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Nonequilibrium interband phase textures induced by vortex splitting
in two-band superconductors
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We demonstrate that in a weak-coupled two-band superconducting slab the interaction between vortices
penetrating the sample and its boundaries leads to the phenomenon of vortex splitting, which divides composite
vortices and creates fractional ones. The interaction between vortices, attractive for different bands and repulsive
for the same band, which is controlled by the electric current density flowing through the system, leads to
an ordered alternating arrangement of the vortices. This arrangement creates nonequilibrium interband phase
textures or domains with different signs of the Josephson energy of the interaction between the band condensates.
Such phase textures have a significant effect on the dissipation caused by the vortex motion. In particular, in the
phase-texture regime the onset of the dissipation is shifted to higher current densities.
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I. INTRODUCTION

Appearance of multiple different Cooper pairing channels
for different bands in a single superconductor gives rise to the
phenomenon of multiband superconductivity, where multiple
gaps (condensates) give rise to additional degrees of freedom
of the superconducting state. For materials with two bands with
the singlet s-wave pairing, such as MgB2, one of those degrees
of freedom is the difference between phases of the band gap
condensates. The phase difference manifests itself, in partic-
ular, in the sign of the linear (Josephson) coupling between
the bands, which determines the interaction between the band
condensates. The degree of freedom related to the phase differ-
ence can be excited (driven out of equilibrium) by an external
force. Such excitations in systems with many condensates are
commonly referred to as the Leggett modes [1]. Theoretical
studies of their properties have intensified after discovering the
multiband superconductivity in materials such as MgB2 [2],
iron pnictides [3,4], and others [5]. Experimental evidences of
the Leggett modes has been published recently [6].

Nonequilibrium configurations of the phase difference
between the gap functions can be remarkably nontrivial. For
example, in superconductors with three or more bands one
has a possibility to achieve a ground state with a broken time-
reversal symmetry (BTRS) [7]. Such states are characterized
by fixed differences between the band condensate phases being
at the same time degenerate. In spatially extended samples this
degeneracy can lead to inhomogeneous configurations of the
condensate, where domains of different degenerate states al-
ternate, being separated by the domain walls [8,9]. Theoretical
studies of formation, stabilization, and detection of such do-
main walls have been recently reported [10–12]. In quasi-one-
dimensional (1D) samples topological solitons or phase tex-
tures can appear [13–15], with a 1D structure of domain walls.
These states are nonequilibrium and are induced by imbal-
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anced carriers due to an injected current. To this date such con-
figurations, however, have not been confirmed experimentally.

Elementary entities, serving as building blocks for all
nontrivial phase configurations in 2D structures, are vortices.
Multiband superconductors can develop vortex states that are
qualitatively different from those in single-band materials.
A trivial configuration is a composite vortex that comprises
two vortices in the band condensate, that are centered at
the same point, and have equal winding numbers. Stationary
equilibrium states in two-band bulk superconductors are
formed by the composite vortices. However, a nonequilibrium
system can develop a state with the band vortices that are
shifted spatially, the so-called noncomposite vortices. Those
vortices are associated with a nonquantized magnetic flux:
each of the partial vortices in the band condensates carry
a fraction of the total (quantized) flux, and are often called
fractional vortices.

In bulk superconductors fractional vortex states cannot exist
due to a divergent energy [16]. However, in samples of finite
dimensions metastable fractional vortices can appear [17–21].
One of the mechanism which creates noncomposite fractional
vortices is the dynamical vortex dissociation. This mechanism
appears, for example, when a superconductive current flows
through the sample. In this case differences in the driving
forces and the viscosity of the vortex matter in each of the
condensates drive the band vortices apart [22].

At certain conditions a multiband superconductor can reveal
domains of different phase structures with quasi-1D walls
between them. Appearance of such domain walls, excited
dynamically between regions of contrasting phase difference
and decorated by moving vortex sheets, have been predicted
for p-wave multiband superconductors [23]. However, in
two-band s-wave superconductors the phase textures has been
predicted theoretically only for quasi-1D structures, where
they are induced by imbalances in the normal current through
the contact interfaces at the sample ends [13,14].

In this work we describe another mechanism that induces
topological phase textures in a weak-coupled two-band su-
perconductor with the s-wave pairing. Contrary to the earlier
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works [13,14] it produces quasi-1D domains in 2D samples
of finite dimensions when a superconductor with a flowing
current is placed in a constant magnetic field. We demonstrate
that in such systems a nonequilibrium vortex matter is created,
forming domains of shifted phases of the band condensates.
A key ingredient of this mechanism is the dynamical vortex
splitting, where vortices become fractional. This mechanism
does not depend on the special contacts at the ends of the
sample and in principle can be found in any weak-coupled
multiband material.

Our analysis is done for a two-band prototype model
described by the two-component time-dependent Ginzburg-
Landau (TCGL) equations. The difference between the band
condensate phases is characterized by the Josephson energy
that enters the free energy functional of the system. A nonequi-
librium vortex matter is created by the applied magnetic field
in a combination with the flowing current. The nonequilibrium
vortex dynamics results in the energy loss, which in turn
leads to a finite resistance of the system, reflected in the
current-voltage (I -V ) characteristics.

In the paper, Sec. II describes the model and its numer-
ical solution. Results of the calculations showing different
development stages of the vortex matter types are discussed
in Sec. III B. The relation between the phase textures and the
resistance is described in Sec. III C. Section III D is devoted to
the role of the size effects. Summary of the results are given
in Sec. IV.

II. MODEL AND METHOD

The Gibbs energy functional of the TCGL model is defined
by its energy density [24–26]

g = (B − B0)2

8π
+

∑
j=1,2

{
1

2mj

|Dψj |2 + αj |ψj |2

+ 1

2
βj |ψj |4

}
+ gJ , gJ = −�(ψ∗

1 ψ2 + ψ1ψ
∗
2 ), (1)

where ψ1 = |ψ1| exp(iθ1) and ψ2 = |ψ2| exp(iθ2) are com-
plex gap (condensate) functions of the bands j = 1,2, D =
−ih̄∇ − 2eA/c is the gauge-invariant gradient, B = [∇ × A]
is the magnetic field, B0 is the applied (external) field, gJ is
the interband coupling or the Josephson energy, αj , βj ,mj are
material constants defined as

αj = −N (0)njχj , βj = N (0)
nj

W 2
,

mj = 3W 2

N (0)njv
2
j

, � = N (0)
λ12

G
,

W 2 = 8π2T 2
c

7ζ (3)
, χj = τ − Sj

njG
, (2)

where τ = 1 − T/Tc,Nj = N (0)nj is the band density of
states (DOS) at the Fermi energy, N (0) = N1 + N2 is the total
DOS (n1 + n2 = 1), λij = gijN (0) are dimensionless cou-
pling constants for the coupling constants gij ,G = λ11λ22 −
λ2

12, vj is the band Fermi velocity, and S1, S2 appears in
the solution of the linearized gap equation for the critical
temperature Tc and are defined similar to the earlier works

[27]

S1 = λ22 − n1GS, S1 = λ11 − n2GS,

S =
n1λ11 + n2λ22 ±

√
(n1λ11 + n2λ22)2 + 4n1n2λ

2
12

2n1n2G
. (3)

The time-dependent TCGL equations are found from the sta-
tionary condition of the energy functional with the additional
dynamical contributions, this yields

η1
∂ψ1

∂t
= 1

2m1
D2ψ1 + α1ψ1 + β1|ψ1|2ψ1 − �ψ2,

η2
∂ψ2

∂t
= 1

2m2
D2ψ2 + α2ψ2 + β2|ψ2|2ψ2 − �ψ1, (4)

where we introduce the relaxation constants ηj for the
respective bands. The accompanying Maxwell equation writes
as

c

4π
[∇ × [∇ × A]] = Jn + Js , (5)

where Js is the supercurrent

Js = 2eRe

[
1

m1
ψ1D∗ψ∗

1 + 1

m2
ψ2D∗ψ∗

2

]
, (6)

and Jn is the normal current induced by the electric field

Jn = σE = −σ

c

∂A
∂t

, (7)

with σ being the normal conductivity of the material.
Although characteristic lengths of this model strongly

depend on the coupling between the bands, one can still
define the coherence and the penetration lengths for each band,
considered separately, by using the standard GL expressions

ξj = h̄vj√
6W

, λj =
√

3c2

16πN (0)e2njv
2
j

. (8)

One can also define the GL parameter κ for each of the bands
as

κj = λj

ξj

,
κ2

κ1
=

√
n1

n2

v2
1

v2
2

. (9)

For a single-band superconductor the GL parameter deter-
mines a superconductivity type of an uncoupled band, so that
when κj < 1/

√
2 the band is a type-I and if κj > 1/

√
2 the

band is a type-II superconductor.
The material parameters are taken as λ11 = 2.0, λ22 =

1.03, λ12 = 10−4, α = v1/v2 = 0.52, κ1 = 10.0, n1 = 0.355.
Despite this choice does not correspond to any particular
material, it addresses the general case in which there is a
discrepancy between the vortex sizes in different bands.

Using these parameters one can calculate the critical
temperature Tc of the superconductor as well as the critical
temperatures Tcj for each of the bands, taken separately, which
is found from equations αj = 0,

Tcj = Tc

(
1 − Sj

njG

)
, (10)

which for the chosen microscopic parameters yields Tc1 =
0.9997 Tc and Tc2 = 0.9030 Tc. We set T = 0.85Tc in our
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calculations which is sufficiently close to Tc but is lower than
both Tc1 and Tc2, so that both superconducting bands are active.

For the chosen parameters one obtains κ1 = 10.0 and κ2 =
2.0, i.e., both bands (separately) are type-II superconductors.
The ratio of the band coherence lengths is found as ξ2/ξ1 =
2.24. Following the standard terminology we refer to the band
j = 1 as “strong” and to the band j = 2 as “weak.” The flux
quantum �0 can be divided into two fractional parts which are
approximately given by the expression φj = λ2�0/λ

2
j taken

from the London limit [22]. In this way, φ1 = 0.72�0 and
φ2 = 0.28�0, for the magnetic flux carried in the first and
second band by a single vortex state.

For the numerical calculations it is convenient to scale
all relevant quantities using parameters of the stronger band
j = 1,

ψj = Wψ̃j , r = ξ1 r̃, A = A0Ã,

t = t0 t̃ , ηj = η
j

0 η̃j , (11)

where

A0 = h̄c

2eξ1
, t0 = 4πσκ2

1 ξ 2
1

c2
, η

j

0 = njN (0)t0. (12)

The scaled TCGL equations read as (hereafter we omit “tilde”
for the scaled quantities)

η1
∂ψ1

∂t
= D2ψ1 − (χ1 − |ψ1|2)ψ1 − γψ2,

η2
∂ψ2

∂t
= 1

α
D2ψ2 − (χ2 − |ψ2|2)ψ2 − γ

n1

n2
ψ1, (13)

where the gradient-invariant derivative is D = −i∇ − A, γ =
λ12/(n1G) and for the decay rates we assume η1 = η2 = 5.0.
Equation (5) becomes

∂ A
∂t

= Re

[
ψ1D∗ψ∗

1 + 1

α

n2

n1
ψ2D∗ψ∗

2

]
− κ2

1 [∇ × [∇ × A]].

(14)

We consider a sample of the form of an infinite rectangular
slab with cross-section dimensions L × w. By choosing a
slab of infinite length we neglect the demagnetization effects,
thereby restricting the effective dimensionality of the system
to 2D. Equations (13) and (14) are solved with the periodic
boundary conditions along the x direction (L = 600ξ1) and
the standard GL condition

Dyψj = 0 (15)

in the y direction, where the vector component y is perpen-
dicular to the surface of the sample. The numerical solution
is performed on a two-dimensional square grid with spacings
ax = ay = ξ1 using the U−� method [28,29] combined with
the parallelized Euler finite difference algorithm for the time
evolution.

The vortex dynamics is induced by applying an external
current with the density j flowing through the sample in x
direction. In the numerical calculations the current is modeled
by introducing an additional magnetic field �B, related to j
by Eq. (5). In the chosen geometry this extra field is directed
along the z axis and is constructed so that the total magnitude
of the applied field is B = B0 − �B at y = 0 and B = B0 +

�B at y = w. Taking into account that B = [∇ × A] together
with Eq. (5) one obtains the value of the current density as
j = c�B/2π .

Nontrivial phase configurations are typically associated
with the appearance of elementary topological structures such
as vortices, domains walls, etc. Here we are interested in
the phase configurations specific to two-band systems, in
particular, we investigate a phase difference between the
band condensates �θ = θ1 − θ2. A natural parameter that
characterizes such two-band phase differences is the Joseph-
son energy gJ = −2γ |ψ1||ψ2|cos(�θ ), which describes the
intercondensate interaction and was also used to investigate
topological solitons of alternating phases in quasi-1D samples
of two-band superconductors [14].

We also note that the phase dynamics is necessarily
associated with the energy losses, which lead to the finite
resistivity of the system. In our case this will be detected
from the appearance of a finite potential or voltage across the
sample in x direction for a given value of the current j (the
I -V curve). The current density is measured in the units of j0,
which is the critical current density for the sample geometry
and microscopic parameters introduced in this section. The
unit for the voltage across the sample is V0 = V (j0).

III. RESULTS

A. Vortices near sample boundaries, general picture

Before presenting results of the numerical calculations
we recall that unlike quasi-1D systems, where domain walls
(solitons) form nontrivial phase structures, in 2D infinite
samples vortices are such elementary building blocks that
construct nontrivial topological structures. As mentioned
above in infinite equilibrium two-band systems only composite
vortices can exist, where vortices in each band share the same
center point and have the same winding number. This is a
manifestation of the attraction between vortices in different
bands, that is referred for simplicity to as the interband
attraction.

However, in finite samples vortices also interact with
the boundaries and this strongly affects vortex states. One
notes that vortices enter a superconducting sample through
its boundaries. The manifestation of this interaction is the
so-called Bean-Livingston (BL) barrier [30] which delays the
process of vortex penetration. The delay depends on the size
of the vortex core, determined by the coherence length ξ , and
is different for different bands in a multiband system [20,21].

In our two-band case the effective BL barrier is higher for
vortices in the strong band and vortices of this band tend to
remain longer in the vicinity of the boundary. On the contrary,
vortices in the weak band penetrate the BL barrier faster.
Obviously this difference is more pronounced for materials
with a considerable discrepancy between the characteristic
lengths ξ1 and ξ2. The difference in the penetration time leads to
dynamical separation or “dissociation” of composite vortices
and thereby to creation of fractional vortices. This in turn leads
to the appearance of domains of gJ > 0, located between
separated vortices. An appearance of such noncomposite or
fractional vortices near the boundary can be in principle
detected experimentally [21].
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For isolated vortices their interaction with the surface is
restricted to the layer of width l ∼ λ near the boundary. Once
fractional vortices move outside this layer, the influence of
the surface diminishes and vortices tend to become composite
again (recombination) due to the attractive interaction of the
vortices in different bands (interband attraction). However,
this changes for a dense vortex matter. In this case the
vortex matter is strongly influenced by the interaction between
vortices, in particular, due to the additional repulsion between
vortices in the same band (intraband repulsion). This may
lead to appearance of dynamically unstable but long-lived
vortex configurations, with nontrivial spatial distribution of
the interband phase difference.

B. Vortex splitting and phase textures, numerical results

Numerical calculations of the TCGL equations are done
for a sample in the form of a slab with a rectangular cross
section with dimensions L = 600ξ1 and w = 150ξ1. The slab
is placed in the magnetic field parallel to the z axis, i.e.,
along the slab (assumed infinite in this direction to exclude
the demagnetization effects). The magnetic field H = 0.73Hc

is chosen to be larger than the lower critical field of the material
H > Hc1.

As discussed above, the electric current with the density j =
(j,0,0) facilitates penetration of the magnetic field inside the
sample. Initial configuration is taken as a random distribution
of the band-condensate densities with a small amplitude. The
value of the initial magnetic field exceeds Hc1, and therefore
vortices are present in the sample already at j = 0. This vortex
state remains stationary if the current is sufficiently small.
However, when j exceeds the threshold 0.23j0 vortices start
to move from the upper boundary y = w, which is their entry
point, to the lower one, the exit point at y = 0. Furthermore,
penetrating vortices are not composite and create domains of
positive Josephson energy.

This is illustrated in Fig. 1, which shows snapshots of
spatial distributions of gJ , taken at certain time instants,
as the color density plot. Figures 1(a)–1(e) correspond to
few selected values of the applied current density j =
0.33,0.37,0.47,0.57,0.77j0. Areas with gJ < 0 and gJ > 0
are marked, respectively, red and blue.

Figure 1(a) with j = 0.33j0 represents a situation when
the current is only slightly above the threshold. Vortices
inside the sample are composite and arranged in the lattice.
Still, in the vicinity of the surface fractional vortices appear
with small areas of shifted band phases with gJ > 0.

When the current increases, fractional vortices start to
penetrate deeper inside the sample, forming larger domains
of gJ > 0. This is illustrated in Fig. 1(b), calculated for
j = 0.37j0. Domains with gj > 0 grow with the current. Even-
tually they reach the lower boundary, as is shown in Fig. 1(c),
calculated for j = 0.47j0. When the current further increases,
domains of gJ > 0 straighten, forming perpendicular textures
[cf. Fig. 1(d) calculated for j = 0.57j0], similar to solitons
observed in quasi-1D systems [14]. Notice that the phase
textures are not static. They change with time, especially
in the lower parts of the larger textures, where the vortices
exit the sample. The time evolution persists until straight
channel-like textures connect the upper and the lower edges

(a)

(b)

(c)

(d)

(e)

0

150

0

150

0

150

0

150

0

150

0 600

FIG. 1. Snapshots of the spatial distribution of the Josephson
energy gJ , plotted as color density plots, as defined in Eq. (1),
calculated for the slab with the cross section 600 × 150 (in the ξ1

units). Domains of gJ < 0 and gJ > 0 are marked by red and blue,
respectively, color intensity gives the absolute value |gJ |, white color
corresponds to gJ = 0. The density plots shown in (a)–(e) correspond,
respectively, to the density currents j = 0.33,0.37,0.47,0.57,0.77j0.
Parameters of the system are discussed in the text.

of the sample. Those channels appear to be almost static.
However, there are smaller isolated phase-texture islands
between the channels that still travel from one side of
the sample to the other. For larger currents the weaker
band j = 2 gradually stops to be superconductive, starting
from the upper boundary with the largest concentration of
vortices. One sees this in Fig. 1(e), where the absence of the
condensate results in gJ = 0 (white) in the upper part of the
sample.

Further details of the formation of the phase textures and
their relation to the process of vortex splitting are shown
in Fig. 2, which plots a scaled part of the gJ density plot
superimposed by the vortex structure in the bands. The latter
are illustrated by the contour lines of the condensate density
|ψj |2. Vortices in the stronger band (smaller ξ1) are represented
by the black lines, while the vortices in the weak band
(larger ξ2) are given by magenta lines. Figures 1(a)–1(d) and
Figs. 2(a)–2(d) are calculated for the same parameters.

One can clearly see how in the vicinity of the boundary
vortices of the weak band move faster than those in the strong
band making vortices fractional. However, those fractional
vortices quickly recombine and become composite after
leaving the boundary vicinity. For a stronger current the vortex
density increases and the recombination is delayed as shown
in Fig. 2(b). Here some fractional vortices moving inside the
sample arrange themselves in quasi-1D patterns with vortices
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(a) (b)

(c) (d)

0

150

0

150
140 260 140 260

80 200 80 200

FIG. 2. Enlarged parts of the color density plots of gJ shown in
Fig. 1, superimposed with the contour plots for the band condensate
densities for the strong band |ψ1| (black line) and for the weak band
|ψ2| (magenta line), which reflect the vortex structure in the band
condensates.

in one band located opposite to vortices in the other band. In
the middle of such 1D pattern there are domains of gJ > 0,
which stretch towards the lower boundary. Vortices tend to
be attracted to this domain and to recombine slower. If the
current is not so large all vortices recombine when moving
deeper inside the sample.

When the current increases further, the recombination is
delayed even more and domains of gJ > 0 eventually reach
the lower boundary, as in Figs. 2(c) and 2(d). Here the splitting
of vortices that form the domains becomes complete: vortices
are separated by distances comparable or exceeding ξj . Finally,
Fig. 2(d) also demonstrates how the condensate in the weaker
band starts to disappear at the upper boundary, together with
the vortex structure.

Figures 1 and 2 demonstrate that quasi-1D domains of the
band phase shift is the result of the process where vortices
split and arrange themselves in an alternating order, somewhat
similar to antiferromagnetic spin ordering. This ordering is
related to the balance between the vortex-vortex interactions,
which is mainly attractive between vortices in different bands
and is repulsive for vortices within the same band. The
balance of the interactions depends on the band condensate
densities and, therefore, on the current. When the current
grows, the condensate is depleted and the repulsion, which
is determined by the magnetic field distribution, gradually
becomes dominant.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04
          λ 12

0.0
0.0001
0.001
0.005

e

d
c

b

V

j

a

FIG. 3. I -V characteristics for the set of the interband couplings
λ12 = 0, 0.0001, 0.001, and 0.005. Points a–e on the curve for λ12 =
0.0001 correspond to Figs. 1(a)–1(e) and Figs. 2(a)–2(c), respectively.
Notice that the I -V characteristics for λ12 = 0 and 0.0001 are almost
the same.

C. Current-voltage (I−V ) characteristics

When vortices start to move their motion gives rise to energy
dissipation and to the appearance of a finite voltage between the
opposite sample boundaries in the direction of the current. This
is illustrated in Fig. 3, which plots the current-voltage (I−V )
characteristic of the considered sample for λ12 = 0, 0.0001,
0.001, and 0.005. While the first three values of the interband
coupling correspond to the regime of the phase textures inside
the superconductor, the last coupling does not favor vortex
splitting inside the sample. Hence, one can check the effect
of the phase textures on the dissipation. Notice that the points
a–e in Fig. 3 (on the curve for λ12 = 0.0001) correspond,
respectively, to Figs. 1(a)–1(e) and Figs. 2(a)–2(d).

From Fig. 3 one sees that the threshold current density
(onset of the dissipation) practically does not change with λ12

in the phase-texture regime. It remains near 0.23j0 despite the
interband coupling changes by orders of magnitude. However,
when the vortex splitting and the related phase textures do
not penetrate inside the superconducting sample, the threshold
current density shifts down by about 20%, i.e., increasing the
impact of the dissipation.

However, strikingly enough, one cannot say generally that
the dissipation is less pronounced for the couplings related to
the penetration of the phase textures. Indeed, at large current
densities the curves for λ12 = 0, 0.0001, and 0.001 exhibit a
higher voltage and higher differential resistance than that of
the sample at λ = 0.005. We arrive at the conclusion that the
penetration of the phase textures inside the superconductor
has a rather complex effect on the dissipation. For relatively
small current densities the dissipation is less significant in the
phase-texture regime, with a larger threshold current density
for the vortex motion. For large current densities one finds
the opposite result, i.e., the dissipation of the energy is more
pronounced for the interband couplings favoring the vortex
splitting inside the sample.

As also noted above, when the current density is sufficiently
large j > 0.707j0 the superconductivity in the weak band is
destroyed [cf. Fig. 1(e)]. Then the resistance increases still
further (cf. point e in Fig. 3), because at such strong currents
the repulsion between vortices of the remaining condensate
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100

0 300

300
0

0

(a)

(b)

FIG. 4. Snapshots of the Josephson energy distributions cal-
culated for the slabs with L × w = 600ξ1 × 100ξ1 (a) and with
L × w = 600ξ1 × 300ξ1 (b). The contours represent the condensate
density |ψ1| (black lines) and |ψ2| (magenta lines). The current is
j = 0.447j0, other parameters are the same as in Figs. 1–3.

weakens and its vortices form a fluid instead of a rigid lattice.
In the fluid the mobility of vortices increases considerably,
leading to an increase in the resistance.

D. Size effects

As is shown above, the splitting of vortices which induces
interband phase textures is related to the vortex-boundary
interactions. One concludes that these as well as other
phenomena, related to the splitting of vortices, strongly depend
on the system size. In order to illustrate this dependence we
consider dynamics of vortices in slabs of different sizes.

The results are illustrated in Fig. 4, which shows snapshots
of the Josephson energy for the slabs with the same L = 600ξ1

and two different w = 100ξ1, shown in Fig. 4(a), and w =

300ξ1, shown in Fig. 4(b). Other parameters of the system are
the same as in Fig. 1. Figure 4 also shows contour plots for the
spatial distribution of the band condensates |ψj |, as in Fig. 2.

The value of the current is taken as j = 0.447j0. For the
smaller slab this current corresponds to a situation where
split vortices form perpendicular phase textures with gJ > 0
[cf. Fig. 4(a)] that already connect the upper and the lower
boundaries. However, for the larger slab the vortex distribution
and gJ change, as shown in Fig. 4(b). Vortices that move
towards the lower boundary gradually recombine so that deep
inside the sample only composite vortices are found. For
the chosen parameters the condensate in the weak band is
suppressed when the current further increases. We cannot
comment on the situation of full decoupling of vortices in
high current as reported in Ref. [22]. This deserves special
investigation, and results will be reported elsewhere.

IV. SUMMARY

This work investigates the mechanism of the formation
of phase textures in 2D two-band superconductors, placed
in the magnetic field. In comparison with equilibrium vortex
distribution, the dynamic vortex matter demonstrates a number
of specific properties, in particular vortex splitting. Composite
vortices split spatially and create fractional vortices, each
carrying a noninteger part of the unit quantum flux. The
interaction between fractional vortices is a complex pattern,
being repulsive for vortices within the same band and attractive
for those in different bands. This interaction is responsible
for arranging vortices in nonequilibrium alternating patterns,
which helps to create quasi-1D phase textures or domains with
the changed phase difference between the band condensates.
This mechanism for the formation of the interband phase
textures, induced by the vortex splitting, differs from that
considered previously. We have shown that such phase textures
have a significant effect on the dissipation caused by the vortex
motion, which deserves further investigation.
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