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Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
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We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the
frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution
of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction
experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed
simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis
of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical
analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction.
Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion
to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
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I. INTRODUCTION

Since its first demonstration [1–3], Bragg coherent x-ray
diffractive imaging (CXDI) has become a powerful technique
for analysis of microstructure and strain distribution in
submicron crystalline samples [4–10]. Recently this approach
was extended to imaging ultrafast dynamics in nanocrystals
using free-electron lasers [11]. Nowadays there are several
actively exploited experimental approaches based on the Bragg
CXDI concept; among those are Bragg ptychography [12–14]
and Fourier transform holography [15] (see for review of
Bragg CXDI methods Ref. [16]). In Bragg CXDI technique a
finite crystalline sample is illuminated by an intense coherent
x-ray beam and an interference pattern in the vicinity of
a single or several Bragg reflections is recorded [17]. An
inversion of such data from reciprocal to real space by means
of three-dimensional (3D) Fourier transformation provides
a high-resolution image of a continuous scattering density
distribution in the crystal. The phase of this complex function
represents the projection of a local deformation field on the
reciprocal lattice vector [16].

For most of such experiments the dimensions of considered
specimens are rather small, therefore the approximation of
a single scattering event for hard x rays is typically used.
In the theory of x-ray diffraction by crystals this approach is
commonly referred to as the kinematical approximation which
is valid while the intensity of the diffracted radiation is small
in comparison to the intensity of the incident wave [18]. The
kinematical description provides a simple expression which
allows us to calculate scattered amplitude from a finite size
crystal as a Fourier transform of its electron density. Such
simplification is not applicable for larger crystals, with the
sizes bigger than the so-called extinction length [19–22], where
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effects of cross coupling between the diffracted and transmitted
waves, together with refraction and absorption might become
significant and affect Bragg CXDI reconstruction. These
effects can be fully described in the frame of the dynamical
theory which, however, does not provide a simple analytical
expression for the scattering amplitude from a strained crystal
of arbitrary shape. This theory has been extensively developed
already for decades [19–22], but the influence of the dynamical
effects on the results of Bragg CXDI has not yet been fully
studied up to now.

The dynamical theory of x-ray diffraction considers the
interaction of the wave field with the periodic potential of the
crystal lattice taking into account all multiple scattering effects.
In this theory one of the most convenient ways to propagate
the transmitted and diffracted components of the wave field
through the weakly strained crystalline media is based on a set
of differential equations with corresponding boundary condi-
tions. This approach developed by Takagi and Taupin [23–25]
describes a general case of the two-beam dynamical diffraction
on a perfect or weakly distorted crystal. An analytical solution
of these equations is nontrivial and can be performed for a
few specific cases only, such as a crystal plate finite in one
dimension, but infinite in two other dimensions [21,22,26]. In
a recent work [27] an analytical solution of the Takagi-Taupin
equations was found for the phase of the transmitted beam
in a quasikinematical approximation. Methods of numerical
integration of the Takagi-Taupin equations for simulations of
the wave field distribution in the crystal were developed in
Refs. [28–30]. Rapidly increasing number of publications on
coherent x-ray scattering experiments on finite size crystals in
recent years resulted in a growing interest to understand the
role of the dynamical scattering effects in these experiments.
For example, Darwin recurrence formalism was applied to
study dynamical scattering effects in reciprocal space mapping
while scattering on a crystal of rectangular cross section
[31–33]. A different approach to solve the Takagi-Taupin
equations iteratively via a converging series for a finite size
crystal was proposed in Ref. [34]. However, there was still no
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full analysis of the consequences of the dynamical effects on
the reconstruction of the crystal shape and strain field.

In this paper we present a general model based on a
modification of the Takagi-Taupin equations optimized for
geometry of Bragg CXDI measurement aiming to facilitate a
numerical solution in a finite 3D crystal of an arbitrary shape in
the presence of deformations. Using this model we performed a
series of calculations of 3D maps of the complex scattered am-
plitude distribution in the surrounding of a Bragg reflection for
cube- and hemisphere-shaped crystals of different sizes. After
kinematical (Fourier) inversion of the simulated 3D reciprocal
space data sets into real space the results were compared with
their original ones thus revealing a character of the artifacts,
introduced by the dynamical diffraction. Next, we analyzed
effects of refraction and absorption on the reconstructed shape
and phase in real space. By neglecting the coupling term for
the transmitted and diffracted beams we found an analytical
solution of the Takagi-Taupin equations that allows us to
separate the contributions of refraction and absorption. We also
determined a correction function that allows us to eliminate
these effects in the Bragg CXDI. A kinematical approach
was previously presented in Ref. [35] where the refraction
phase shift was calculated accordingly to the optical path for
each position in the crystal and subtracted from the results
of reconstruction. In this paper we provide detailed analytical
consideration based on dynamical theory and demonstrate our
method of correction on simulations. We also discuss limita-
tions of the kinematical approach in the Bragg CXDI method.

II. BRAGG CXDI TECHNIQUE

Typical geometry of a Bragg CXDI experiment assumes an
isolated crystal fully illuminated by a coherent x-ray beam.
The size of a crystal is generally significantly smaller than
the beam and the incoming wave field is considered to be a
plane wave [16]. The diffracted intensities are recorded by a
two-dimensional (2D) pixelated detector located in the far field
and a series of diffraction patterns are measured by rotating
the sample in the angular region around the Bragg peak. In the
kinematical approximation the complex scattered amplitude
A(q) in the vicinity of a reflection with the corresponding
reciprocal lattice vector h is given by a Fourier integral [16]

A(q) ∝ Fh

Vu.c.

∫
Sh(r)e−iq·rdr. (1)

Here Fh is the structure factor that is assumed to be constant
and is approximated by its value at the exact Bragg peak
position [2], Vu.c. is the volume of the unit cell, the momentum
transfer vector q is defined as q = Q − h, where Q = kh − k0.
In the kinematical approximation both incoming k0 and
diffracted kh vectors are defined in vacuum and have the
magnitude |k0| = |kh| = 2π/λ, where λ is the wavelength
of radiation. In Eq. (1) we introduced a complex crystalline
function

Sh(r) = sh(r)eiϕh(r),ϕh(r) = −h · u(r), (2)

where its amplitude sh(r) is so-called shape function, that
is defined as unity within the crystal and zero everywhere
outside it and its phase ϕh(r) is proportional to the local
deformation field u(r) that describes displacement of atoms

from the ideal lattice positions. In the case of a perfect crystal
the intensity distribution function, given by a square modulus
of the expression (1), is centrosymmetric with respect to the
specific reciprocal lattice nodes. However, in the presence of
a deformation field this symmetry breaks down thus encoding
information about the lattice deformations [16].

Equations (1) and (2) provide a basic concept of the Bragg
CXDI method. In particular, they directly show that the recon-
structed complex crystalline function has its amplitude sh(r)
that is determined by the shape function of the crystalline part
of the sample and the phase ϕh(r). Here we want to point
out that the shape function introduced in Eqs. (1) and (2)
does not necessarily provide direct information about electron
density of the sample. Such information can be either deduced
from the CXDI forward scattering experiments (see for review
Ref. [36]), or by performing Bragg CXDI measurements
at several Bragg peaks simultaneously (see, for example,
Refs. [16,17,37]). Variations of the values of the shape function
inside the crystal describe rather modulations of atomic planes
associated with the chosen reflection and not electron density
modulations. For example, when between two parts of the
crystal the reconstructed shape function is equal to zero it does
not necessarily mean that the electron density of this part of
the crystal is equal to zero, it may happen that in this part of the
particle it is different crystalline structure that does not scatter
to the selected Bragg peak (see, for example, Ref. [38]). To
distinguish between these two cases in the following we will
call the shape function also crystalline function. The phase
introduced in Eq. (2) by its definition ϕh(r) = −h · u(r) can
be attributed to the projection of the local displacement field on
the reciprocal lattice vector h around which the measurements
are performed. The negative sign of the phase reflects the fact
that the positive displacement (expanded lattice) leads to the
positional shift of the Bragg peak towards lower momentum
transfer values of Q. Taking into account that there is an
ambiguity in the constant shift of the phase in the phase
retrieval, typically it is the difference between the strained
and relaxed parts of the crystal that is determined in CXDI
experiment and not its absolute value. It is important to note
here that in kinematical approximation described by Eq. (1)
effects of refraction and absorption are not included.

In a typical Bragg CXDI experiment at synchrotron sources
3D measurements of the scattered intensity in the vicinity of
the Bragg peak are obtained by an angular scan of the sample
with the fixed directions of the incident beam and detector. The
concept of such measurement in reciprocal space is depicted
in Fig. 1. If Bragg conditions are exactly satisfied the Ewald
sphere crosses the selected reciprocal lattice node. At this
specific angular position of the crystal the momentum transfer
vector Q coincides with the reciprocal lattice vector h. When
the crystal is rotated by an angle �θ , the end of the reciprocal
lattice vector moves by �q = h′ − h, where h′ is the reciprocal
lattice vector at the new crystal orientation. Typical values
of the angular deviation in Bragg CXDI experiments do not
exceed one degree, therefore the length of the vector �q can be
well approximated as |h|�θ . In our formalism we assume that
directions and magnitudes of the incident and diffracted wave
vectors k0, kh are constant during the rocking scan and they
always form a constant angle 2θB at all values of the angular
deviation �θ . As such, the wave vector of diffracted field kh

064111-2



DYNAMICAL EFFECTS IN BRAGG COHERENT X-RAY . . . PHYSICAL REVIEW B 96, 064111 (2017)

FIG. 1. Geometry of the Bragg CXDI measurement. The wave
vector of the diffracted beam kh = k0 + h is composed by the wave
vector of the incident beam k0 and reciprocal lattice vector h at a
specific crystal orientation when exact Bragg conditions are satisfied.
The vectors kh and k0 form an angle of 2θB . The vector h′ corresponds
to the crystal reciprocal lattice vector while the crystal is rotated by
an angle �θ . The diffraction pattern, recorded by the 2D detector,
maps a part of the spherical surface in reciprocal space described by
the Ewald sphere. Blue line indicates approximation of the Ewald
sphere by flat surface.

is defined as a constant vector of magnitude 2π/λ pointing at
that position on the Ewald sphere which crosses the reciprocal
lattice node when the Bragg condition is exactly fulfilled

kh = k0 + h|�θ=0. (3)

III. MODEL DESCRIPTION

Conventional Bragg CXDI is based on Eq. (1) which is
valid only in the frame of kinematical approximation. For large
crystals the kinematical description breaks down and equation
(1) cannot be used any more. In this section we will discuss
how this simple approach can be modified when dynamical
scattering effects are taken into account.

Here dynamical simulations of the Bragg CXDI will be
performed in the geometry described in the previous section
(see Fig. 1). A detailed sketch of the implemented numerical
model is presented in Fig. 2. As shown in this figure, the
crystal is embedded in a 3D shape rhombic prism formed by
the directions of the incident and diffracted vectors k0 and kh

and centered around the crystal rotation axis. Simulations of
the scattered amplitudes for each value of the angular deviation
�θ are performed in four steps. On the first step, the 2D
distribution of the incoming wave field Ein(r) is projected on
the left facet of the rhombic prism (shown as s in

0 in Fig. 2). Next,
the wave field is propagated through the scattering volume by
numerical solution of the Takagi-Taupin equations [23–25]. As
a result corresponding 2D distribution of the transmitted E0(r)
and diffracted Eh(r) amplitudes is obtained at the exit facets
of the rhombus (at sout

0 and sout
h facets in Fig. 2). At the third

FIG. 2. Schematics of the numerical model used for simulations
of 2D Bragg CXDI diffraction from a finite crystal. Calculations are
performed for each value of the angular deviation �θ . Crystal is
rotated around the axis going through the crystal center (denoted as
0) that is perpendicular to the scattering plane defined by the vectors
k0 and kh. See text for the details of simulations. The inset on the
right shows recurrent relations for a single node of the grid.

step, thus determined distribution of the diffracted amplitude
Eh(r) is projected on the plane, perpendicular to the diffracted
wave vector kh, yielding the 2D exit surface wave (ESW)
EESW

h (r). Finally, in the fourth step, the ESW is propagated to
the detector plane, which in the far-field (Fraunhofer) limit is
obtained by applying a 2D Fourier transform [39]. When all
series of 2D diffraction patterns as a function of the rocking
angle �θ are simulated, we merge them all together into a 3D
scattered intensity map in reciprocal space. By this simulation
of the intensity distribution in the far field including dynamical
effects in scattering are finalized.

In order to understand what kind of artifacts are introduced
by the dynamical scattering the simulated intensity distribution
have to be inverted to real space by applying the phase retrieval
techniques [40,41]. In our case, as soon as the complex
amplitudes in the far field are known, they can be directly
inverted to real space by a single 3D inverse Fourier transform
without the need of applying the iterative phase retrieval
procedure. Characterization of the dynamical artifacts in real
space is performed by a comparison of the output of these
simulations with the original crystalline function Sh(r) [see
Eq. (2)]. In the next sections we describe all these steps in
more details.

A. Propagation of the wave field through the crystal

In our simulations of Bragg CXDI we used the laboratory
coordinate system in which the direction of the incident beam
and detector position are fixed during the angular scan and
the sample is rotating. The origin of the coordinate system
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is chosen on the crystal rotation axis that is parallel to the y

axis (see Fig. 2). In the following we assume the two-beam
diffraction conditions

E(r) =
∑

s

[e0sE0s(r)eik0·r + ehsEhs(r)eikh·r], (4)

where e0s and ehs are the polarization unit vectors and s is
the polarization index. As a sample we consider a perfect or
weakly deformed finite size crystal. To propagate the complex
electric field through the volume of the three-dimensional
crystal we introduce the symmetric form of the Takagi-Taupin
equations (see Appendix A for details)

∂E0s(r)

∂s0
= iπ

λ
[χ0E0s(r) + Cχh̄e

−i�q·r+ih·u(r)Ehs(r)],

∂Ehs(r)

∂sh

= iπ

λ
[χ0Ehs(r) + Cχhe

i�q·r−ih·u(r)E0s(r)] (5)

which are supplemented by the boundary conditions. Here the
partial derivatives ∂/∂s0,∂/∂sh are taken along the directions
of the wave vectors k0 and kh. Response of the crystal is
described by the Fourier components of the susceptibility χ0 =
χ0r + iχ0i and χh,h̄ = χhr,h̄r + iχhi,h̄i . Real and imaginary
parts of the zeroth component of the susceptibility χ0r ,χ0i

describe effects of refraction and absorption, respectively.
The term with χh describes diffraction of the transmitted
component E0s(r) by a set of crystallographic planes with
the reciprocal vector h. In its turn, the diffracted component
Ehs(r) undergoes diffraction by the same set of planes but
from the opposite side, which is described by the term with
χh̄. Vector �q determines the angular deviation from the exact
Bragg condition as shown in Fig. 1. In equations (5) C stands
for the polarization factor, which is equal to unity in the case
of a σ polarization and cos 2θB in the case of a π polarization.
Without restricting the generality in the following we will
assume only σ polarization with C = 1 and omit polarization
index s in the wave field amplitudes.

The boundary conditions assume that the total electric
field, represented by equation (4) is continuous everywhere
on the crystal-vacuum boundary. In our formalism, similar to
Refs. [23–25], we assume that the wave vectors k0,h are the
same inside and outside the crystal, therefore the amplitudes
E0,h(r) are continuous functions on the boundary of the
crystal. Consequently, equations (5) do not require any specific
transformation of the amplitudes E0,h(r) on the crystal-vacuum
boundary which is particularly convenient in the case of a
three-dimensional crystal with an arbitrary shape. We note
that the Fourier components χ0,h,h̄ of susceptibility drop down
to zero outside the crystal and thereby undergo discontinuity
on the crystal boundary.

For a finite size crystal the evolution of the wave field
depends on the crystals size, shape, and diffraction geometry.
When exact Bragg conditions are satisfied, the transfer of
energy from the transmitted beam into the diffracted beam is
strongly enhanced due to constructive interference of the wave
field inside the crystal. At the same time at these conditions the
wave field is not penetrating deep into the crystal. This effect,
known as extinction [20,22], is described by the characteristic
decay length of the wave field commonly referred to as the

extinction length Lex [21,42]

Lex = λ
√

γ0|γh|
πRe

[√
χhχh̄

] , (6)

where γ0,h = cos(n · k0,h) are the direction cosines and n is
the inward normal to the entrance surface of the crystal. In
the denominator of the expression (6) the real part of the
complex valued square root

√
χhχh̄ is used. The extinction

length (6) is commonly referred to as a characteristic value
to distinguish between the cases of the kinematical and
dynamical diffraction. When the crystal size is much smaller
than the extinction length the effects of coupling between
the transmitted and diffracted components of the wave field
are small and the kinematical approximation can be used
safely. When the crystal size is about or bigger than the
extinction length these effects are becoming important and
the dynamical theory has to be used. To be more specific,
extinction as introduced in Bragg or Laue diffraction from a
perfect crystal, obeys an exponential decay law in the first
case and describes Pendellösung oscillations in the second.
Therefore it is a smooth effect without any sharp boundary.
As such, one should not expect an abrupt change from the
kinematical to dynamical diffraction at any specific crystal
size or shape but rather a smooth increase of the dynamical
effects with the increased crystal size.

B. Numerical solution of the Takagi-Taupin equations

In this paper we perform numerical integration of the
Takagi-Taupin equations (5) applying an approach similar to
that described in Ref. [29]. To propagate the wave field along
the directions of partial derivatives ∂/∂s0,∂/∂sh, we introduce
the laboratory coordinate system with the origin on the crystal
rotation axis. The set of basis vectors {s0,sh,sy} is represented
by the unit vectors in the direction of the incident beam (s0),
diffracted beam (sh), and normal to the scattering plane (sy)
(see Fig. 2). Thus, the partial derivatives are taken along s0

and sh vectors, and rotation is performed around the sy axis.
The angle between the vectors s0 and sh is equal to 2θB ,
therefore the coordinate system generally is not orthogonal.
Any position within the considered volume can be described
by the radius vector r = s0s0 + shsh + sysy , where s0,h,y are
corresponding coordinates.

We perform the numerical integration over a rhombic prism
in which the whole crystal is embedded, as shown in Fig. 2.
More specifically, the prism is sliced to a set of layers, defined
for different values of sy coordinate parallel to the scattering
plane, and Takagi-Taupin equations (5) are solved in the
two-dimensional grid independently for each of these layers.
Since directions s0,h do not depend on the angular deviation �θ

in the chosen coordinate system the whole grid remains invari-
able during the angular scan, while rotation transformations are
applied to the susceptibility and shape function of the crystal
(see Appendix A for details). The nodes, which belong to the
crystal, are characterized by the values of Fourier components
of the susceptibility, which are replaced by zeros for the nodes
outside the crystal.

In the numerical integration method the complex ampli-
tudes E0,h(r) are represented by a discrete set of values over all
of the integration grid and the Takagi-Taupin equations (5) are
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transformed into a pair of recurrence relations (see Appendix C
for details). The inset in Fig. 2 shows the recurrence property
of the obtained equations for the neighboring nodes of the
integration grid. For the node (i,j ) the values of amplitudes
E

(i,j )
0,h are calculated from the values E

(i−1,j )
0,h and E

(i,j−1)
0,h at

the previous nodes (i − 1,j ) and (i,j − 1). In such a way
calculations proceed from node to node in the direction of the
transmitted and diffracted beams. The values of the amplitudes
E0,h(r) on the left (s in

0 ) and bottom (s in
h ) sides of the prism are

defined as

E0(r) = Ein(r), at s0 = s in
0 and Eh(r) = 0, at sh = s in

h . (7)

Such a form of boundary conditions is universal and particu-
larly convenient to implement for numerical integration in the
case of a three-dimensional crystal with an arbitrary shape.
Once established these boundary conditions can be applied to
any shape and orientation of the crystal embedded into the
integration prism.

C. Propagation to the detector plane

Numerical integration of the Takagi-Taupin equations (5)
over the rhombic prism results in the complex amplitude of
the transmitted beam E0(r) at the right facet of the prism
(sout

0 ) and diffracted wave Eh(r) at the upper facet of the prism
(sout

h ). For the free space propagation to the detector we exploit
an orthogonal coordinate system with the basis {s⊥,sh,sy},
where the vector s⊥ = sh × sy is introduced (see Fig. 2). This
vector is perpendicular to the direction of propagation for
diffracted component and lies in the scattering plane, therefore
the transition for the coordinate s0 is performed by means
of a simple projection s⊥ = s0 sin(2θB). The result of such
a projection, applied to the calculated 2D distribution of the
diffracted wave field, will be further referred to as the exit
surface wave EESW

h (s⊥,sy,�q). To determine the scattered
amplitude at the detector plane in the far field we apply 2D
Fourier transform to the exit surface wave

A(q⊥,qy,�q) =
∫∫

EESW
h (s⊥,sy,�q)e−iq⊥s⊥−iqysy ds⊥dsy,

(8)

where q⊥,qy are corresponding coordinates in reciprocal
space.

In a generic Bragg CXDI experiment the measured diffrac-
tion pattern corresponds to the cut of reciprocal space by the
Ewald sphere (see Fig. 1). Our model does not account for
divergence of the wave field E0,h(r) while its propagation
in a crystal (see Appendix A). In fact, this is similar to the
projection approximation, when the simulated 2D diffraction
pattern is attributed to the flat surface in reciprocal space
(see Fig. 1). As such, the 2D distribution of the scattered
amplitude A(q⊥,qy,�q) defined by Eq. (8) is determined
in a plane in reciprocal space perpendicular to the direction
of the diffracted wave sh and corresponding to a fixed
angular deviation �q. Changing the value of the rocking
angle �θ the full set of complex amplitudes A(q⊥,qy,�q) is
determined in reciprocal space. By taking the square modulus
of the amplitudes the final 3D distribution of the intensity
I (q⊥,qy,�q) = |A(q⊥,qy,�q)|2 is obtained. As a next step,

FIG. 3. Diffraction geometry considered in simulations for an
Au crystal of a cubic shape. (a) Scattered amplitude distribution
in reciprocal space (logarithmic scale) calculated by numerical
integration of the Takagi-Taupin equations. The tilted plane illustrates
amplitude distribution within one of the diffraction patterns at
the fixed angular deviation value �θ . (b) Schematic view of the
diffraction geometry in real space. Red arrows indicate the incident
beam and green arrows the diffracted beam. Results of inversion
from reciprocal to real space are also shown here by different colors
in transverse slices (see text for details).

this set of 2D images is interpolated on a 3D uniform grid with
the orthogonal coordinates qx,qy,qz [see Fig. 3(a)].

As soon as phases of the scattered amplitudes are known
in our simulations we perform a single 3D inverse Fourier
transform of simulated 3D amplitudes to determine a complex
crystalline function Sh(r) defined in (2)

Sh(r) = sh(r)eiϕh(r) = 1

(2π )3

∫
A(q)eiq·rdq. (9)

In the kinematical approximation it should reproduce the
crystal shape by its amplitude and be proportional to the
projected strain field by its phase [compare with Eq. (2)].
According to this approach, if a crystal is unstrained, the
inversion of the scattered amplitude by Eq. (9) should give
a real shape function with the constant amplitude values. We
will see in the following how dynamical scattering may affect
these results.

IV. RESULTS

In order to illustrate general features of the dynamical
scattering effects in the Bragg CXDI we considered first a
simple object in the form of a cubic-shaped gold crystal
without strain. A schematics of the diffraction geometry
in real and reciprocal space and the orthogonal coordinate
system with the x,y,z axes oriented along the cube edges is
shown in Fig. 3. We assume that a cubic unit cell (with a
Au lattice parameter a = 4.078 Å) is also aligned along the
same coordinate axes. In our simulations we considered the
incident plane wave with 8 keV photon energy (wavelength
λ = 1.55 Å) and 004 reflection conditions. In this scattering
geometry reciprocal space vector h004 is parallel to the qz axis
in reciprocal space [see Fig. 3(a)] and the scattering plane is
parallel to the xz plane in real space [see Fig. 3(b)]. The Bragg
angle in these conditions is θB = 49.47◦ and values of the
extinction length Lex (6) are 711 nm and 607 nm in the Bragg
and Laue geometry, respectively.

We performed simulations for two crystal sizes of 100 nm
and 1 μm. For 100 nm crystal the angular scan was performed

064111-5



SHABALIN, YEFANOV, NOSIK, BUSHUEV, AND VARTANYANTS PHYSICAL REVIEW B 96, 064111 (2017)

FIG. 4. (a) Transverse profile of the amplitude (red) and phase
(green) of the exit surface wave EESW

h (s⊥,�q = 0) calculated by
the dynamical theory for a 100 nm cubic crystal of Au at exact
Bragg conditions. For comparison, the amplitude profile obtained in
the frame of the kinematical theory is shown by the black curve.
(b) Same for a crystal of 1 μm size.

covering the angular range from −3.3◦ to +3.3◦, with the
angular increment of 6 × 10−3 degree. The scattered amplitude
A(q⊥,qy,�q) (8) in the far field was calculated in a box of
4 × 4 × 4 nm−3 with the number of sampling points 201
in each direction, that provided resolution per pixel size of
0.02 nm−1. By that we have for a 100 nm crystal sampling
rate (number of detector pixels per speckle) slightly above
3 pixels per speckle. For a 1 μm crystal the angular scan
was performed covering the angular range from −0.83◦ to
+0.83◦, with the angular increment of 3.3 × 10−3 degree. The
scattered amplitude for this crystal size was calculated in a box
of 0.8 × 0.8 × 0.8 nm−3 with the number of sampling points
401 in each direction, that provided resolution per pixel size
of 0.002 nm−1. By that for a 1 μm crystal we have the same
sampling rate as for a 100 nm crystal.

The amplitude and phase profiles of the exit surface wave
field distribution EESW

h (s⊥,�q = 0) obtained by a solution
of the Takagi-Taupin equations at exact Bragg conditions are
presented in Fig. 4. The amplitude of the exit surface wave
calculated in the frame of the dynamical theory (red curve)
is compared to the results of the kinematical theory (black
curve) obtained by setting χ0,h̄ = 0 (see Appendix D). As
it is well seen in Fig. 4(a), both dynamical and kinematical

simulations perfectly match together for a 100 nm crystal case.
This suggests that the cross coupling between the diffracted
and transmitted waves is not strong enough to have any
significant effect on the scattering and, therefore, kinematical
approximation provides a rather accurate result for a crystal of
this size. The calculated phase profile (green curve) shows
a small phase shift, which can be attributed to refraction.
The phase distribution is shown relative to the phase of the
incoming wave that was set to zero, so that the phase of the
diffracted wave at the top left corner of the crystal (see Fig. 3)
appears to be zero as well. As a result of our simulations we
can see that the phase due to refraction accumulates more for
the waves propagating the longest distance in the crystal from
its depth and finally reaches its minimum value of −0.25 rad.

Similar simulations performed for a 1 μm Au crystal are
presented in Fig. 4(b). The dynamical calculations revealed
a considerably lower amplitude profile in comparison to
the kinematical prediction, which can be attributed to the
attenuation of the transmitted wave due to extinction. This
affects mostly the lower part of the crystal. We would
like to note that contribution to attenuation due to normal
absorption is much lower than extinction effect. Indeed, taking
into account that normal absorption length for gold at the
considered photon energy is 2.9 μm, we obtain attenuation of
the x-ray amplitude only by 16% on the length of an Au particle
of 1 μm in size. The phase distribution, in fact, reproduces
major features of the phase for 100 nm crystal, which supports
our observation that characteristic phase gradient originate
mostly from refraction. At the same time, the phase profile at
the lower part of the cube reveals slight but noticeable bending,
which cannot be attributed to refraction, since the refraction
phase is linear. We also notice that due to a bigger crystal
size the observed phase shift is about one order of magnitude
higher than in the case of 100 nm crystal and reaches the
value of −2.17 rad. Below we will analyze results of inversion
obtained for the two different crystal sizes separately.

A. 100 nm Au crystal of a cubic shape

Results of inversion of the whole 3D reciprocal space
dataset for a 100 nm Au crystal obtained by the dynamical
simulations are presented in Fig. 5. A 2D distribution of
the crystalline amplitude function sh(r) in an xz slice taken
through the center (y = 0) of the crystal is shown in Fig. 5(a);
the line profiles along the x,y,z axes are given in Fig. 5(b).
The phase distribution ϕh(r) is presented in a similar way
by the corresponding slice in Fig. 5(c) and line profiles in
Fig. 5(d), respectively. Outside of the cube the amplitude of
the reconstructed complex density function is rapidly going
down [see Figs. 5(a) and 5(b)]. In this region the phases are not
defined, therefore, the phase distribution presented in Figs. 5(c)
and 5(d) was cropped by the cube edges.

Distribution of the crystalline function reveals, as expected,
well defined cubic structure of our model sample. We should
note here that due to plane facets of a cubic sample crystal
truncation rods [18] are extending quite far in reciprocal
space and induce observed oscillations in the crystalline
amplitude function obtained by Fourier inversion. Therefore,
slight periodic variations of its values are due to truncation
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FIG. 5. Amplitude (a),(b) and phase (c),(d) of a complex crys-
talline function Sh(r) obtained by inversion of the 3D reciprocal
space dataset calculated for a crystal size of 100 nm. (a),(c) The xz

slices at y = 0 (center of the crystal). (b),(d) The line profiles through
the center of the crystal and along the x, y, and z axes. Gray area
in (c),(d) outlines the region outside the crystal, where the phase is
undefined.

of reciprocal space intensities imposed by the limited range
where simulations were performed.

The most intriguing and not expected result was obtained
for the phase ϕh(r) of the crystalline function [see Fig. 5(b)].
Instead of being a uniform function inside of an unstrained
crystal it shows slight variation of the phase going down to
the values of about −0.3 rad. When attributed to strain, these
values of the phase would give rise to the displacement of about
0.049 Å and associated strain for a Au crystalline sample of
1.2 × 10−2. As we will show in the following these variations
of the phase can be attributed to refraction effects that are not
considered in the conventional kinematical theory. Indeed, on
the top facet neither incident nor scattered wave experience
refraction, therefore the phase shift is zero. When radiation
penetrates deep in the crystal the phase shift due to refraction
is accumulated on its way in and out of the crystal. Since
refraction index for x rays is less then one the accumulated
phase is negative. For the lower facet of the cube the phase
shift reaches its minimum value of about −0.3 rad. This value
corresponds to an optical path length of x-ray beam going
in and out of the crystal, which for the Bragg angles smaller
than 63.43◦ gives for the phase shift due to refraction ϕrefr =
−(2π/λ)δ(d/ cos θB) � −0.29 rad, where δ is the real part
of the refraction index. We will introduce later a correction
function that will compensate these effects completely and
will allow us to determine correct values of the phase that can
be attributed to strain.

From these simulations we can see that even in the case of
very small crystalline samples when dynamical effects should
not play any role refraction effects introduce certain phase
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FIG. 6. (a),(b) 2D distribution of the modulus of the scattered
amplitude |A(qx,qz)| taken through the central position (qy = 0) and
simulated for a 1 μm cubic Au crystal (shown in logarithmic scale).
(a) Results of simulations performed in the frame of the kinematical
theory, (b) results of the dynamical theory, obtained by a numerical
solution of the Takagi-Taupin equations. Profiles of the modulus
|A(qz)| and phase arg [A(qz)] along the qz axis are shown in (c) and
(d), respectively. Results of simulations performed in the frame of
the kinematical theory (black lines) and dynamical theory (red lines).
Note that only the central part of reciprocal space in the range from
−25 μm−1 to 25 μm−1 is shown here.

variations in the reconstructed crystalline function that could
lead to a wrong statements about the strain field in the sample.

B. 1 μm Au crystal of a cubic shape

As a next step, we performed simulations for a 1 μm
Au crystal of a cubic shape. Simulated 2D distribution of
the modulus of the scattered amplitude |A(qx,qz)| taken
through the center of reciprocal space and obtained by using
the kinematical and dynamical approaches is presented in
Figs. 6(a) and 6(b). Two sets of crystal truncation rods
perpendicular to the direction of the facets of the crystal as well
as a regular structure of the square speckles due to coherent
scattering on a cubic shape crystal are well seen in this figure.
At the same time we see a significant difference between
simulations performed with the kinematical and dynamical
approaches. The later ones show lower contrast and noticeable
aberrations in the position and magnitude of the fringes. We
also observed an additional intensity in the form of a diagonal
cross in the case of the dynamical theory simulations [see
Fig. 6(b)] that was also noticed in simulations performed in
Ref. [33].

The difference in the position and intensity of the speckles
is clearly seen in a linear scan of the amplitude |A(qz)| taken
along the central rod [see Fig. 6(c)]. A comparison of the
kinematical (black line) and dynamical (red line) results show
a displacement of the whole profile and particularly Bragg
peak position in the positive direction of the qz axis for the
case of the dynamical theory simulations. This result is well
known in the dynamical theory [22] and is due to refraction
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effect. According to the dynamical theory the angular position
of the maximum of the reflectivity curve is shifted from the
exact Bragg position to positive values by

θref = ∓χ0r (1 ± β)

2β sin 2θB

, (10)

where parameter β = γ0/|γh| for Bragg and β = γ0/γh for
Laue geometries and the upper sign corresponds to Bragg
diffraction and the lower one to Laue diffraction. For Au(004),
8 keV and symmetric Bragg geometry (γ0 = |γh|) the equation
(10) provides 19.6′′ angular shift which is equivalent to
5.0 μm−1 of the positional displacement of the Bragg peak
in reciprocal space along the qz axis (compare with the
similar results obtained in Ref. [33]). At the same time, in
symmetric Laue geometry (γ0 = γh) no positional shift of the
reflectivity curve is observed. In the considered case of a cubic
crystal the diffraction geometry is represented by a mixture of
symmetric Bragg and Laue cases, therefore, refraction effects
characteristic for these two geometries are superimposed.
That is revealed in a smearing of the central speckle in
the direction of the qz axis together with a positional shift
of the maximum by 3.5 μm−1 [see Fig. 6(c)]. Although small
angular displacement of the whole diffraction pattern due
to refraction can be precisely determined in simulations it
is rather challenging to consider it experimentally. In most
experiments these effects are neglected and the maximum of
the Bragg peak is assumed to be at an exact position of the
reciprocal lattice node and is used as a reference position.

It is also well seen in Fig. 6(c) that due to the dynamical
scattering contrast of the diffraction pattern is significantly
reduced. In experiment this might be erroneously attributed
to lack of the transverse coherence and consequently partial
coherence illumination [2,43] or vibrations of the sample stage.
While these effects may be compensated in reconstruction by
the multimode decomposition [44,45] and attributed to the
incoming field, their physical origin is quite different and is
due to the dynamical scattering effects.

In Fig. 6(d) the corresponding qz profiles of the phase
distributions for the kinematical (black line) and dynamical
(red line) calculations are presented. Similar to the amplitude
profiles shown in Fig. 6(c) a comparison between the kinemat-
ical and dynamical results shows a positional displacement
of the phase profile in the positive direction of the qz axis in
the case of the dynamical theory simulations. In addition, the
symmetry with respect to the positive and negative directions is
broken and a more complex structure of the profile is observed.

The most intriguing were results of inversion performed for
a 1 μm size crystal. In contrast to the previous case of a small
crystal, results of inversion for a 1 μm crystal (see Fig. 7)
clearly show visible artifacts in the crystalline amplitude sh(r)
(a),(b) and phase ϕh(r) (c),(d) distribution in real space. One
strong effect, well visible in Figs. 7(a) and 7(b), is depletion of
the crystalline amplitude towards the bottom of the crystal.
This is an expected effect of the dynamical theory. Due
to coupling of the incoming and diffracted waves at Bragg
conditions the wave field is substantially expelled from the
bulk of the crystal. We observed that in our case the values
of the amplitude dropped by more than 50% [see Fig. 7(b)]
instead of being uniform and constant on the level of one as in
the case of a small crystal [see Fig. 5(b)]. Another unexpected
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FIG. 7. Amplitude (a),(b) and phase (c),(d) of a complex crys-
talline function Sh(r) obtained by inversion of the 3D reciprocal
space dataset calculated for a crystal size of 1 μm. (a, c) The xz slices
at y = 0 (center of the crystal). (b),(d) The line profiles through the
center of the crystal and along the x, y, and z axes. Gray area in (c),(d)
outlines a region outside the crystal, where the phase is undefined.

effect was appearance of an additional intensity, which extends
below the bottom of the crystal [see Figs. 7(a) and 7(b)]. In our
simulations for larger crystals (not shown) we observed that
this artifact becomes stronger with the increase of the ratio
of the crystal size to extinction length. If the crystal shape is
unknown before CXDI experiment such dynamical effects can
result in a wrong reconstruction of the crystal shape as well as
the values of the crystalline amplitude function.

Importantly, our simulations have revealed that the phase
profile inside a crystal has a complicated distribution [see
Figs. 7(c) and 7(d)]. We want to remind that initially we
were considering Au crystals without any deformation. At
the same time, we obtained strong variations in the phase of
the inverted crystalline function that should not be interpreted
as originating from the crystal lattice deformation. We will see
in the following that some features of this phase distribution
can be compensated by taking into account refraction effects.
Without such corrections the values of the strain field obtained
from the CXDI reconstruction could be significantly different
from the ones in the sample under investigation and in this
way could bring to a wrong interpretation of the results in the
Bragg CXDI experiment.

V. TREATMENT OF REFRACTION AND ABSORPTION

Here we will analyze how effects of refraction and
absorption could be taken into account. We will perform
analysis in the semikinematical approximation, when coupling
between the incident and diffracted waves could be neglected
but refraction and absorption effects will be taken into account
specifically (see also Ref. [27]). We want to point out here that
in conventional kinematical theory the incident and diffracted

064111-8



DYNAMICAL EFFECTS IN BRAGG COHERENT X-RAY . . . PHYSICAL REVIEW B 96, 064111 (2017)

ar
b.

 u
ni

ts

FIG. 8. Results of simulations for a 1 μm Au crystalline particle
presented in Fig. 7 after applying correction by the function fc(r)
given by equation (16). The amplitude corrected for absorption (a),(b)
and the phase corrected for refraction (c),(d) are represented for the
xz slice in (a),(c) and by the line profiles along the x, y, and z

axes in (b),(d). The sketch in (a) illustrates the total optical path
|Rin − r| + |Rout − r| calculated for a given point r. Gray area in
(c),(d) outlines the region outside the crystal, where the phase is
undefined.

waves have no attenuation due to absorption and refraction
effects are also neglected.

To take all this into account, we will consider Takagi-Taupin
equations (5) in which the coupling term in the first equation,
proportional to χh̄, is eliminated that leads to the following
system of equations

∂E0(r)

∂s0
=

(
iπ

λ

)
χ0E0(r),

∂Eh(r)

∂sh

=
(

iπ

λ

)[
χ0Eh(r) + χhe

i�q·r−ih·u(r)E0(r)
]
. (11)

The first equation can be easily solved as

E0(r) = Ein
0 exp

[
i
χ0

2
k0·(r − Rin)

]
, (12)

where Ein
0 is the incoming wave field that will be put to unity in

the following and Rin = Rin(r) is a radius vector of the point,
where the incoming beam enters the crystal for the considered
element of volume [see sketch in Fig. 8(a)]. Substituting this
result in the second equation of the system of equations (11)
we obtain

∂Eh(r)

∂sh

=
(

iπ

λ

)[
χ0Eh(r) + χhe

i�q·r−ih·u(r)ei
χ0
2 k0·(r−Rin)

]
.

(13)

This equation for the diffracted wave can be solved by the
following substitution

Eh(r) = E′
h(r)ei

χ0
2 k0·r, (14)

which leads finally to the following analytical expression for
the exit surface wave

EESW
h (Rout) =

(
iπ

λ

)
χh

∫
Sh(r)fc(r)ei�q·rdsh, (15)

where as before Sh(r) is a complex crystalline function and
Rout = Rout(r) is a radius vector of the position on a crystal
surface where the diffracted beam exits the crystal for the
considered element of volume [see sketch in Fig. 8(a)]. We
also introduced here a correction function

fc(r) = |fc(r)|eiϕc(r)

= exp

[
i
χ0

2
k0 · (r − Rin) + i

χ0

2
kh · (Rout − r)

]
(16)

with its modulus due to absorption

|fc(r)| = exp

[
−χ0i

2
k0 · (r − Rin) − χ0i

2
kh · (Rout − r)

]

(17)

and the phase due to refraction

ϕc(r) = χ0r

2
k0 · (r − Rin) + χ0r

2
kh · (Rout − r). (18)

We want to point out again that in this treatment all dynamical
effects due to coupling between the transmitted and diffracted
components of the wave field in the crystal are completely ne-
glected. Purely kinematical scattering can be directly obtained
from Eqs. (15) and (16) by putting χ0 = 0 and consequently
assuming that fc(r) ≡ 1.

As it follows from equations (15) and (16) the inversion
of the reciprocal space dataset to real space should result
in a complex function, which is represented by Sh(r)fc(r).
Therefore, in principle, to determine correctly the shape and
strain field in a crystalline particle the correction function (16)
should be applied after inversion from reciprocal space. In
this correction function an optical path along the incident
k0 · (r − Rin) and diffracted kh · (Rout − r) beams should be
calculated for each position r in a crystal [see sketch in
Fig. 8(a)]. An estimate is performed for a fixed angular position
neglecting small variations of the optical path while the rocking
scan. Since the crystal shape and directions of the vectors k0

and kh are known, the correction function (16) can be evaluated
numerically in most of the cases.

Results of such correction applied to the complex electron
density distribution obtained for a 1 μm Au crystalline particle
are shown in Fig. 8. The correction was performed only for
positions inside a cubic volume, leaving the exterior part below
the cube unchanged. Comparison of the amplitudes reveals no
significant changes in the upper part of the crystal. In the
lower part, where effects of absorption due to extinction are
stronger, the values of the amplitude are increased from 0.38
to 0.52 [compare Figs. 7(a) and 7(b) and Figs. 8(a) and 8(b)].
The correction revealed also a noticeable bump on the z profile
of the amplitude [see Fig. 8(b)], which was barely pronounced
in Fig. 7(b). Still, major artifacts in the amplitude distribution,
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FIG. 9. Results of simulations for a 1 μm Au crystalline particle
calculated with an assumption of χhi = χh̄i = 0, after applying
correction by the function fc(r) given by equation (16). The amplitude
(a),(b) and phase (c),(d) are represented for the xz slice (at y = 0) in
(a),(c) and by the line profiles along the x, y, and z axes in (b),(d).
Gray area in (c),(d) outlines the region outside the crystal, where the
phase is undefined.

such as the depletion of the amplitude of the crystalline
function in the bottom part of the crystal remained almost
unchanged. By that we conclude that remaining artifacts in the
amplitude are related to purely dynamical effects in scattering
such as the coupling between the transmitted and diffracted
components of the wave field in the crystal that lead to
extinction effect.

At the same time, by applying correction function in the
phase distribution we observed that a strong gradient of
phase present in Figs. 7(c) and 7(d) is effectively removed
[see Figs. 8(c) and 8(d)]. Small residual aberrations in the
range from 0 rad to 0.3 rad are apparently connected to the
dynamical effects and not to refraction [27]. More specifically,
we determined that they can be attributed to the imaginary
part of the Fourier components of the susceptibility χh and
χh̄, which introduce a small phase shift when the wave is
reflected by a crystalline plane. To illustrate this we performed
simulations for the same Au crystalline particle in which
imaginary parts of the susceptibilities were eliminated from the
Takagi-Taupin equations (5) by setting χhi = χh̄i = 0. Results
of these simulations after inversion to real space and applying
correction by the function fc(r) (16) are shown in Fig. 9.
As we can see from this figure all residual artifacts in the
phase distribution were completely removed which approves
our conclusion about the origin of these features.

To be sure that our correction function takes into account
the entire contribution of refraction and absorption we per-
formed complementary simulations (not shown) where the
corresponding terms were completely eliminated by setting
χ0 = 0 in Takagi-Taupin equations (5). A comparison with

the simulations performed by the fully dynamical case and
corrections applied by the function fc(r) (16), presented
in Fig. 8, showed that both results entirely coincide with
each other. This can be explained by a suggestion that
the contribution in the scattering due to extinction may be
completely decoupled from the contribution originating from
refraction and absorption.

VI. SIMULATIONS FOR A Pb PARTICLE
OF A HEMISPHERICAL SHAPE

Results of simulations for a perfect cubic Au crystalline
particle have shown that the dynamical diffraction can lead
to an appearance of artifacts in the real space reconstruction.
In order to estimate the contribution of the dynamical effects
for a practical case, we considered experimental parameters
described in Refs. [4,35]. In that experiment 3D reconstruction
of the Bragg CXDI data was used to characterize the strain
distribution in a lead nanocrystal of a hemispherical shape of
0.75 μm in diameter. The crystal was coherently illuminated
by a monochromatic x-ray beam of 1.38 Å wavelength and Pb
(111) reflection was selected. In these experimental conditions
the Bragg angle was 13.97◦ and values of the extinction length
Lex were 0.32 μm and 1.26 μm for the Bragg and Laue
geometries, respectively.

For our simulations we considered a shape function
represented by a sphere truncated from one side by 1/3 of
its diameter, as the closest model. Following the description
of the experiment, we oriented the truncation plane to form
an angle of 27◦ with respect to the (111) crystallographic
plane. The diffraction geometry from two perspective views
is schematically shown in Fig. 10. Note orientation of the
coordinate axes: similar to the case of simulations for a
cubic Au particle the x and z axes lie in the scattering
plane and the y axis is orthogonal to them. According to the
chosen geometry (see Fig. 10) the cut along the z axis is not
symmetric with respect to the center but covers the range from
[−d/2 + d/3]/ cos(27◦) = −140 nm to d/2 = 375 nm.

FIG. 10. Diffraction geometry used in simulations for a Pb
crystalline nanoparticle of a hemispherical shape. Shape function
is modeled by a sphere of 0.75 μm in diameter truncated from one
side by 1/3 of the diameter. The cutting plane is tilted by 27◦ with
respect to the (111) crystallographic plane. Two different perspectives
are shown in (a) and (b). Blue planes outline the scattering plane (xz

slice) in (a) and (b) and diffraction plane (xy slice) in (b).
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FIG. 11. Results of simulations for a hemispherical Pb crystal.
3D distribution of the complex crystalline function was obtained by
inversion of the scattered amplitudes calculated by the dynamical
theory. The amplitude (a),(b) and phase (c),(d) are represented for the
xz slice in (a),(c) and by the line profiles along the x, y, and z axes
in (b),(d). Gray area in (c),(d) outlines the region outside the crystal,
where the phase is undefined.

Results of simulations performed by the dynamical the-
ory are presented in Fig. 11. The scattered amplitudes
A(q⊥,qy,�q) (8) in the far field were calculated in the angular
range from −0.83◦ to 0.83◦ with the angular increment of
3.3 × 10−3 degrees. In reciprocal space a box of 0.8 × 0.8 ×
0.8 nm−3 with the number of sampling points 401 in each
direction, that provided resolution per pixel size of 0.002 nm−1,
was used. By that for a 0.75 μm particle size we have the
sampling rate slightly above 4 pixels per speckle. These
amplitudes were merged into a 3D reciprocal space dataset
and then inverted to real space by 3D inverse Fourier transform
(9). The amplitude distribution shown in Figs. 11(a) and 11(b)
reveals slight depletion of the crystalline amplitude function
sh(r) in the central part, which corresponds to attenuation of
the incident and diffracted waves in the bulk of the crystal.
However, this artifact appears to be relatively small (about
10% of the average value) which supports applicability of the
kinematical approach in this case. At the same time, in the
phase distribution [see Figs. 11(c) and 11(d)] a considerable
phase gradient with the maximum deviation of the phase about
0.7 rad is observed.

To reveal the origin of this phase gradient we applied
the correction function fc(r) (16) to the complex crystalline
function Sh(r) shown in Fig. 11. Results of this correction are
presented in Fig. 12. We do not observe any significant changes
in the amplitude distribution [see Figs. 12(a) and 12(b)], as
soon as contribution due to absorption is comparably small
for this particle. At the same time, correction due to refraction
removed a major part of the gradient in the phase distribution
[see Figs. 12(c) and 12(d)]. Leftover residual variations were
on the level of 0.03 rad and can be neglected. These values are
much less than the values of the maximum phase deviation,

FIG. 12. Results of correction by the function fc(r) given by
equation (16) and applied to the results of simulations of a Pb
semispherical particle presented in Fig. 11. The amplitude (a),(b)
and phase (c),(d) are represented for the xz slice in (a),(c) and by the
line profiles along the x, y, and z axes in (b),(d). Gray area in (c),(d)
outlines the region outside the crystal, where the phase is undefined.

which were estimated in Ref. [35] to be about 1.15 rad after
correction for refraction effects.

Our observations that dynamical extinction effects prac-
tically did not played a significant role for 0.75 nm Pb
particle can be explained by the predominantly Laue scattering
geometry for the selected particle orientation and by the
fact that the particle size is significantly smaller than the
Laue extinction length. We point out that if the Bragg CXDI
experiment will be performed with the same particle size
and shape at different particle orientation or with different
photon energy, with predominantly Bragg scattering geom-
etry, the observed dynamical effects may be significantly
stronger.

VII. CONCLUSIONS

We present a general model based on a specific form of the
Takagi-Taupin equations optimized for geometry of the Bragg
CXDI measurement and with the aim to facilitate a numerical
solution in a finite 3D crystal of an arbitrary shape in the
presence of deformations. As a result, the complex amplitude
distributions of the transmitted and diffracted waves on the exit
surface are calculated. Propagation to the far field provides the
amplitude and phase distributions of the diffraction pattern that
corresponds to a specific cross section in reciprocal space. By
performing a series of such calculations for different values of
rotation angle a full 3D reciprocal space dataset in the vicinity
of the corresponding reciprocal lattice node can be constructed.
The complex crystalline function of the object in real space is
obtained by the inverse Fourier transform.

Using this model we performed simulations of the dynam-
ical diffraction on a perfect crystal of gold of a cubic shape
of 100 nm and 1 μm in size. For a small crystal results of our
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calculations were in full agreement with the kinematical the-
ory. In the simulations for the large crystal artifacts introduced
by the dynamical scattering effects were observed in real as
well as in reciprocal spaces. We analyzed the contributions
of different phenomena, such as refraction, absorption, and
cross-coupling between the diffracted and transmitted waves.
Based on the analytical derivations we developed an approach
which corrects the results of reconstructions for the effects of
refraction and absorption. Such a correction, applied to the
results of the simulations, demonstrates a complete removal of
corresponding contributions in the real space reconstruction.
The residual artifacts in the amplitude and phase distributions
are attributed to the dynamical effects of scattering in the crys-
tal. Additional simulation for a practical case of a Bragg CXDI
experiment with a hemispherical Pb particle of 750 nm in size
was also performed. By applying the correction for refraction
and absorption we demonstrate that remaining dynamical arti-
facts were small and did not affect results of the reconstruction.

Our results demonstrate, first, that artifacts in the phase
reconstruction due to refraction are important and cannot
be neglected even if the size of the crystal is smaller than
the extinction length. Second, our theoretical results demon-
strate that our method of refraction and absorption correction
can be safely applied even in the case of a crystal size
comparable with the extinction length. At the same time
extinction effects that are due to dynamical coupling of
transmitted and reflected waves cannot be easily corrected
and may produce artifacts in the reconstruction.

We conclude that limitations of kinematical approach in
the Bragg CXDI experiments depend on the relative values of
the crystal size d and extinction length Lex. We suggest the
following criteria. If scattering conditions (crystal shape and
orientation) are predominantly Bragg (Laue), then the size of
the crystal d should be compared with the corresponding Bragg
(Laue) extinction length. When transverse (longitudinal) crys-
tal size is smaller than the corresponding extinction length,
dynamical coupling or extinction effects should not affect
reconstruction significantly. However, even in this case effects
of absorption and especially refraction should be specially
analyzed. If necessary, correction function should be applied to
determine correct values of strain in the sample. In other cases
the dynamical theory should be applied. Finally, we think that
our findings will be of high importance for all groups working
in the fast developing field of coherent scattering and imaging
in Bragg scattering conditions.
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APPENDIX A: DERIVATION OF MODIFIED
TAKAGI-TAUPIN EQUATIONS

Here we describe derivation of the Takagi-Taupin equations
in symmetric form. The properties of the electric field vector
E(r) inside a crystal are described by the following wave

propagation equation

�E(r) − grad(divE(r)) + ω2

c2
[1 + χ (r)]E(r) = 0, (A1)

where ω is the frequency of the wave field and c is the speed of
light. In equation (A1) χ (r) is the susceptibility of the crystal.
We assume in the following the case of σ polarization, so the
electric field will be further considered as a scalar field.

In the case of a perfect crystal the susceptibility χ (r) is
a periodic function with the period of the crystal lattice and
therefore can be expanded as a Fourier series

χ (id)(r) =
∑

h

χ
(id)
h eih·r, (A2)

where h is the reciprocal lattice vector. In equation (A2) the
summation is carried out over all reciprocal lattice vectors. In
the case of weak deformations, when relative displacements
are small the susceptibility of the crystal χ (r) is defined from
that of a perfect one according to the relation [23], χ (r) =
χ (id)(r − u(r)). The Fourier components of the susceptibility
in the weakly deformed crystal now depend on the coordinate
r and can be defined as

χh(r) = χ
(id)
h e−ih·u(r). (A3)

The solution of equation (A1) may be found in the form of
an expansion analogous to Bloch waves [see equation (4)] and
leads to a well known form of the Takagi-Taupin equations
(see for example Refs. [21,22]).

We will consider now that the orientation of the crystal
satisfies the exact Bragg conditions. In this case we have for
the Takagi-Taupin equations

∂E0(r)

∂s0
= iπ

λ
[χ0E0(r) + χh̄e

ih·u(r)Eh(r)],

∂Eh(r)

∂sh

= iπ

λ
[χ0Eh(r) + χhe

−ih·u(r)E0(r)]. (A4)

When the crystal is rotated by an angle �θ we denote
reciprocal lattice vector at this new orientation as h′ =
h + �q. Then, Fourier decomposition of the susceptibility
χ ′(r) for this new angular position of a crystal may be written as

χ ′(r) =
∑

h

[χhe
i(h′−h)·r]eih·r. (A5)

Comparing this expression with the decomposition (A2) we
conclude that in the equations (A4) the following substitutions
should be made

χh → χhe
i(h′−h)·r → χhe

i�q·r,

χh̄ → χh̄e
i(h−h′)·r → χh̄e

−i�q·r. (A6)

Following this approach, the Takagi-Taupin equations for
this new crystal orientation can be finally written in the form
(5). The angular dependence in the set of equation (5) is
represented by the phase exponent exp(i�q · r) which leads
to a convenient and symmetric form of the Takagi-Taupin
equations used in the simulations.
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APPENDIX B: TAKAGI-TAUPIN EQUATIONS FOR
THE MODIFIED AMPLITUDES

In Takagi-Taupin equations (5) two coupling terms with
χh,h̄ are responsible for dynamical diffraction effects. If we
eliminated these terms from equations (5), they turn into
linear independent differential equations, which describe an
independent transmission of the waves E0,h(r) through a
crystal without diffraction. In this case, the analytical solution
for each equation is represented by an exponential function
exp(iπχ0s0,h/λ).

Following this approach we substitute the amplitudes
E0,h(r) in the Takagi-Taupin equations (5) by the new ones
defined as (compare with Ref. [27])

E0,h(r) = E′
0,h(r)ei

χ0
2 k0,h·r (B1)

which lead us to a new system of equations

∂E′
0(r)

∂s0
= iπ

λ
χh̄e

−i�q′ ·r+ih·u(r)E′
h(r),

∂E′
h(r)

∂sh

= iπ

λ
χhe

i�q′ ·r−ih·u(r)E′
0(r), (B2)

where the complex vector �q′ is defined as

�q′ = �q + χ0

2
(k0 − kh). (B3)

This approach allows one to consider products in exponen-
tial factors as additives to the wave vectors and treat those as
complex values with the directional properties given only by
their real parts [22]. As such the refraction and absorption
of both diffracted and transmitted waves are included in
their definition by applying boundary conditions for these
amplitudes on a crystal surface. As it naturally follows from
expressions (B1), the modified amplitudes E′

0,h(r) differ from
the amplitudes E0,h(r) inside the material but are the same in
a vacuum. Therefore, the boundary conditions for equations
(B2) should be expressed as

E
′vac
0,h (Rb) = E

′cryst
0,h (Rb)ei

χ0
2 k0,h·Rb , (B4)

where Rb is the radius vector of a considered point at the
crystal-vacuum boundary, E

′vac
0,h (r) and E

′cryst
0,h (r) are the values

of amplitudes in a vacuum and inside the crystal. In fact, that
is equivalent to the condition of continuity of the tangential
component of the electric field at the interface. Such an
approach allows us to treat effects of refraction and absorption
while propagating the wave fields in a crystal in a simple way.

APPENDIX C: NUMERICAL MATRIX FORM
OF THE TAKAGI-TAUPIN EQUATIONS

In the numerical integration method the complex ampli-
tudes E0,h(r) are represented by a discrete set of values
over all integration grid and the Takagi-Taupin equations
are transformed to a recurrence matrix form, similar to
Ref. [29]. Relying upon the symmetry of equations between
the transmitted and the diffracted amplitudes, we take the same
elementary integration step p for both directions. For any
smooth, slowly varying function f (x,y) one can use the finite
difference approximation to estimate the partial derivative

from values at two neighboring points

∂

∂x
f

(
x − p

2
,y

)
= f (x,y) − f (x − p,y)

p
. (C1)

The value of the function in this middle point is given by a
half sum

f

(
x − p

2
,y

)
= f (x,y)

2
+ f (x − p,y)

2
. (C2)

When these formulas are applied to the differential equations
(5) those are transformed to the following set

E0(s0,sh)−E0(s0−p,sh) = iπp

2λ
[χ0E0(s0,sh)+χ0E0(s0−p,sh)

+ BEh(s0,sh)+BEh(s0 − p,sh)],

Eh(s0,sh)−Eh(s0,sh−p) = iπp

2λ
[χ0Eh(s0,sh)+χ0Eh(s0,sh−p)

+DE0(s0,sh) + DE0(s0,sh−p)]

(C3)

with substitutions

B = χh̄ exp

[
−i

(
s0 − p

2

)
�q · s0 − ish�q · sh

+ ih · u
(

s0 − p

2
,sh

)]
,

D = χh exp

[
is0�q · s0 + i

(
sh − p

2

)
�q · sh

− ih · u
(

s0,sh − p

2

)]
. (C4)

All the considered points belong to the same scattering
plane, therefore in further derivations we simply omit the sy

coordinate in the aid of shortness. The set of equations (C3)
can be further reorganized to

E0(s0,sh) = A

C
E0(s0 − p,sh) + B

C
Eh(s0,sh)

+B

C
Eh(s0 − p,sh),

Eh(s0,sh) = A

C
Eh(s0,sh − p) + D

C
E0(s0,sh)

+ D

C
E0(s0,sh − p). (C5)

Here two additional substitutions were made

A = 2λ

iπp
+ χ0,

C = 2λ

iπp
− χ0, (C6)

and it was assumed that C �= 0, which is evidently true for
any real positive p as far as χ0r �= 0. Solving this system with
respect to E0(s0,sh) and Eh(s0,sh) we obtain

E0(s0,sh)

[
1−BD

C2

]
= A

C
E0(s0−p,sh)+B

C
Eh(s0−p,sh)

+ BD

C2
E0(s0,sh−p)+BA

C2
Eh(s0,sh−p),
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Eh(s0,sh)

[
1−BD

C2

]
= AD

C2
E0(s0−p,sh)+BD

C2
Eh(s0−p,sh)

+ D

C
E0(s0,sh−p)+A

C
Eh(s0,sh−p).

(C7)

These relations can be also written in the matrix form

(
E0(s0,sh)
Eh(s0,sh)

)
= M

⎛
⎜⎝

E0(s0 − p,sh)
Eh(s0 − p,sh)
E0(s0,sh − p)
Eh(s0,sh − p)

⎞
⎟⎠, (C8)

where coefficients of matrix M are expressed as

M = 1

C2 − BD

(
AC BC BD BA

AD BD DC AC

)
. (C9)

APPENDIX D: KINEMATICAL LIMIT OF
THE TAKAGI-TAUPIN EQUATIONS

Here we derive an analytical solution of the Takagi-Taupin
equations for the purely kinematical case. In equations (5)
we neglect coupling between the transmitted and diffracted
components of the wave field, which is described by the term
χh̄, we also neglect effects of refraction and absorption which
are described by the term χ0. This leads to the following form
of the Takagi-Taupin equations (5)

∂E0(r)

∂s0
= 0,

∂Eh(r)

∂sh

=
(

iπ

λ

)
χhe

i�q·r−ih·u(r)E0(r). (D1)

The first equation can be easily solved as E0(r) = 1, where
we assumed that the amplitude of the incoming beam is equal
to unity. The amplitude of the diffracted wave field at the exit
surface of the crystal can be obtained from the second equation
in (D1)

EESW
h (s⊥,sy,�q) =

(
iπ

λ

)
χh

∫
Sh(r)ei�q·rdsh, (D2)

where the following representation of the position vector r =
s⊥s⊥ + sysy + shsh is used (see Fig. 2) and Sh(r) is a complex
crystalline function (2). As it was discussed before the far-field
diffraction pattern can be obtained by the 2D Fourier transform
of the exit surface wave

A(q⊥,qy,�q) =
∫∫

EESW
h (s⊥,sy,�q)e−iq⊥s⊥−iqy sy ds⊥dsy,

(D3)

where q⊥,qy are the reciprocal space coordinates. By substi-
tuting an expression (D2) in equation (D3) we obtain

A(q⊥,qy,�q) =
(

iπ

λ

)
χh

×
∫∫∫

Sh(r)ei�q·r−iq⊥s⊥−iqysy ds⊥dsydsh.

(D4)

Since ds⊥dsydsh = dr, the integral on the right side of
equation (D4) is the 3D Fourier transform of a complex crys-
talline function Sh(r) = sh(r) exp(−ih · u(r)). Comparison of
equation (D4) with equation (1) shows that they completely
coincide, which gives a confidence that our approximations
to the Takagi-Taupin equations indeed correspond to the
kinematical diffraction case.
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