pxxzz = pzzxx in a cubic or isotropic medium). In Fig. 2(b)
we show the remaining symmetric photoelastic coefficients
peff

yzyz and peff
xyxy as functions of filling fraction, in addition

to the roto-optic tensor coefficient reff
xyxy. Here we observe a

strong roto-optic effect in the layered material, which reaches
a maximum of reff

xyxy = 0.081 at f = 0.295. This value is
greater than |pSi

xyxy| = 0.051 and |pSiO2
xyxy| = 0.075 and is also

different in sign, which demonstrates that the roto-optic effect
can significantly alter the predicted change in permittivity
for acoustic shear waves and should not be omitted a priori
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FIG. 3. (a) Symmetric photoelastic coefficients peff
ijkl corresponding to simple strains, (b) roto-optic coefficient reff

yzyz and symmetric
photoelastic coefficients peff

yzyz and peff
xyxy, (c) artificial photoelastic terms part

ijkl , (d) stiffness tensor coefficients Ceff
ijkl , (e) permittivity coefficients

εeff
ij , and (f) symmetric electrostriction coefficients γ eff

ijkl as a function of filling fraction f for silica and As2S3 glass layers with a + a′ = 50 nm
and labels in Voigt notation.

without careful consideration. The two photoelastic shear con-
stants also exhibit extraordinary enhancement, taking extremal
values of peff

yzyz = −0.04 at f = 0.545 and peff
xyxy = −0.109 at

f = 0.117, and possess the correct degeneracy at f = 0 and
f = 1 (i.e., pyzyz = pxyxy in a cubic or isotropic medium).

In Fig. 2(c) we present the artificial contributions to the
photoelastic tensors shown in Fig. 2(a), which all exhibit
significant, positive-valued contributions to the effective sym-
metric photoelastic coefficients. This artificial contribution
[obtained by substituting pijkl = p′

ijkl = 0 in (38)] diminishes
the extreme range of peff

xxxx and shows that the individual
weightings for the constituent coefficients can take values
|αqrst |,|α′

qrst | > 1. This demonstrates that extraordinary en-
hancement is possible without artificial photoelasticity. In the
case of a layered medium, we remark that part

xxxx = part
xxyy since

these terms both arise from in-plane strains and are related
to the same in-plane permittivity and stiffness contrast. For
reference, maximum values are listed as follows: part

xxxx =
part

xxyy = 0.031 at f = 0.17, part
zzzz = 0.072 and part

zzxx = 0.04 at
f = 0.592, and part

xxzz = 0.056 at f = 0.17. In Figs. 2(d) and
2(e), we present the effective stiffness and permittivity coeffi-
cients as functions of filling fraction, following their explicit
definitions in (9) and (17). Here the simple dependences on f

are visible, extraordinary enhancements are not observed, and
the required material symmetries are recovered at f = 0 and
f = 1. In effect, for the permittivity and stiffness tensors,
all in-plane terms are given by volume averaging, and all
out-of-plane terms are given by the inverse of volume-averaged
reciprocal values.

In Fig. 2(f) we give the corresponding symmetric elec-
trostriction coefficients, defined as γijkl = εiiεjjpijkl . In a
manner analogous to that for the photoelastic coefficients, the
electrostrictive coefficients of a composite material also exhibit
a nontrivial dependence on f , in addition to extraordinary
enhancement. Maxima of γ eff

xxyy = 2.96 at f = 0.74, γ eff
xxzz =

3.626 at f = 0.68, and γ eff
zzxx = 4.87 at f = 0.89 are observed,

demonstrating that the choice of polarization and propagation
direction can have important implications for SBS experiments
in layered media.

In Fig. 3 we present the material properties for a layered
medium comprising fused silica and As2S3 glass layers, in a
manner analogous to Fig. 2. In Fig. 3(a) we show a selection
of symmetric photoelastic constants for the composite, where
it is observed that all peff

ijkl corresponding to simple strains
exhibit extraordinary enhancement. The enhancement of the
peff

xxzz coefficient to peff
xxzz = 0.428 at f = 0.184 is remarkable

when compared to pSiO2
xxyy = 0.27 and pAs2S3

xxyy = 0.24 (i.e., an
enhancement of 59% and 78%, respectively). In Fig. 3(b) we
show the dependence on filling fraction for the remaining
symmetric photoelastic constants, in addition to the roto-
optic coefficient. For silica and chalcogenide glass layers, a
maximum of reff

yzyz = 0.036 is achieved at f = 0.38. Here we
observe peff

yzyz = 0 at f = 0.535 and peff
xyxy = 0 at f = 0.678,

revealing that only roto-optic contributions participate in
acousto-optic interactions at these filling fractions.

In Fig. 3(c) we present the artificial contribution to the total
symmetric photoelastic coefficients shown in Fig. 3(a). Here
it is apparent that artificial terms contribute negatively to the
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photoelastic properties of the layered medium, reducing the
peff

xxzz and peff
zzzz coefficients significantly. From this figure, we

also determine that the extraordinary enhancement in peff
xxzz

is due to |αqrst |,|α′
qrst | > 1. For reference, a maximum value

of part
xxzz = −0.141 is achieved at f = 0.17. In Fig. 3(d) we

present the stiffness tensor coefficients for the layered medium,
and in Fig. 3(e) we show the permittivity tensor coefficients
as functions of filling fraction. Both of these figures exhibit
a behavior qualitatively similar to that in Figs. 2(d) and 2(e)
with the absence of extraordinary enhancement. In Fig. 3(f)
we present the electrostriction constants as a function of the
filling fraction for this material combination for completeness.
Despite the large value for peff

xxzz observed in Fig. 3(a), the
corresponding γ eff

xxzz term is smoothed by the much stronger
growth in (εeff

xx )2. Also, we observe zero values for γ eff
yzyz and

γ eff
xyxy following Fig. 3(b) along with γ eff

xxxx and γ eff
zzzz following

Fig. 3(a).
Following earlier works by some of the authors [17,18]

on the numerical study of photoelasticity in composites
comprising arrays of spheres, we now briefly compare results
for a layered structure of silicon and chalcogenide glass
with a corresponding cubic lattice structure. The numerical
procedure for the sphere configuration determines the effective
bulk photoelastic response (including artificial contributions)
by comparing the change in the effective permittivity tensor
relative to a small mechanical strain imposed on the unit-cell
boundary.

In Fig. 4 we compare the photoelastic constants obtained
with silicon and chalcogenide glass as a function of filling
fraction when they are structured in the form of a cubic array
of spheres (cub) and as a layered material (tet). The values
for the cubic material are obtained using an extended finite-
element simulation procedure [17,18] in which we restrict our
attention to 0 < f < 0.5 as this range approaches the sphere
touching limit and, subsequently, the extent of the numerical
procedure. In Figs. 4(a) and 4(b) we observe that values for the
layered medium act as approximate bounds for the cubic lattice
and suggest that our closed-form expressions may be used to
obtain estimates of the photoelastic constants for an arbitrary
material pair. The limit behavior of these curves also differs
considerably, with only ptet

xxxx ≈ pcub
xxxx and ptet

xxyy ≈ pcub
xxyy for

vanishing filling fraction. However, we remark that further
investigation is needed to determine bounds on the photoelastic
properties of composite materials.

IV. CONCLUDING REMARKS

We have presented an accurate procedure for determining
the acousto-optic properties of layered media, fully accounting
for artificial photoelasticity and the roto-optic effect. The
methods outlined in this work are easily generalizable to
layered media with anisotropic constituents. This study opens
the path for exploring the acousto-optic properties of highly

FIG. 4. Comparison of symmetric photoelastic coefficients
(a) peff

xxxx and (b) peff
xxyy as a function of filling fraction for a cubic

array (cub) of As2S3 glass spheres embedded in Si [100] (where f =
4πr3/[3(a + a′)3] and r is the radius of a sphere) with corresponding
terms for a layered medium (tet) comprising the same materials [with
f = a/(a + a′)], with a + a′ = 50 nm.

anisotropic media, such as hyperbolic metamaterials [36] and
thin film composites [15].

We have shown that the symmetric photoelastic constants
peff

ijkl of a layered material are nontrival functions of filling
fraction, can exhibit extraordinary enhancement, and can be
tuned as desired for applications.

We have also demonstrated that roto-optic coefficients
can take values comparable to the symmetric photoelastic
coefficients. This result has important implications for acoustic
shear-wave propagation in optically anisotropic media. Fur-
thermore, the tunable photoelastic response offered by layered
materials may have important implications for SBS structures.
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