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The spin-1 Haldane chain is an example of the symmetry-protected-topological (SPT) phase in one dimension.
Experimental realization of the spin chain materials usually involves both the uniaxial-type, D(Sz)2, and the
rhombic-type, E[(Sx)2 − (Sy)2], single-ion anisotropies. Here, we provide a precise ground-state phase diagram
for a spin-1 Haldane chain with these single-ion anisotropies. Using quantum numbers, we find that the Z2

symmetry breaking phase can be characterized by double degeneracy in the entanglement spectrum. Topological
quantum phase transitions take place on particular paths in the phase diagram, from the Haldane phase to the
large-Ex , large-Ey , or large-D phases. The topological critical points are determined by the level spectroscopy
method with a newly developed parity technique in the density matrix renormalization group [Phys. Rev. B 86,
024403 (2012)], and the Haldane-large-D critical point is obtained with an unprecedented precision, (D/J )c =
0.9684713(1). Close to this critical point, a small rhombic single-ion anisotropy |E|/J � 1 can destroy the
Haldane phase and bring the system into a y-Néel phase. We propose that the compound [Ni(HF2)(3-Clpy)4]BF4

is a candidate system to search for the y-Néel phase.

DOI: 10.1103/PhysRevB.96.060404

Introduction. Quantum magnetism of integer-spin chains
has been attracting attention for decades. It was stimulated
by the Haldane conjecture [1] that the lowest excitation in
the antiferromagnetic Heisenberg model is gapped if and
only if the spin S is an integer. Experimental evidences
for the Haldane gap were discovered in several S = 1
quasi-one-dimensional (Q1D) materials, e.g., CsNiCl3 [2,3],
Y2BaNiO5 [4–6], Ni(C2H8N2)2NO2(ClO4) (NENP) [7,8],
and [Ni(C2H8N2)2NO2]BF4 (NENB) [9]. Due to the crystal
field and the spin-orbit coupling, the microscopic effective
Hamiltonian for the Q1D spin chains involves the single-ion
anisotropies,
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where J > 0 is the strength of the Heisenberg exchange
interaction, as well as D and E are the parameters of the
uniaxial and rhombic single-ion anisotropies, respectively.
The Haldane gap is robust against small anisotropies, and
it extends to a region so-called Haldane phase. In the
absence of a local order, the Haldane phase falls beyond
the paradigm of Landau’s theory of phase transitions. From
a topological point of view, the Haldane phase is classified
as the symmetry-protected-topological (SPT) phase [10] for
odd S, while the Haldane phase is adiabatically connected
with a topological trivial phase for even S [11–15]. Interesting
properties such as the valence-bond-solid (VBS) description

*d102054002@mail.nchu.edu.tw
†onishi.hiroaki@jaea.go.jp
‡yjkao@phys.ntu.edu.tw

0 0.1 0.2 0.3 0.4 0.5
J/D

0
0.1
0.2
0.3
0.4
0.5

J/E

NBYC

-2 -1 0 1 2D/J
-2

-1

0

1

2

E/J

Y2BaNiO5
NENB
NENP
[Ni(HF2)(3-Clpy)4]BF4

La
rg

e-
D

Large-Ex

y-Néel

Large-D

y-Néel
Large-Ex

Large-Ey x-Néel

z-Néel

Haldane

FIG. 1. Quantum phase diagram for the S = 1 Haldane chain
with both uniaxial and rhombic single-ion anisotropies. Topological
quantum phase transitions occur through particular (red arrows)
routes. The Haldane-large-D critical point (D/J )c = 0.9684713(1)
is determined by the LS+DMRG method. A small rhombic anisotropy
|E|/J � 1 at this point (D/J )c induces a transverse antiferromag-
netic order.

[16], hidden Z2 × Z2 symmetry breaking, nonlocal string
order, fractionalized gapless edge modes, and the degenerate
entanglement spectra are used to characterize the SPT phase.
On the other hand, the entanglement spectrum is not required
to be degenerate for both the topological trivial phase and the
symmetry breaking phase.

Prior theoretical and numerical investigations focus on
the effects of the uniaxial anisotropy (D term) [17–26].
The effect of rhombic anisotropy (E term) lacks a com-
plete theoretical understanding [27,28]; however, materials
with large D/J and E/J are discovered, e.g., the S = 1
Q1D chains, Sr3NiPtO6 [29,30], Ni(C2H8N2)2Ni(CN)4
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TABLE I. The values of zero-field-splitting parameters for some
spin-1 Q1D materials.

Compounds D/J E/J Phase Ref.

Y2BaNiO5 −0.039 −0.0127 Haldane [4]
NENB 0.17 −0.016 Haldane [9]
NENP 0.2 0.01–0.02 Haldane [8]
[Ni(HF2)(3-Clpy)4]BF4 0.88 [32,33]
NBYCa 6.25 2.5 Large-D [34]
NBYCb 7.49 4.26 Large-D [35]
NENC 7.5 0.83 Large-D [31]
Sr3NiPtO6 8.8 0 Large-D [29,30]

aSusceptibility.
bAn additional bilinear-biquadratic term is considered.

(NENC) [31], [Ni(HF2)(3-Clpy)4]BF4 (py=pyridine) [32,33],
and Ni(C10H8N2)2Ni(CN)4 · H2O (NBYC) [34–36].

In this Rapid Communication, we fill up the vacancy in
the survey of the phase diagram regarding the E term. By
means of the DMRG [37], within the periodic boundary
conditions (PBC), the ground-state phase diagram of the S = 1
Hamiltonian Eq. (1) is shown in Fig. 1, and some of spin-1
Q1D materials are listed in Table I. By the permutations of spin
operators, the phase diagram shows a “rotational” symmetry in
the rescaled D-

√
3E parameter space [38]. The Hamiltonian

does not conserve the magnetization M = ∑
i S

z
i because of

the E term. Instead of the magnetization, the parity of M is
conserved. m = M mod 2 = 0 or 1 is a good quantum number
since the E term raises or lowers the magnetization by 2. The
spatial inversion p = ±1 and time reversal t = ±1 are also
good quantum numbers. We label the energy eigenstates and
the entanglement states by these quantum numbers (m,p,t).
The number of states kept K is up to 2000 in this study.

Energy and Entanglement Spectrum. The Haldane phase
surrounded by the other phases is a SPT phase [10] protected by
the dihedral group, the time reversal, and the space-inversion
symmetries [11,22]. The ground state can be described by the
VBS picture [16]: Each spin-1 in the chain is regarded as
triplet states of two spin-1/2, and the neighboring spin-1/2 of
different spin-1 form a valence bond, the singlet state. From
the VBS picture, two consequences are inferred. First, because
each singlet contributes odd quantum numbers for both spatial
inversion and time reversal, a closed chain of even number of
singlets has quantum numbers (m,p,t) = (0,1,1). Therefore,
we compute the ground state energy Eg = E0(0,1,1; PBC)
in this sector. Second, with the Haldane gap in the bulk, an
open chain has free unpaired spin-1/2 states at the edges.
For the PBC, a closed chain in our case, the edge states can
be artificially created by the partial trace of one part of the
bipartition. Explicitly, the chain is divided into two subsystems
A and B with equal sizes, and the reduced density matrix
ρA = TrB |ψ0〉〈ψ0| is computed in the DMRG, where |ψ0〉 is
the ground state. The entanglement spectrum is defined by ξi =
− ln ωi , where ωi is the ith largest eigenvalue of ρA. The edge
states reflect on that the reduced state can be decomposed into
the product ρA ≈ ( 1

212×2) ⊗ ρ0 ⊗ ( 1
212×2) [39,40], where 12×2

are the two-by-two identity matrices of the edges, the boundary
between A and B, and ρ0 is a pure-state bulk-part matrix
of the subsystem A. This fact ensures a fourfold degenerate
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FIG. 2. (a) The excitation gap � = E0(m,p,t ; PBC) − Eg , where
Eg = E0(0,1,1; PBC) is the ground state energy. The ground state
in the y-Néel phase has double degeneracy. (b) The entanglement
spectra of at least fourfold, double, and nondegeneracy characterize
the Haldane, the y-Néel, and the large-Ex phases, respectively. The
vertical lines indicate two critical points (E/J )c 	 0.214 and 1.717,
respectively. DMRG data for D/J = 0 and L = 80 are presented.
K = 1000 states are kept.

entanglement spectrum in the Haldane phase. The fourfold
degeneracy can be seen as a simple illustration of the bulk-edge
correspondence in the entanglement spectrum [41–43].

The lowest energy excitations and the low-lying entangle-
ment spectra are shown in Fig. 2 for fixed D/J = 0. The
Haldane gap is estimated as 0.41J for D = E = 0, which
agrees with recent numerical results [44]. Double degeneracy
in the ground-state energy and the entanglement spectrum
are found in the region between the Haldane phase and
the large-Ex phase. Both of the double degeneracies come
from the nature of a Z2 spontaneous symmetry breaking
phase, with breaking the parity of magnetization, space
inversion, and time-reversal symmetries, simultaneously. The
spin-spin correlation shows the phase also breaks translational
symmetry, as we will see in Fig. 3, therefore we refer to this
phase as the y-Néel phase.

The degeneracy structure of entanglement spectrum has
been proposed to distinguish different many-body quantum
phases recently [22,43,45–47]. The reason of the double
degeneracy in the y-Néel phase, Fig. 2(b), is that the degenerate
ground state is selected as an eigenstate of the symmetry
operators by the quantum numbers (m,p,t) in the DMRG
[14]. Such an enforced symmetrized state is similar to a
Greenberger-Horne-Zeilinger (GHZ) state, and the artificial
double degenerate spectrum is generated. For example, the
state 1√

2
(|↗↙↗↙〉±|↙↗↙↗〉) has the inversion parity quantum

number p = ±1, and it is an entangled state. However, each
symmetry breaking state, |↗↙↗↙〉 or |↙↗↙↗〉, is not an
eigenstate of the symmetry operator, and it is not entangled,
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FIG. 3. Spin and quadrupole correlation functions at typical
values of E/J for D/J = 0 and L = 200. (a) (−1)r〈Sy

0 Sy
r 〉,

(b) 〈Qx2−y2

0 Qx2−y2

r 〉, and (c) 〈Qz2

0 Qz2

r 〉. Note that r = 100 for the
most distant sites in the periodic chain of L = 200.

either. Note that the double degeneracy appears in the entire
spectrum and is also found in the z-Néel and x-Néel phases.
Thus, the degeneracy structure of the entanglement spectrum
identifies the SPT phase (fourfold), the Z2 symmetry breaking
phase (double), and the topological trivial phase (single).

In the z-Néel phase, the parity of magnetization m is con-
served, therefore the other parity quantum numbers (p,t) are
essential for observing the degenerate spectrum. In contrast,
in the y-Néel (or x-Néel) phase, the double degeneracy can
be observed when only using the parity of magnetization.
Therefore the E term serves an ideal model Hamiltonian to
observe the parity degeneracy in the spontaneous symmetry
breaking phase. From the technical point of view, quantum
numbers are usually used in the DMRG for preventing the
mixture of different subspaces as well as stabilizing and
accelerating the computations. Because the magnetization
is the most often used quantum number in the DMRG,
programming with the parity of magnetization should be easier
than the parity of inversion or time reversal.

Correlation Functions. The microscopic spin states of
novel quantum phases induced by single-ion anisotropies
can be clarified by measuring spin correlation functions,
〈Sα

0 Sα
r 〉, and quadrupole correlation functions, 〈Qγ

0 Q
γ
r 〉, where

Q
x2−y2

i = (Sx
i )2 − (Sy

i )2 and Qz2

i = 1√
3
[3(Sz

i )2 − 2] are rele-
vant quadrupole operators. In Fig. 3, we show typical behavior
with increasing E/J for fixed D/J = 0. In the Haldane phase
for small anisotropies, spin and quadrupole correlations are
short ranged, as shown for E/J = 0. At intermediate E/J ,
robust antiferromagnetic correlations of the spin y component
occur, as shown for E/J = 1. Spin correlations of the x and z

components are short ranged (not shown). Note here that the
local spin state is forced to be the lowest-energy eigenstate
of E[(Sx

i )2 − (Sy

i )2], given by |Sx
i = 0〉, where the local

spin fluctuates in the yz plane. Such fluctuating spins align
antiferromagnetically, while they preferably point to the y

direction due to the E term. Thus the y-Néel phase is identified.
At large E/J , the ground state turns to be the product

of |Sx
i = 0〉, and the Néel structure vanishes, as shown for

E/J = 2. This phase is referred to as the large-Ex phase.
Because the negative E/J is equivalent to exchanging the
x axis and y axis, E[(Sy

i )2 − (Sx
i )2], we refer to the phase as

the large-Ey phase for the product of |Sy

i = 0〉 at large negative
E/J , and only positive E/J is discussed. A distinct feature for

the large-Ex phase is that |Sx
i = 0〉 has quadrupole moments,

〈Qx2−y2

i 〉 = −1 and 〈Qz2

i 〉 = 1√
3
, so that finite quadrupole

correlations come out. The Qx2−y2
correlation develops in

the y-Néel and large-Ex phases, while the Qz2
correlation

grows after entering the large-Ex phase. We should note that
the E and D terms have the same forms as Qx2−y2

and
Qz2

, respectively, indicating emergent quadrupole degrees of
freedom. We expect that the competition of quadrupole states
would drive the system into quadrupole phases, the so-called
spin nematic phases, but Néel phases are observed in the
present case at zero magnetic field. The search for possible
quadrupole phases in magnetic field would be an interesting
future problem, since those in a spin-1/2 frustrated chain in
high magnetic field have been actively discussed [48–53].

Level Spectroscopy. The critical points are determined by
the finite size scaling of the entanglement entropy [38,54–57]
and the level spectroscopy (LS) method. All the transitions
belong to the Ising universality class with the central charge
c = 1

2 , except three Gaussian points with c = 1 labeled by the
red points in Fig. 1. Topological quantum phase transitions
occur at these Gaussian points, from the Haldane phase to
the large-D, large-Ex , or large-Ey phases. The topological
quantum phase transition from the Haldane phase to the large-
D phase is known as an example of the third-order Gaussian
transition [21], therefore this critical point is more difficult to
be precisely determined than the conventional second-order
transitions. Several methods for the determination of this
critical point were investigated, including the LS plus exact
diagonalization (LS+ED) [17], fidelity susceptibility [20,21],
quantum Monte Carlo (QMC) [58], von Neumann entropy
[59], and the quantum renormalization group [60]. Here we
use the parity DMRG [14] to perform the LS+DMRG method.

The LS method [61–66] is based on the effective field theory
of the sine-Gordon model and the c = 1 conformal field theory.
The critical point can be probed by the energy level crossing
within the twisted boundary conditions (TBC), Sx

L+1 → −Sx
1 ,

S
y

L+1 → −S
y

1 , Sz
L+1 → Sz

1. The LS method can be roughly
described by the VBS picture [66], as shown in Fig. 4. For the
TBC chain with even length L, there are odd number of singlet
bonds and one triplet bond in the Haldane phase. Each singlet
contributes the inversion parity quantum number pi = −1,
and the triplet bond contributes pL = 1. Thus, the quantum
number for the system becomes odd, p = ∏L

i=1 pi = −1.
On the other hand, the inversion parity quantum number
for the large-D phase is always even, p = 1. Therefore,
the Haldane phase and the large-D phase are characterized

(a) Haldane phase (PBC)

(b) Haldane phase (TBC)

(c) Large-D phase

(m,p,t)=(0,1,1)

(m,p,t)=(0,-1,-1)

(m,p,t)=(0,1,1)|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

FIG. 4. (a) For a closed chain with even number of singlets,
the quantum numbers for the Haldane phase are (m,p,t) = (0,1,1).
(b) Within TBC, the number of singlets become odd, and the quantum
numbers change as (m,p,t) = (0, − 1, − 1). (c) For large single-ion
anisotropy, the quantum numbers are (m,p,t) = (0,1,1).
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FIG. 5. (Left) Energy level crossing with different quantum
numbers occurs at D∗

c for L = 64, E/J = 0, within TBC. � =
E0(m,p,t ; TBC) − Eg and Eg = E0(0,1,1; PBC) is the ground state
energy within PBC. (Right) Extrapolation of the critical point is
performed by linear fitting. (D/J )c = 0.9684713(1) is obtained.
K = 2000 states are kept.

by the energy E0(0, − 1, − 1; TBC) and E0(0,1,1; TBC),
respectively.

We show the energy level crossing E0(m,p,t ; TBC) with
different quantum numbers (m,p,t) = (0,1,1) and (0,−1,−1)
in Fig. 5. The location of the crossing point is labeled
by D/J = D∗

c , and the critical point is obtained by the
extrapolation to the thermodynamic limits. It is known that
the scaling formula is a polynomial function in L−2 [61–66].
This importantly makes the convergence fast, because the sub-
leading term L−4 is much smaller than the leading term. Our
numerical data [38], for L = 32, 40, 48, 56, and 64, show that
a linear fitting is good enough for the extrapolation. We obtain
(D/J )c = 0.96847133(2) with linear fitting and (D/J )c =
0.96847141(2) with the subleading term L−4. Therefore it
would be safe to conclude (D/J )c = 0.9684713(1) with the
systematic error about 10−7. Although our LS+DMRG only
have sizes L � 64, combining the DMRG technique proposed
by Hu et al. [59] for large systems with level spectroscopy
should further improve the precision of the value (D/J )c.
Other combinations such as LS+QMC [67] are also possible.

Finally, we briefly discuss the effect of E term at these
(red points in Fig. 1) topological critical points. Basically, the
effect of E term can be understood from the scaling dimension
of the E term at the Haldane-large-D critical point (D/J )c
in the renormalization group flow analysis. If the E term is
relevant at the critical point, the critical point disappears by
introducing an infinitesimal E term as observed in the phase
diagram in the D-E plane, Fig. 1. The Haldane-large-D critical
point (D/J )c is characterized by the central charge c = 1 free
boson conformal field theory [18]. Note that the E term can
be transformed as

E

L∑

i=1

[(
Sx

i

)2 − (
S

y

i

)2] = E

2

L∑

i=1

[(S+
i )2 + (S−

i )2]. (2)

Thus, if the scaling dimension of (S+
i )2 at the critical fixed

point is less than the dimension 1 + 1 = 2, the E term is
relevant and an infinitesimal E/J flows away from the critical
point. The renormalization flow may eventually goes to x- or
y-Néel phases depending on the sign of E/J . Actually, a recent
DMRG calculation has estimated the scaling dimension �s

corresponding to this operator as �s = 0.750 ± 0.002 [18].

Because the scaling dimension clearly satisfies the relation
�s < 2, we can conclude that the effect of E term is relevant
at the Haldane-large-D critical fixed point (D/J )c. Thus we
expect that by introducing infinitesimal E/J , the critical
point between the Haldane and the large-D phases disappears
because the relevant E term increases along renormalization
and it flows away from the critical point. By considering the
symmetries of permutation of axis [38], the present discussions
are also applicable for the critical points between the Haldane
phase and large-Ex or large-Ey phases.

Discussions. We have investigated and provided a precise
quantum phase diagram for the S = 1 Haldane chain with
both uniaxial and rhombic single-ion anisotropies, Eq. (1).
By the parity DMRG [14] within PBC, we show that the
symmetry breaking phase has double degeneracy in the
entire entanglement spectrum. This generalizes the perspective
that the degeneracy structure of entanglement spectrum tells
different quantum phases, from the SPT phases to the sym-
metry breaking phases. The Haldane-large-D critical point is
determined by the LS+DMRG method with an unprecedented
accurate value (D/J )c = 0.9684713(1). The presented power
of the LS+DMRG method supports the reliability of finding
the SPT intermediate-D phase in the S = 2 XXZ chain [12–
14]. From the phase diagram, we point out that a small rhombic
anisotropy induces a transverse antiferromagnetic long range
order when D/J is close to this (D/J )c. This suggests that
[Ni(HF2)(3-Clpy)4]BF4, with D/J 	 0.88 [32], is either a
possible candidate system to search for the y-Néel phase, or
a candidate for observing the quantum phase transition driven
by the rhombic-type single-ion anisotropy.

In the end of this Rapid Communication, we argue the
spin-1 chain can be made by arranging the single-molecule
magnets (SMM), e.g., CoH, the S = 1 SMM [68]. We mention
that recent experiments on a small cluster of SMMs have been
taking into account the weak interactions between SMMs
for L = 2 [69] and L = 4 [70]. On the other hand, atomic
engineering has been able to tune the magnetic anisotropy
[71] and tune the spin state by absorbing hydrogen [68,72].
The spin-spin interaction coming from the superexchange
mechanism [73–76] and the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [77] have been observed. Cold rubidium
atoms have recently been proposed to simulate a spin-1 chain
with uniaxial-type single-ion anisotropy [78]. In principle, an
artificial spin chain with both uniaxial and rhombic single-ion
anisotropies can be created.
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Signore, M. W. Meisel, S. Merah, and M. Verdaguer, Thermo-
dynamic and magnetic properties of the S = 1 Heisenberg chain
Ni(C2H8N2)2Ni(CN)4: Experiments and theory, Phys. Rev. B
52, 3435 (1995).

[32] J. L. Manson, A. G. Baldwin, B. L. Scott, J. Bendix, Rico E. Del
Sesto, P. A. Goddard, Y. Kohama, H. E. Tran, S. Ghannadzadeh,
J. Singleton, T. Lancaster, Johannes S. Möller, S. J. Blundell,
F. L. Pratt, V. S. Zapf, J. Kang, C. Lee, M.-H. Whangbo, and
C. Baines, [Ni(HF2)(3-Clpy)4]BF4 (py=pyridine): Evidence for
spin exchange along strongly distorted FHF− bridges in a one-
dimensional polymeric chain, Inorg. Chem. 51, 7520 (2012).

[33] J.-S. Xia, A. Ozarowski, P. M. Spurgeon, A. G. Baldwin, J. L.
Manson, and M. W. Meisel, arXiv:1409.5971.

060404-5

https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevB.66.024407
https://doi.org/10.1103/PhysRevB.66.024407
https://doi.org/10.1103/PhysRevB.66.024407
https://doi.org/10.1103/PhysRevB.66.024407
https://doi.org/10.1103/PhysRevB.54.R6827
https://doi.org/10.1103/PhysRevB.54.R6827
https://doi.org/10.1103/PhysRevB.54.R6827
https://doi.org/10.1103/PhysRevB.54.R6827
https://doi.org/10.1007/s00723-013-0448-8
https://doi.org/10.1007/s00723-013-0448-8
https://doi.org/10.1007/s00723-013-0448-8
https://doi.org/10.1007/s00723-013-0448-8
https://doi.org/10.1016/j.jmmm.2014.08.097
https://doi.org/10.1016/j.jmmm.2014.08.097
https://doi.org/10.1016/j.jmmm.2014.08.097
https://doi.org/10.1016/j.jmmm.2014.08.097
https://doi.org/10.1209/0295-5075/3/8/013
https://doi.org/10.1209/0295-5075/3/8/013
https://doi.org/10.1209/0295-5075/3/8/013
https://doi.org/10.1209/0295-5075/3/8/013
https://doi.org/10.1016/0921-4526(95)00027-7
https://doi.org/10.1016/0921-4526(95)00027-7
https://doi.org/10.1016/0921-4526(95)00027-7
https://doi.org/10.1016/0921-4526(95)00027-7
https://doi.org/10.1088/1367-2630/10/3/033008
https://doi.org/10.1088/1367-2630/10/3/033008
https://doi.org/10.1088/1367-2630/10/3/033008
https://doi.org/10.1088/1367-2630/10/3/033008
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1143/JPSJ.80.043001
https://doi.org/10.1143/JPSJ.80.043001
https://doi.org/10.1143/JPSJ.80.043001
https://doi.org/10.1143/JPSJ.80.043001
https://doi.org/10.7566/JPSJ.85.063704
https://doi.org/10.7566/JPSJ.85.063704
https://doi.org/10.7566/JPSJ.85.063704
https://doi.org/10.7566/JPSJ.85.063704
https://doi.org/10.1103/PhysRevB.86.024403
https://doi.org/10.1103/PhysRevB.86.024403
https://doi.org/10.1103/PhysRevB.86.024403
https://doi.org/10.1103/PhysRevB.86.024403
https://doi.org/10.1103/PhysRevB.87.235106
https://doi.org/10.1103/PhysRevB.87.235106
https://doi.org/10.1103/PhysRevB.87.235106
https://doi.org/10.1103/PhysRevB.87.235106
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2006-00342-3
https://doi.org/10.1140/epjb/e2006-00342-3
https://doi.org/10.1140/epjb/e2006-00342-3
https://doi.org/10.1140/epjb/e2006-00342-3
https://doi.org/10.1103/PhysRevA.77.012311
https://doi.org/10.1103/PhysRevA.77.012311
https://doi.org/10.1103/PhysRevA.77.012311
https://doi.org/10.1103/PhysRevA.77.012311
https://doi.org/10.1103/PhysRevA.77.062321
https://doi.org/10.1103/PhysRevA.77.062321
https://doi.org/10.1103/PhysRevA.77.062321
https://doi.org/10.1103/PhysRevA.77.062321
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.88.125117
https://doi.org/10.1103/PhysRevB.88.125117
https://doi.org/10.1103/PhysRevB.88.125117
https://doi.org/10.1103/PhysRevB.88.125117
https://doi.org/10.1103/PhysRevB.89.235132
https://doi.org/10.1103/PhysRevB.89.235132
https://doi.org/10.1103/PhysRevB.89.235132
https://doi.org/10.1103/PhysRevB.89.235132
https://doi.org/10.1103/PhysRevB.91.054405
https://doi.org/10.1103/PhysRevB.91.054405
https://doi.org/10.1103/PhysRevB.91.054405
https://doi.org/10.1103/PhysRevB.91.054405
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1016/0921-4526(94)00983-3
https://doi.org/10.1016/0921-4526(94)00983-3
https://doi.org/10.1016/0921-4526(94)00983-3
https://doi.org/10.1016/0921-4526(94)00983-3
https://doi.org/10.1016/j.physb.2013.12.007
https://doi.org/10.1016/j.physb.2013.12.007
https://doi.org/10.1016/j.physb.2013.12.007
https://doi.org/10.1016/j.physb.2013.12.007
https://doi.org/10.1103/PhysRevB.82.094431
https://doi.org/10.1103/PhysRevB.82.094431
https://doi.org/10.1103/PhysRevB.82.094431
https://doi.org/10.1103/PhysRevB.82.094431
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1103/PhysRevB.52.3435
https://doi.org/10.1103/PhysRevB.52.3435
https://doi.org/10.1103/PhysRevB.52.3435
https://doi.org/10.1103/PhysRevB.52.3435
https://doi.org/10.1021/ic300111k
https://doi.org/10.1021/ic300111k
https://doi.org/10.1021/ic300111k
https://doi.org/10.1021/ic300111k
http://arxiv.org/abs/arXiv:1409.5971


RAPID COMMUNICATIONS

TZENG, ONISHI, OKUBO, AND KAO PHYSICAL REVIEW B 96, 060404(R) (2017)
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