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Majorana zero modes in a two-dimensional p-wave superconductor
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We analyze the formation of Majorana zero modes at the edge of a two-dimensional topological superconductor.
In particular, we study a time-reversal-invariant triplet phase that is likely to exist in doped Bi2Se3. Upon the
introduction of an in-plane magnetic field to the superconductor, a gap is opened in the surface modes, which
induces localized Majorana modes. The position of these modes can be simply manipulated by changing the
orientation of the applied field, yielding novel methods for braiding these states with possible applications to
topological quantum computation.
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Topological quantum computation is currently among the
most interesting candidates for the realization of a universal
quantum computer [1]. This approach provides a promising
path to creating a robust qubit that can endure the necessary
manipulations required in performing quantum logic [2].
Recent attempts at realizing such a qubit in condensed-matter
platforms are motivated by the one-dimensional Kitaev model
[3] with a topological insulating wire on which supercon-
ductivity is induced by contact with an ordinary s-wave
superconductor [4,5]. Systems of such qubits are presently
the subject of many investigations; see, for example, Ref. [1]
and references contained therein.

Many approaches to topological quantum computation are
based on the creation and manipulation of massless Majorana
states [3]. These arise as excitations in a two-dimensional
system when a fermion is effectively split into two parts,
with each part localized far away from the other in space.
Since fermions are fundamental particles, Majorana states are
always generated in pairs. Such states are known to occur in
topological superconductors [6–13] and have been predicted
to exist in the ν = 5

2 fractional quantum Hall effect [14,15].
Because of their nontrivial half-fermion statistics, braiding, or
exchanging, Majorana states is a non-Abelian process which
takes place within the space of degenerate ground states.
Quantum gates can be built by simply braiding Majorana states
[8]. Currently, realistic schemes for braiding Majorana states
require triwire junctions [16], and either electrostatic gates
[17] or controllable magnetic fluxes [18].

In this Rapid Communication, we propose and study a solid-
state platform for the creation and manipulation of Majorana
states, motivated by current research on natural topological
superconductors. Our proposed system is modeled on doped
Bi2Se3, but the results we present here are more general, and
can be extended to other superconductors and to the superfluid
B phase of 3He. In what follows, we describe the general
features of the Majorana platform, and show by detailed
calculations how these Majorana states arise. We then discuss
a simple scheme for manipulating Majorana excitations on
superconducting disks. Using a simple extension, we show
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that one can study our model in arbitrary geometries, providing
further impetus for experimental realization. This is described
in full detail in the Supplemental Material [19].

We start with a thin disk of a topological superconductor
material with thickness smaller than the superconducting
coherence length, as sketched in Fig. 1. In this limit, the
surface states at the top and bottom surfaces hybridize and
develop a small gap. The only remaining subgap states are
quasi-one-dimensional gapless Majorana bands localized at
the edges. If time-reversal symmetry (TRS) is not broken in
the superconducting phase, there are two bands related by
TRS inside the gap. An in-plane magnetic field applied to the
system, as shown in Fig. 1, breaks time-reversal symmetry.
This field hybridizes the two sets of Andreev states, and opens
a gap in the energy spectrum. The sign and magnitude of the
gap are determined by the normal of the field to the edge
and is opposite where the field enters the disk to where the
field exits the system. This leads to the formation of Majorana
modes located inside the bulk energy gap. These Majorana
edge modes are localized near the boundary of the disk, at the
points where the field is parallel to the edge.

Of the different order parameters that have been proposed
to describe the superconducting phase of doped Bi2Se3

[20–22], we will consider a time-reversal-invariant, odd-parity,
triplet phase. Our analysis applies to similar Majorana modes
appearing in neutral fermionic superfluids, such as 3He
[23–25] (see also [26]), as well as to gapped atomic Fermi
superfluids [27]. In general, the two requirements for our
proposed system are (i) (effective) two-dimensionality, and (ii)
existence of gapless counterpropagating Andreev edge modes.
The first condition requires the thickness of the system to
be smaller than the superconducting coherence length. The
second condition excludes a two-dimensional, gapped chiral
px ± ipy superconductor, as the corresponding edge modes
flow in one direction only. Our results can be generalized to
other topological superconducting phases, provided that the
gap does not vanish on the Fermi surface, in particular to two-
component time-reversal-invariant nematic phases [21,22].
Related artificial topological superconductors can be created
using the proximity effect [28–30].

We describe the system using a two-orbital, k · p Hamilto-
nian proposed for the topological insulator Bi2Se3 [31–33]. We
consider quasi-two-dimensional systems, of thickness d such
that k−1

Fz � d � ξz, where kFz and ξz are the Fermi wave vector
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FIG. 1. Schematic representation of a superconducting disk in our
setup. An in-plane magnetic field that gives rise to a Zeeman splitting
is indicated by the arrow labeled BZ. The color along the perimeter
of the disk indicates relative sign of the superconducting gap at the
edge. Majorana zero modes are formed where the gap changes sign,
as shown by the bright spots on the disk.

and the penetration length along the z axis. The extraction
of an effective low-energy two-dimensional Hamiltonian is
described in the Supplemental Material [19]. We obtain

H2D(k) = EGσx + vF σz(kxsy − kysx), (1)

where we denote by σi and si Pauli matrices that act on
orbital space {A,B} and spin space {↑,↓}, respectively, with
i = x,y,z. We can induce superconductivity in this system via
chemical doping. In the mean-field limit, we represent this by
a Bogoliubov–de Gennes (BdG) Hamiltonian

H(k) = [H2D(k) − εF ]τz + �scσyszτx, (2)

where the τi are Pauli matrices that act on the Nambu particle-
hole space, εF is the chemical potential, and the coupling
�scσyszτx describes a triplet p-wave, time-reversal-invariant
superconductor.

For Bi2Se3, and other systems of interest, the chemical po-
tential lies far away from the valence band and the magnitude of
the superconducting gap is small, i.e., ε̄F = εF − EG � 2EG

and �sc � EG. In this limit, we can neglect the valence
band, and project the BdG Hamiltonian onto the conduction
band only. To lowest order in �sc, the Hamiltonian reduces
to two 2×2 Hamiltonians H±. Thus, we write the projected
Hamiltonian as

H0(k) =
(
H+(k) 0

0 H−(k)

)
, (3)

where H±(k) = ±[ v2
F |k|2
2EG

− ε̄F ]τz + 2vF �sc
EG

[kyτx + kxτy] rep-
resents two chiral superconductors with direction-dependent
superconducting gaps at the Fermi surface, �Fermi

sc =
2vF kF �sce

iϕ/EG, where ϕ = arctan(ky/kx) and kF =√
2EGε̄F /vF . The measured superconducting gap is 2�exp =

2|�Fermi
sc | = 4�scvF kF /EG. Each chiral superconductor has a

single edge mode with a preferred direction [14,34]. The two
p-wave branches are related by time-reversal symmetry, mak-
ing the total Hamiltonian time-reversal invariant. Therefore,
when solving for the eigenstates ofH0 we restrict our attention
to finding the states of H+, and determine the eigenstates of
H− by reversing time (see Fig. 2).

We now study the edge modes on a disk of radius R by
diagonalizing H0 in that domain. In the following, we use
dimensionless variables by expressing all energies in units of

FIG. 2. Schematic of the spectrum of a time-reversal-invariant
p-wave superconductor on a disk as a function of angular momentum
	. Note that there are two branches of chiral edge modes with opposite
chirality below the superconducting gap.

ε̄F . Then, we can write

H±(κ) =
( ±(|κ |2 − 1)

√
2γ (−iκx + κy)√

2γ (iκx + κy) ±(−|κ |2 + 1)

)
, (4)

where κ = k/kF , and γ = �2
exp/2ε̄2

F � 1 sets the rela-
tive scale of the superconducting gap. In our notation,
the electron and hole components are ordered as |�〉 =
(ψ (e)

↑ ψ
(h)
↓ −ψ

(h)
↑ ψ

(e)
↓ )

T
. The eigenfunctions of the

Hamiltonian in Eq. (4) on a disk are two-component spinors,
where each component contains the product of radial Bessel
functions with wave vector κ = |κ | and angular momentum
	, as discussed in detail in the Supplemental Material [19].
The upper and lower components differ by one unit of angular
momentum [35]. We are interested in the case where κ is
complex, corresponding to edge modes with an exponentially
decaying wave function. This occurs for energies E below
the superconducting gap, i.e., E/ε̄F = E < δ = �sc/ε̄F . By
imposing the boundary condition that the wave function
vanishes on the edge, we can find the energy spectrum for
the edge states. In the semiclassical limit where the system
size is much larger than the Fermi wavelength λ = kF R � 1,

and to first order in λ−1, the spectra of edge modes for the p+
and p− superconductors are

Eedge
± ≈ ∓

(
	 + 1

2

)√
2γ

λ
. (5)

We note that Eq. (5) is valid up to |	| ≈ λ
√

1 − γ /2; for larger
angular momenta, the states lie outside the superconducting
gap, and they are delocalized. Due to circular symmetry, the
probability density of the edge states is uniform along the
perimeter of the disk. The decay length towards the interior
of the disk is r∗ ∝ ξ = ε̄F /(�expkF ). This length should be
smaller than the disk’s radius. Table I list estimates of the
coherence length and of other parameters. Scalar disorder
leads to pair breaking in p-wave superconductors, although the
spin-orbit coupling reduces this effect [36]. The parameters in
Table I use the critical temperatures taken from experiments
[37], which already include the effect of disorder. Finally, it is
important to note that scalar disorder does not mix the midgap
states.
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TABLE I. Relevant parameters, analytical expressions, and numerical estimates of different quantities discussed in the text. Here, kB is
Boltzmann’s constant, and μe is the magnetic moment of the electron. We estimate these parameters based on experimental data available for
CuxBi2Se3 [37,40–44]. Details can be found in the Supplemental Material [19].

Input parameters Radius R 1 μm

Magnetic field BZ 1 T

Length and angular scales Fermi wavelength kF 10−1 Å
−1

Electron density per layer ρL k2
F /2π 1.6×1013 cm−2

Coherence length ξ 0.2×(h̄vF )/(kBTc) 2×103 Å

Angular width of Majorana states 1/b
√

�exp/(μeBZkF R) 0.32 radians

Energy scales Fermi energy ε̄F v2
F k2

F /2EG kB×2300 K = 200 meV

Critical temperature Tc 3.8 K

Superconducting gap �exp 1.76 kBTc kB×6.7 K = 0.6 meV

Quasiparticle gap �M

√
(2μeBZ�exp)/(kF R) kB×0.3 K = 0.026 meV

Gap between Majorana modes δεM �M exp(−2b2)/
√

2 kB×10−8 K = 10−9 meV

We now consider a symmetry-breaking perturbation that
induces zero-mode Majorana states. We apply an in-plane
magnetic field that breaks time-reversal symmetry and induces
a superconducting gap that vanishes at boundary points where
the field is tangent to the disk. We expect to find localized
zero modes at these points. The perturbation is of the form
HZ = τZ(EZn · s), where n points in the direction of the
field, EZ = μeBZ/ε̄F is the Zeeman coupling scaled by ε̄F ,

and μe is the magnetic moment of the electron (see Fig. 1).
The Zeeman field couples electrons of opposite spins from
the different branches, and likewise, holes from different
branches. Note that a parallel magnetic field weakly perturbs
the superconducting phase [38,39]. We work in the weak-field
limit, where the Zeeman energy is much smaller than the
superconducting gap. Then, we can neglect the bulk states,
and truncate the Hilbert space to the (unperturbed) edge states
only. We project the full Hamiltonian H = H0 + HZ onto
this basis and diagonalize the truncated Hamiltonian. We find
two Majorana zero modes separated in energy from the first
excited quasiparticle states by an energy gap �M , which can
be expressed as �M/ε̄F ≈ (8γ /λ2×E2

Z)
1/4

for large λ. This
implies stability of the zero-mode states as they are well
separated from the other edge modes. A second important
scale is the splitting between the two Majorana states. Since
the wave function at either side of the disk is approximately
Gaussian, with angular width 〈θ2〉 ≈ √

2γ /(EZλ), this leads to

FIG. 3. Majorana zero modes in the presence of a Zeeman field.
We plot here the electron densities localized around points where the
superconducting gap changes sign. We see that the zero modes rotate
as we rotate the in-plane field by changing φ. We use the following
parameters: γ = 1

16 , λ = kF R = 50, and EZ = 1
20 .

a splitting which decays exponentially with R. As illustrated
here, we can manipulate the gaps that determine the stability
of the Majorana modes by simply adjusting the strength of the
applied field and the size of the disk.

As the edge modes are localized at boundary points where
the superconducting gap changes sign, we can rotate these
modes by simply rotating the Zeeman field, as shown Fig. 3.
This gives us a simple way to perform particle exchanges for
braiding and other purposes. We now explore this possibility
in a three-disk configuration. In the presence of tunneling
junctions between disks, the Hamiltonian restricted to the
Majorana states is

HM = i
∑
i,j

ti,j (φ)γiγj , (6)

where γi and γj are Majorana operators in neighboring disks,
and ti,j (φ) is the hopping between those Majorana states. This
term depends on the orientation of the field φ. By rotating the
magnetic field, states in different disks can be brought into
contact, as illustrated in Fig. 4. For instance, the change of
the exchange field which takes the left configuration into the
center one exchanges states 3 and 1, while the change from
the center configuration to the right one exchanges states 2
and 6. This scheme shows a simple way to manipulate the
Majorana fermions. A complete braiding protocol is outside
the scope of this work. An alternative proposal, based on a
one-dimensional ring of magnetic atoms on a superconductor,

FIG. 4. Manipulation of Majorana modes by an in-plane magnetic
field in an array of three topological superconductor quantum dots.
The numbers label the Majorana states. Tunneling-assisted mixing
between these states occurs when they are in nearby regions of the
dots, as shown by the ellipses.
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has been recently discussed in [45] (note that the braiding
scheme discussed there can be extended to our proposal, using
overlapping dots). For other realizations, see also [46,47].

The appeal of this approach is that no trijunctions are
required, and only a rotation of the magnetic field is needed.
These operations are carried out without recourse to external
gates or magnetic fluxes. If such fluxes and gates are added to
this system, more ways to correlate the Majorana particles are
induced, leading to new functionalities. Furthermore, more
complex dot geometries can also be a platform for more
ambitious engineering efforts. We explore some of these
possibilities in the Supplemental Material [19].

It may also be the case that the magnetic field is due to
spontaneously polarized magnetic moments or to an additional
chiral superconducting component of the order parameter [22].
Then, quantum fluctuations of the field will lead to additional
interactions between the Majorana states. Finally, a large array
of quantum dots can serve as a platform for a surface code for
topological quantum computation [48–50].

One question that needs to be addressed is whether we
can perform the magnetic field rotation without substantially
mixing in low-lying fermionic excitations (so-called quasipar-
ticle poisoning [2]). As shown in detail in the Supplemental
Material [19], in the limit of weak coupling, we can adjust
the separation in energy scales to be large enough to assure
that this does not happen. There is a subtle interplay between
effective tunneling-supported mixing of the Majorana particles
and quasiparticle poisoning that deserves further investigation.

In summary, we have analyzed the emergence of localized
Majorana modes at the edges of finite two-dimensional
topological superconductors. Although we have based our
model on the time-reversal-invariant triplet superconducting
phase that is likely to exist in doped Bi2Se3, our results

apply more generally to systems where the thickness is
much smaller than the bulk coherence length. In particular,
the triplet superconducting phase of doped Bi2Se3 bears
qualitative resemblance to the B phase of superfluid 3He, and
therefore, we expect our results to hold in that context as
well. Furthermore, the analysis remains valid for other gapped
superconducting phases with gapless edge modes, such as
the nematic phase, also proposed for doped Bi2Se3. Similar
Majorana states can also be expected in fermionic superfluids
based on cold atoms.

Our system provides an appealing alternative Majorana
platform precisely because of its simplicity. We can control the
stability of the Majorana states by widening the gap to the next
excited states with a simple adjustment of the field strength.
The positions of the Majorana states can be modified by
changing the orientation of the applied magnetic field. Already
with a single disk, we can exchange two Majorana particles by
rotating the field by π. In arrays with many quantum dots, the
field can be used to modulate the interaction between Majorana
states in different dots, and to exchange them, without
requiring the existence of trijunctions, electrostatic gates, or
magnetic fluxes. These properties make the proposed model
an interesting candidate for the experimental realization of a
Majorana-based qubit for topological quantum computation.
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