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Out-of-time-ordered correlation functions (OTOCs) are presently being extensively debated as quantifiers of
dynamical chaos in interacting quantum many-body systems. We argue that in quantum spin and fermionic
systems, where all local operators are bounded, an OTOC of local observables is bounded as well and thus its
exponential growth is merely transient. As a better measure of quantum chaos in such systems, we propose, and
study, the density of the OTOC of extensive sums of local observables, which can exhibit indefinite growth in the
thermodynamic limit. We demonstrate this for the kicked quantum Ising model by using large-scale numerical
results and an analytic solution in the integrable regime. In a generic case, we observe the growth of the OTOC
density to be linear in time. We prove that this density in general, locally interacting, nonintegrable quantum spin
and fermionic dynamical systems exhibits growth that is at most polynomial in time—a phenomenon, which
we term weak quantum chaos. In the special case of the model being integrable and the observables under
consideration quadratic, the OTOC density saturates to a plateau.
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Introduction. Quantum chaos was an active area of research
in the 1980’s and 1990’s [1–3]. The main success of the
field was a random matrix theory (RMT) classification of the
universal properties of quantum systems whose classical coun-
terparts are chaotic. The classical limits of such systems have
positive Lyapunov exponents, which characterize exponential
sensitivity to initial conditions—the so-called butterfly effect.
However, since the (classical) definition of the Lyapunov
exponent is based on the concept of phase-space trajectories,
one cannot unambiguously translate it to the quantum realm.

Nevertheless, it has been argued that a weaker property
of dynamical mixing—a decay of almost all connected tem-
poral correlators—is sufficient to establish universal quantum
chaotic behavior, such as random matrix statistics of energy
spectra [4] or the universal exponential decay of Loschmidt
echoes [5]. In the theory of dynamical systems, complex
(mixing) dynamics that displays no exponential butterfly effect
is referred to as weak chaos [6]. Examples of such dynamical
systems include generic polygonal billiards in which nearby
trajectories deviate only linearly with time, while correlation
functions nevertheless exhibit mixing [7,8].

The study of dynamical mixing (now called scrambling) and
Lyapunov chaos in quantum mechanics was recently revived
by the high-energy physics community, initially in the context
of the propagation of information in black hole backgrounds
[9]. In 2014, Kitaev proposed to quantify chaos in quantum
many-body systems [10] in terms of the out-of-time-ordered
correlation function (OTOC),

C(x,t) = −〈[wx(t),v0(0)]2〉β, (1)

where wx,vx are local observables and 〈·〉β denotes the
thermal expectation value at inverse temperature β. The
concept is based on a work by Larkin and Ovchinnikov [11]
from 1969, where OTOC was connected to the instability of
semiclassical trajectories of electrons scattered by impurities
in a superconductor. Consequently, extended quantum systems
were defined as chaotic if the OTOC (1) of a pair of local

observables w and v grows exponentially [11,12],

C(x,t) ∝ eλL(t−|x|/vB ). (2)

Motivated by the semiclassical picture, λL is referred to as the
Lyapunov exponent and vB the butterfly velocity.

A multitude of works examining the properties of quan-
tum chaos has recently been written both from the high-
energy perspective and from the condensed matter perspective
[12–48].

In this Rapid Communication, we investigate systems
with local interactions with an extensive number N → ∞
of degrees of freedom, but with a finite local Hilbert space
dimension D. In any model with a finite D (including all
fermionic and spin lattice models), in which local operators u,v

are bounded, the exponential growth in (2) can be bounded by
operator norm inequalities (the triangular inequality ‖ab‖ �
‖a‖‖b‖ and 〈a〉β � ‖a‖),

C(x,t) � 4‖v‖2‖w‖2. (3)

Thus, the OTOC can only grow exponentially up to a finite
(scrambling) time t∗, after which it remains bounded by a
constant. This is consistent with the observations made in
other works on OTOCs (of local observables) in fermionic
systems where OTOCs were always observed to reach a plateau
[29,31–35]. As already noted in Ref. [30], the only way for the
exponential time evolution to persist to late times is if there is
a small prefactor multiplying the exponential function in (2).
Even in the Sachdev-Ye-Kitaev (SYK) model with long-range
interactions, this prefactor is 1/N , which becomes small as
N → ∞ [15]. Exponential growth (2) of the OTOC is therefore
at best a transient effect in systems of interest to this work.

If interactions are local, C(x,t) can be further bounded by
the Lieb-Robinson theorem (LRT) [49] (see also Ref. [19]),

C(x,t) � 4‖v‖2‖w‖2e−μ max{0,|x|−vLRt}. (4)

In this case, for t 	 t∗ = |x|/vLR , the OTOC is even more
suppressed. The interpretation of this effect is clear, namely,
t∗ is the time in which C(x,t) enters the causal cone. Before
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t∗, C(x,t) is almost zero, while after t∗ it is bounded by (3) and
saturates at a plateau. The dynamics can only be nontrivial near
the edge of the causal cone (or for t ∼ t∗), where C(x,t) can
vary greatly. This is consistent with Refs. [29,31,46,47]. We
note that chaos, as rigorously defined in classical dynamical
systems [50,51], is not a transient effect but requires a
t → ∞ limit. Otherwise, phenomena such as the motion
of an inverted pendulum close to a separatrix would be
erroneously understood as “chaotic.” Even in semiclassical
theories, quantum chaos only emerges in the limit of the
diverging Ehrenfest (∝− ln h̄) time scale.

Another important fact is that momentum operators—the
observables that Ref. [11] originally used to compute the
Lyapunov exponent of the semiclassical trajectories—are un-
bounded. Therefore, if we wanted to preserve the semiclassical
justification of the OTOC, which is necessary to be able to
speak about quantum chaos, the quantum observables under
consideration must have unbounded spectra.

These observations can be summarized in the intuitive
statement that if chaos is to fully develop over a long
time, the observables have to provide enough “space” for
this to happen; they need to be unbounded. Indeed, this
is the case with general observables in bosonic systems
(usually studied in holography). However, this condition is
not fulfilled by local observables in fermionic or spin systems,
or more generally, in systems with a finite D. On the other
hand, extensive observables in such theories do satisfy the
unbounded spectrum criterium and therefore have the capacity
to fully unveil the system’s dynamical properties and quantum
chaos. Motivated by this fact, we propose a different measure
of quantum chaos: the density of the OTOC (DOTOC) of
(nonlocal) extensive operators V ≡ ∑

x∈� vx , W ≡ ∑
x∈� wx ,

with wx,vx local. It is defined on a d-dimensional lattice � with
N sites as the centralized second moment of the commutator

c(N)(t) := − 1

N

(〈[W (t),V (0)]2〉β − 〈[W (t),V (0)]〉2
β

)
. (5)

The disconnected part, which is just the square of the standard
dynamical susceptibility (i.e., the response function), has
been subtracted to make the DOTOC well defined in the
thermodynamic limit (TL) for any temperature. Because of
the cyclicity of the trace, this term vanishes at β = 0 (this will
occur in the model that we study below). Using the LRT and the
clustering property of thermal states, which holds for any β in
d = 1 [52] and for sufficiently high temperature in d > 1 [53],
we rigorously prove in Sec. I of the Supplemental Material [54]
that the DOTOC satisfies a uniform (in N ) polynomial bound

c(N)(t) � At3d , (6)

where A is an (N,t)-independent constant. The same bound
thus holds in the TL, c(t) := limN→∞ c(N)(t).

Moreover, we report below the results of extensive nu-
merical and analytical calculations, which demonstrate that
possibly the simplest nontrivial locally interacting quantum
chaotic spin system, the kicked Ising (KI) quantum spin
chain [55,56], exhibits linear growth of the DOTOC of
extensive magnetization observables, c(t) ∝ t . An exception
is the integrable KI model (equivalent to a free fermion
model), for which we show analytically that its DOTOC
of extensive quadratic observables (in fermionic variables)

saturates, c(t → ∞) = const. Since the KI model seems to
be generic, we further conjecture that the bound (6) is not
optimal and that typical one-dimensional, nonintegrable, and
locally interacting models exhibit linear growth of DOTOCs.

As a consequence, theories under consideration here are
not expected to exhibit any late-time butterfly effect but, as
we know from results in the RMT, they can still be chaotic.
In reference to classical mixing systems without the butterfly
effect, we term the phenomenon of infinite polynomial growth
of DOTOC’s weak quantum chaos.

Kicked quantum Ising model. The Hamiltonian of the
one-dimensional KI model consists of the Ising-interaction
term HIsing = ∑

j Jσ x
j σ x

j+1 and the kick term Hkick =∑
j h(σ z

j cos ϕ + σx
j sin ϕ),

H (t) = HIsing + Hkick

∑
n∈Z

δ(t − n), (7)

where σα
j are local Pauli spin operators. The model has three

parameters: the Ising coupling J , the magnitude of the external
magnetic field h, and the inclination of the external magnetic
field ϕ. KI is a periodic (in time) system with the Floquet
propagator,

U = T
{
e−i

∫ 1
0 dtH (t)}

= e−iJ
∑

j σ x
j σ x

j+1e
−ih

∑
j

(
σ z

j cos ϕ+σx
j sin ϕ

)
. (8)

Because of the temporal periodicity, KI dynamics can be
viewed as discrete in time, or as a quantum cellular automaton.
The effect of a perturbation on a single lattice site propagates
in a causal cone with speed 1. Namely, information can spread
only by one site, left or right, within one period (kick of the
magnetic field). Random matrix analysis [57,58] revealed that
KI is chaotic.

The system has a further nice property of being integrable
(quasifree) for a transverse magnetic field, ϕ = 0, and nonin-
tegrable (and interacting) for ϕ > 0. Thus, ϕ serves as a handy
parameter which allows us to study integrability breaking. See,
e.g., Refs. [56,59] for a survey of the elementary dynamical
properties of the KI model.

Here, we study the KI chain with N spins and evaluate the
DOTOC (5) c(N)

α (t) for a (nonlocal) extensive magnetization
W = V = Mα = ∑N

j=1 σα
j , which can either be transverse

(α = z) or parallel (α = x) to the direction of the Ising interac-
tion. We take β = 0 as an infinite-temperature Gibbs ensemble
is the only meaningful equilibrium state for periodically driven
systems, which generically heat up to infinite temperature. We
use three different approaches, two numerical methods for
the general inclination (0 � ϕ � π

2 ) and an analytical solution
for the transverse field case ϕ = 0. In the first, appropriate for
small system sizes (up to N ∼ 12), we used the exact numerical
Floquet operator (8). The second method, used for intermediate
system sizes (up to N ∼ 22), was a Monte Carlo wave-function
sampling based on typicality arguments (explained in Sec. II
of Ref. [54]). As explained below, the analytical solution in
the TL for the integrable (transverse) case and transverse
magnetization Mz was found using fermionization.

Analytical solution. For the transverse field (ϕ = 0), KI is a
quasifree model. If, furthermore, the (extensive) observable
of interest is simple enough, the DOTOC allows for an
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analytic solution in terms of Jordan-Wigner transformation
of Pauli spins into staggered Majorana fermion operators
w2j = σx

j

∏
k<j σ z

k , w2j+1 = σ
y

j

∏
k<j σ z

k obeying the anti-
commutation relations {wi,wj } = 2δij . The Floquet operator
(8) then takes the following form,

U = e−J
∑

j w2j−1w2j e−h
∑

j w2j w2j+1 = UIsingUkick, (9)

with UIsing = ∏
j (cos J − w2j−1w2j sin J ) and Ukick =∏

j (cos h − w2jw2j+1 sin h). Now, the transverse magneti-
zation can be expressed as a sum of quadratic Majorana
operators,

Mz = −i
∑
j∈Z

w2jw2j+1, (10)

which enables the analytic computation of the DOTOC of Mz

[60].
Since the transverse field model is free [61], it is convenient

to work in the Fourier transformed Majorana basis, w(θ ) =∑
j w2j e

iθj , w′(θ ) = ∑
j w2j+1e

iθj , with shorthand notation

w(θ ) = (
w(θ )
w′(θ ) ). One can show (Sec. III. of Ref. [54]) that

the Floquet propagator in the Heisenberg picture, Uw(θ ) :=(
U †w(θ)U

U †w′(θ)U

)
, takes the following form in a Fourier transformed

Majorana basis,

U(J,h,θ ) = Ukick(J,h,θ )UIsing(J,h,θ )

=
(

cos(2h) − sin(2h)
sin(2h) cos(2h)

)

×
(

cos(2J ) eiθ sin(2J )
−e−iθ sin(2J ) cos(2J )

)
. (11)

This 2 × 2 unitary matrix valued symbol can be diagonalized
as

U(J,h,θ ) = V †(J,h,θ )

(
eiκ(J,h,θ)

e−iκ(J,h,θ)

)
V (J,h,θ ),

(12)

with the Floquet dispersion relation κ(J,h,θ ) =
arccos[cos(2J ) cos(2h)+cos(θ ) sin(2J ) sin(2h)]. The matrix
V (J,h,θ ) is given explicitly in Sec. IV of Ref. [54].

Knowing that the KI Majorana fermions in the Fourier
basis time evolve as w(θ,t) = U(θ )tw(θ,0) allows us to define
the real space propagator as K

kj

ab(t) := 〈w2k+a−1 w2j+b−1(t)〉,
for a,b ∈ {1,2}. This equals the inverse Fourier transform of
powers of U(θ ) (Sec. V of Ref. [54]),

Kkj (t) := Kj−k(t) = 1

2π

∫ π

−π

dθe−iθ(j−k)U t (θ ). (13)

Using the propagator (13), we can compute the in-
finite temperature OTOC of the transverse magnetization
c(N)
z (t). First, we express the terms in (5) using (10),

e.g., 〈σ z
i (t)σ z

j σ z
k (t)σ z

l 〉 as an eight-fermion expectation value
〈w2i(t)w2i+1(t)w2jw2j+1w2k(t)w2k+1(t)w2lw2l+1〉. These are
expressed as the product of four propagators (one for each
time-dependent fermion) times an equal-time eight-fermion
expectation value, with terms summed over four spatial and
spin indices (see Sec. VI of Ref. [54] for details). Simple

algebraic manipulations then lead to the final expression for
the DOTOC in the TL,

cz(t) =
j �=0∑

j,l1 ,l3∈Z
s0 ,sj ,p1 ,p3∈{1,2}

4(−1)p1+p3K
R1(p1)
S(p1),1(t)KR1(p̃1)

S(p̃1),2(t)

×
[
K

R3(p3)
S(p3),1(t)KR3(p̃3)

S(p̃3),2(t)

− (−1)sj +s0K
R3(p3)
S̃(p3),1

(t)KR3(p̃3)
S̃(p̃3),2

(t)
]
, (14)

where we used the following notation, R1 := (l1 − j,l1),
R3 := (l3 − j,l3), S := (sj ,s0), together with the notation v =
[v(1),v(2)] for vector components and 1̃ := 2, 2̃ := 1. We can
use formula (14) in two different ways. For intermediate times
t ∼ 50, we can perform the integral in (13) exactly and evaluate
the sums in (14), which, because of the causal-cone spreading
of information, now become finite sums (see Sec. VII A of
Ref. [54] for details).

Furthermore, we can use the stationary phase approxima-
tion [in (12)–(14)] to compute the large-t asymptotics of the
DOTOC. In this way, we prove that for large times, cz(t) is
a constant (dependent only on J and h). In other words, the
DOTOC of quadratic extensive observables in the integrable
KI model saturates to a plateau. Details are explained in
Sec. VII B of the Supplemental Material [54], which includes
Refs. [49,52,53,59,62–67].

Results and discussion. In summary, we observe two dis-
tinct behaviours of the OTOC density for extensive observables
in a one-dimensional KI model. For a generic situation, unless
the model is integrable and the observable quadratic, the
extensive DOTOC grows linearly with time. In fact, numerical
results for finite system sizes saturate to a plateau at t ∼ N/2,
but this is simply due to a finite size effect—a consequence
of the causal cone coming around the periodic boundary. This
plateau grows with an increasing system size N and we expect
that it disappears in the TL (N → ∞). When the model is inte-
grable (free) and the observable is simple (quadratic in fermion
operators), the DOTOC saturates to a genuine plateau despite
the fact that the spectrum of the observable is unbounded. The
latter statement was proven in this work by finding an explicit
analytic solution for cz(t) from which the expression for the
height of the plateau could be found for any J,h. The results
of the time dependence of the extensive DOTOC for different
scenarios are presented and summarized in Fig. 1.

For the integrable case with ϕ = 0, the quasiparticle
spectral gap closes on the line of J = h in the parameter space
and the system exhibits a Floquet analog of a quantum phase
transition, i.e., κ(J = h,θ = 0) = −κ(J = h,θ = 0) = 0. It is
interesting to ask whether the OTOC also reflects this transition
in any way. What we find is that the plateau height ceases to
be smooth for J = h. Beyond that, we also checked the slope
of the DOTOC for longitudinal magnetization Mx and found
a peak for J/h close to 1, where deviation could be attributed
to finite size effects.

This work should be considered as a starting point for future
investigations of quantum, weakly chaotic systems, which
exhibit dynamical late-time mixing but do not display any
exponential butterfly effect due to the locality of interactions
and the finiteness of the local Hilbert space. In such systems,
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(a) (b)

(c) (d)

FIG. 1. Density of the OTOC of extensive observables for one-dimensional KI model (7) with periodic boundary conditions: In (a) and
(b), the magnetic field is transversal (ϕ = 0) so the system is integrable (free), while in (c) and (d) the field is tilted (ϕ = π

4 ) so the model
is nonintegrable. In (a) and (c), the observable is a sum of quadratic Majorana terms (10), while in (b) and (d) the observable is a sum of
terms composed of infinite Majorana strings (composite). Here, J = 0.7, h = 1.1, but qualitatively similar behavior was found for other values
of J,h. The numerically exact results for small system sizes are plotted with crosses. Results obtained with the numerical method based on
typicality arguments (with a sample of 50 × 50 random vectors) are plotted with error bars. The analytical solution for the integrable case and
quadratic observable is plotted with a bold black line. The asymptotic behavior in the limits N → ∞ and t → ∞ is plotted with a dashed
line. In (a), the dashed line was obtained analytically. In other cases, it is a numerical extrapolation. Numerical results start to deviate around
t ∼ N/2 due to finite size effects. The inset (i) shows the dependence of the plateau height on J and h.

the standard OTOC rapidly plateaus and is therefore not a good
measure of chaos. This observation led us to propose a different
measure of chaos: the density of the OTOC of nonlocal
extensive operators. We have proven (Sec. I of Ref. [54]) that
such correlators always exhibit a polynomial bound and can
thus be widely used to diagnose and classify quantum chaos.
In the case of the nonintegrable KI model studied here, the
growth is linear. Intuitively, it seems apparent that in locally
interacting systems, information propagates slower than in an

all-to-all interacting theory such as the SYK model. However,
what is less apparent is that such systems can still be chaotic,
a result established by RMT analysis [57].

Lastly, we note that in order to study chaos in strongly
coupled, large-N theories (even in those that do exhibit the
buttery effect), it would be interesting to extend holographic
calculations to computations of OTOCs of nonlocal, smeared
operators. For detailed future analyses, we will likely need
to utilize the full machinery of holographic n-point function
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calculations [68–70] that will extend beyond studying gravi-
tational shock waves [13,14].
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435, 33 (2006).

[6] R. Klages, in From Hamiltonian Chaos to Complex Systems
edited by X. Leoncini and M. Leonetti (Springer, Berlin, 2013),
pp. 3–42.

[7] G. Casati and T. Prosen, Phys. Rev. Lett. 83, 4729 (1999).
[8] G. Casati and T. Prosen, Phys. Rev. Lett. 85, 4261 (2000).
[9] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008) 065.

[10] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, talk given at Fundamental Physics Prize Sympo-
sium, 2014, http://online.kitp.ucsb.edu/online/joint98/kitaev/.

[11] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55,
2262 (1968) [Sov. Phys. - JETP 28, 1200 (1969)].

[12] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy
Phys. 08 (2016) 106.

[13] S. H. Shenker and D. Stanford, J. High Energy Phys. 03 (2014)
067.

[14] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy
Phys. 03 (2015) 051.

[15] J. Polchinski and V. Rosenhaus, J. High Energy Phys. 04 (2016)
001.

[16] J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002
(2016).

[17] K. Jensen, Phys. Rev. Lett. 117, 111601 (2016).
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