
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 060403(R) (2017)

Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains
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The antiferromagnetic spin-one chain is considerably one of the most fundamental quantum many-body
systems, with symmetry-protected topological order in the ground state. Here, we present results for its dynamical
spin structure factor at finite temperatures, based on a combination of exact numerical diagonalization, matrix-
product-state calculations, and quantum Monte Carlo simulations. Open finite chains exhibit a subgap band in the
thermal spectral functions, indicative of localized edge states. Moreover, we observe the thermal activation of a
distinct low-energy continuum contribution to the spin spectral function with an enhanced spectral weight at low
momenta and its upper threshold. This emerging thermal spectral feature of the Haldane spin-one chain is shown
to result from intraband magnon scattering due to the thermal population of the single-magnon branch, which
features a large bandwidth-to-gap ratio. These findings are discussed with respect to possible future studies on
spin-one chain compounds based on inelastic neutron scattering.
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One-dimensional quantum spin models constitute basic
condensed matter many-body systems that despite their sim-
plicity exhibit a rich variety of emergent phenomena [1].
These include the formation of collective excitations and
nonclassical ground states with characteristic patterns in
the quantum entanglement. From this perspective, Haldane’s
conjecture [2–4] on a fundamental difference in the low-energy
physics of integer-valued spin chains with respect to the
spin-half Heisenberg chain has established the spin-one chain
model as a fundamental spin system, which furthermore finds
realizations in various, mainly Ni2+-based compounds [5–17].
Its properties have been intensively explored in both theoretical
and numerical, as well as experimental studies in recent years,
mainly with a focus toward the peculiar properties of the
gapped ground state [18,19], which is now understood as a
most basic instance of symmetry-protected topological (SPT)
order [20,21]. This leads, e.g., to the formation of a pair of
entangled spin-half low-energy edge states for open finite
chains [22].

Dynamical probes of quantum magnetism in spin-one chain
compounds, performed using inelastic neutron scattering,
have confirmed the gapped magnetic excitation spectrum
[6,15,23–27]. At low temperatures, the corresponding dy-
namical spin structure factor is dominated by the gapped
single-magnon branch, with additional contributions from
multimagnon continuum states, leading to the termination of
the single-magnon branch due to decay and scattering with the
two-magnon continuum states [28–46] (cf. Fig. 1 for an illus-
tration). The effects of thermal fluctuations on the dynamical
spin structure factor at elevated temperatures [15,47,48] have
been less intensively investigated theoretically, in particular
in the region of intermediate energy scales, where theoretical
approaches require one to account for both quantum and ther-
mal fluctuations. Previous theoretical works mainly focused on
the temperature-induced shift in the single-magnon dispersion
as well as its thermal broadening in the low-temperature
regime [49–54].

In this Rapid Communication, we discuss the emergence
of a distinct, thermal contribution to the finite-temperature
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FIG. 1. Sketch of the low-energy excitations of the Haldane spin-
one chain. The black line shows the gapped single-magnon dispersion,
and the upper shaded regions denote the two- and three-magnon
continua. The lower shaded region encloses the intraband-magnon-
scattering contribution to the dynamical spin structure factor that
emerges from the thermal population of the single-magnon branch.
For open chains, an additional subgap edge-state mode extends from
q = π toward smaller momenta, indicated by the dashed line.

dynamical spin structure factor that we find to result from
intraband magnon scattering (IBMS) (cf. Fig. 1). The IBMS
continuum exhibits an enhanced spectral weight near its upper
edge, resulting from the van Hove singularity in the density
of states near the extrema of the single-magnon band. This
enhanced spectral weight appears close to the single-magnon
branch due to the large bandwidth of the latter. Our results
furthermore indicate that this thermal IBMS may feasibly be
detected upon performing neutron scattering experiments in a
temperature regime of the order of the spin gap. In addition,
we find a signature of an edge-state mode for open chains,
which is visible over an extended temperature region.

Before presenting our results for the dynamical spin
structure factor, we first introduce the model and the em-
ployed numerical methods. The Hamiltonian for the SU(2)-
symmetric antiferromagnetic spin-one chain of length L reads
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H = J
∑

〈i,j〉 Si · Sj , with J > 0, where in the following we
employ both open chains (OBC) and closed chains with
periodic boundary conditions (PBC). The dynamical spin
structure factor is given in the Heisenberg picture as S(q,ω) =∫

dt e−iωt 〈Sq(t) · S−q(0)〉, where Sq = 1√
L

∑
j e−iqj Sj , with

q = 2πν/L, ν = 1,2, . . . ,L for PBC. Using numerical exact
diagonalization (ED), we were able to obtain numerically exact
results for S(q,ω) on finite chains with PBC up to L = 20
[55–60]. In order to access larger system sizes, we used both
density-matrix renormalization group (DMRG) [34,35,61] and
quantum Monte Carlo (QMC) [62] approaches to calculate
S(q,ω). For the DMRG-based analysis we used a recently
developed finite-temperature approach [63], formulated within
matrix product states (MPS) [64], which works directly in the
frequency domain. As is the case for other finite-temperature
time-dependent DMRG algorithms [65–67], this method is
based on the purification of the thermal density operator ob-
tained via imaginary time evolution. However, the underlying
thermofield formalism [68] in combination with Liouville-
space dynamics [69] allows us to naturally work in the fre-
quency domain and thus apply a moment expansion in terms of
Chebyshev polynomials to the spectral function itself [70–72].
Working with OBC in the DMRG calculations for efficiency
reasons, the momentum-space spin operators are related to

those in real space via Sq =
√

2
L+1

∑L
j=1 sin (qj )Sj , where

q = πν/(L + 1), ν = 1,2, . . . ,L [73]. We typically consider
a chain length of L = 32 and an MPS truncation at bond
dimension m = 250 which yields compression errorsO(10−2).
The iterative Chebyshev expansion is truncated at order 2000,
which results in an estimated broadening σω, weakly frequency
dependent, of the order of 0.1J . For the QMC calculations we
used the stochastic series expansion (SSE) algorithm with a
generalized directed loop update [74,75], and both OBC and
PBC can be considered equally well. In order to access the
spin dynamics, correlation functions in Matsubara frequency
space, C(q,iωn) = ∫ β

0 dτ eiωnτ 〈Sq(τ ) · S−q(0)〉, with ωn =
2πn/β, n ∈ N0 are measured, utilizing a mapping of the SSE
configuration space to continuous imaginary time [76,77].
Here, β = 1/T , and we typically require up to the 200
lowest Matsubara frequencies. Real-frequency spectra are then
obtained by performing an analytic continuation to invert the
relation C(q,iωn) = ∫ ∞

0 dω ω
π

1−e−βω

ω2
n+ω2 S(q,ω). To this end, we

employ a stochastic analytic continuation algorithm [78] which
yields Monte Carlo averages over ensembles of proposed
spectral functions.

An overview of our main findings, the spectral function
S(q,ω) of the spin-one chain at different temperatures, is
provided in Fig. 2, where the left (right) column shows DMRG
(QMC) results for a chain with OBC (PBC). A comparison
of the DMRG spectral functions at a set of fixed momenta
and for different temperatures is also available [56]. The data
obtained by our finite-temperature schemes at T/J = 1/24
[panels (a) and (b)] effectively represents ground-state results.
The most prominent contribution to S(q,ω) is the single-
magnon branch, with a lowest excitation gap of � ≈ 0.41J

at the antiferromagnetic wave vector, q = π [28,36,38]. Near
q = π/4, the magnon branch merges into the two-magnon
continuum, leading to the decay of elementary magnon
excitations [36,44,45]. Correspondingly, in the low-q region,
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FIG. 2. Dynamical spin structure factor S(q,ω) for the Haldane
spin-one chain from DMRG with OBC (left panels), and QMC with
PBC (right panels) for various temperatures T (a,b) T/J = 1/24,
(c,d) T/J = 0.2, (e,f) T/J = 0.4, and (g,h) T/J = 1.0.

we observe a loss of spectral weight. For a finite system with
OBC [cf. Fig. 2(a)], a distinct additional contribution to the
spin dynamics results from the low-energy edge states located
at the two ends of an open spin-one chain [22]. Due to the
local character of the edge-state contribution, this low-energy
spectral weight vanishes proportional to 1/L upon increasing
the system size. This is confirmed by a finite-size analysis
of the total spectral weight in the subgap region [56]. In
calculations with PBC, this subgap feature is absent [cf.
Fig. 2(b)], while for chains with OBC we also obtain it
from QMC [56]. The DMRG spectral function in Fig. 2(a)
shows a tiny fraction of the spectral weight which is spread
both below and above the single-magnon branch. This results
mainly from the truncation of the Chebyshev expansion and
the comparatively small MPS bond dimension, and is not
observed in the QMC simulations. The QMC spectrum in
Fig. 2(b) thus allows us to also resolve the well-separated
three-magnon continuum near q = π , where its intensity is
sufficiently large [56].
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FIG. 3. Comparison of the DMRG spectral function S(q,ω) (left
panel) for L = 32 (OBC) with SIB (q,ω) calculated for the IBMS
model (right panel) at T/J = 0.3. A Gaussian broadening with σω =
0.1J , similar to the DMRG spectra, was applied to the IBMS model
spectral function.

We next consider the thermal effects on the dynamical
spin structure factor [cf. Figs. 2(c)–2(h)], as well as Fig. 3.
The thermal broadening of the single-magnon branch as
well as the thermal band narrowing has been examined
previously [49,50,52] (cf. also Ref. [56]). The OBC spectra
furthermore show that the open finite-system’s edge-state
contribution to the dynamical spin structure factor remains
a distinct subgap feature also at finite temperatures, which
thus provides a convenient fingerprint of the SPT nature of the
ground state.

A qualitative change seen only in the finite-T spectral
function is the emergence of additional spectral weight below
the single-magnon branch for T � �/2 ≈ 0.2J , which is well
separated from the single-magnon branch for q � π/2. At
T = 0.4J [cf. Fig. 2(e)], this temperature-induced spectral
weight still appears to resemble a dispersing mode, softening
at q = 0, where the spectral weight is further enhanced.
While the DMRG approach allows us to distinguish this
temperature-induced spectral weight from the single-magnon
branch, the spectral function obtained from the analytically
continued QMC data [cf. Fig. 2(f)] is affected by a difficulty
of the analytic continuation to separate such closely spaced
spectral weight contributions at finite temperatures. The QMC
data nevertheless exhibit the presence of the thermal spectral
weight contribution at low energies, close to q = 0. Upon
further increasing the temperature, a redistribution of the
spectral weight can be seen in Fig. 2, and this eventually
reveals the actual character of the temperature-induced spectral
feature, which forms an extended continuum with an enhanced
spectral weight at its upper threshold [cf. Figs. 2(g) and 2(h)].

This thermal spectral weight results from IBMS processes
that have been previously observed in dimerized spin-1/2
chains [79–81]: the thermal population of the magnon mode,
predominantly in the vicinity of q = π , where the magnon
dispersion has its lowest excitation gap, allows for scattering
processes of a thermally excited magnon to another state
on the single-magnon branch (cf. the illustration in Fig. 1).
Such processes contribute to S(q,ω) upon respecting the
conservation of momentum and energy exchange with the
scattering particle (such as, e.g., in neutron scattering). More
quantitatively, this thermal IBMS contribution SIB(q,ω) to
the dynamical spin structure factor can be approximately

obtained using a magnon-state representation within a basic
kinematic model. We denote by |k,σ 〉 a single-magnon
(Stot = 1) excitation of momentum k and Sz

tot = σ ∈ {0, ± 1}
atop the Stot = 0 ground state |0〉, with an excitation energy
εk along the single-magnon branch. The multimagnon states
are subject to a hard-core constraint that can be treated
in several approximate ways that all yield the same low-
temperature asymptotics. We found it convenient to use a
k-space-based hard-core boson approximation of the initial
(i) and final (f ) states in the Lehmann representation of
S(q,ω) = 3

∑
i,f e−βEi /Z |〈f |Sz

q |i〉|2δ(ω − Ef + Ei). Here,
the factor of 3 accounts for the SU(2) symmetry of the
Hamiltonian H . Neglecting further interaction effects, Ei

(Ef ) equals the sum of the occupied single-magnon state
energies in the initial (final) state, and the partition function
Z = ∏

k,σ (1 + e−βεk ). The leading-order scattering processes,
whereby a thermally excited magnon is scattered into another
unoccupied single-magnon state, then yield

SIB(q,ω) = 3
∑
k,σ

|〈k + q,σ |Sz
q |k,σ 〉|2

(1 + eβεk )(1 + e−βεk+q )
δ(ω − εk+q + εk).

Finally, we approximate the nonvanishing scattering matrix
elements as |〈k + q,±1|Sz

q |k,±1〉|2 ≈ 1/L, which would hold
exactly, if the single-magnon states were obtained as |k, ±
1〉 = S±

k |0〉 and Sz
q |k,0〉 = 0, using that [Sz

q,S
±
k ] = ±S±

k+q ,

with S±
q = 1√

L

∑
j e−iqj S±

j . The overall 1/L scaling of the

matrix elements renders SIB(q,ω) convergent in the thermo-
dynamic limit. In addition to the above explicit treatment of
the longitudinal (Sz

q) channel, one can also perform a similar
calculation for the transverse sectors of SIB(q,ω), which then
indeed exhibits its anticipated SU(2) symmetry.

We evaluated the IBMS contribution from this basic model,
based on the single-magnon dispersion taken from Ref. [45].
The resulting IBMS spectral function at T/J = 0.3 is shown
in the right panel of Fig. 3, next to the corresponding DMRG
result for S(q,ω). Here, we convoluted the IBMS model
spectral function with a Gaussian resolution of width σω =
0.1J , i.e., the broadening in the DMRG spectral functions.
We find that our rather simple model qualitatively captures
the shape of the IBMS contribution, in particular its upper
boundary. Near this threshold, as well as near q = 0, the
spectral weight is enhanced due to the van Hove singularity
in the magnon density of states near k = π/2 and π . The full
extent of the IBMS continuum as obtained within the IBMS
model is indicated in Fig. 1. Within the maximum energy
regime ω/J ≈ 2 of the IBMS signal near q = π/2, where
finite-size effects are expected to be weakest, we can use
the L = 20 ED data for a more detailed comparison, since
in the ED approach, we can choose a smaller broadening
σω = 0.05J . A comparison of the ED spectral functions for
q = π/2 and q = 0.4π to the IBMS model is shown in Fig. 4
for T/J = 0.3.

For q = π/2, where we can directly compare ED data for
L = 20 and L = 16 (since for both chain lengths, q = π/2
is an available lattice momentum) we conclude that indeed
the L = 20 data in the relevant energy region exhibit only
weak residual finite-size effects. By a direct comparison to
the T = 0 data, we identify the thermally induced spectral
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FIG. 4. Comparison of the ED spectral functions S(q,ω) with
the IBMS model for SIB (q,ω) at T/J = 0.3. The main panel shows
results for q = π/2, and the inset those for q = 0.4π . For comparison,
ED results for T = 0 are also included. A Gaussian broadening with
σω = 0.05J was applied to all spectral functions in this figure.

weight, with a peak at ω/J ≈ 2.3, and clearly separated from
the magnon peak at ω/J ≈ 2.7. The position of the thermal
peak is well reproduced by the IBMS model. To compare
the corresponding spectral weight in the ED data to the IBMS
model, one needs to account for the additional weight in the ED
spectral function that is due to the broadened magnon peak;
this elevates the IBMS signal in the ED data as compared
to the background-free IBMS model. A similar comparison
for q = 0.4π , a momentum that is accessible on the L = 20
chain, is shown in the inset of Fig. 4. Also here, we observe
that the IBMS contribution to the ED spectral function is
well reproduced by the IBMS model. While the above basic
kinematic model already captures the overall properties of the
IBMS contribution to S(q,ω), it would nevertheless be inter-
esting to account for direct magnon-magnon interactions. As
mentioned above, these lead to band narrowing and broadening
of the single-magnon mode at finite temperatures and should

be accounted for in a more thorough analytical description of
the IBMS process. Furthermore, our approximate treatment
of the scattering matrix elements renders the ω-integrated
IBMS spectral weight less q dependent than observed in
the numerical results, which show an overall increase in the
IBMS signal for increasing finite values of q (cf. Figs. 2
and 3). Nevertheless, our basic model clearly demonstrates
the mechanism behind the IBMS contribution to the dynamical
spin structure factor at finite temperatures.

Thermally activated IBMS scattering is expected to be a
general phenomenon in gapped quantum magnets, and indeed
it is known from dimerized spin-1/2 chains [79–81]. The
case of the Haldane spin-one chain that we have investigated
in the present Rapid Communication is characterized by
a large bandwidth as compared to the gap such that the
maximum intensity of the IBMS continuum appears close to
the single-magnon mode. In the present case, the IBMS thus
provides an important contribution to the finite-temperature
spin dynamics at low-to-intermediate scattering momenta. It
would be interesting to identify the thermal IBMS signal
from the scattering intensity in inelastic neutron scattering
experiments on spin-one chain compounds. We anticipate the
IBMS signal to be well accessible within a temperature regime
set by the spin excitation gap. It may, however, be important to
examine the influence of a single-ion anisotropy and interchain
couplings on the IBMS signal. Furthermore, we expect the
reduction of the spin gap by an applied magnetic field to
enhance the IBMS signal toward lower temperatures, even-
tually making it relevant for the zero-temperature longitudinal
response when the Haldane gap closes.
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