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Modeling Bloch oscillations in nanoscale Josephson junctions
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Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the
Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller
and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process.
The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble
approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the
origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency
f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that
the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously
obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the
observed microwave-induced steps in terms of Bloch oscillations.
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I. INTRODUCTION

Beginning in 1984, a group at Moscow State University
[1–4] developed a theory of nanoscale Josephson junctions for
which the charging energy Ec = e2/(2Cj ) of a single electron
on the junction capacitance Cj is comparable to or exceeds
the Josephson coupling energy Ej = h̄Ic/(2e), where Ic is
the junction’s critical current. In this limit, the charge Q on
the junction capacitance replaces its conjugate variable φ (the
difference in phase between the junction electrodes) as the
relevant classical variable of the system, and the dynamics
of the junction are radically altered. Thus, when Ej � Ec a
dc current bias produces Josephson oscillations of frequency
fj = 2e〈V 〉/h (where 〈V 〉 is the average junction voltage)
[5], whereas when Ec � Ej the Moscow State theory predicts
that a dc bias will produce Bloch oscillations of frequency
fb = 〈Ip〉/(2e), where 〈Ip〉 is the average pair current through
the junction. Signatures of Bloch oscillations have been
observed experimentally in various device schemes [6–9]. In
particular, beginning in 1991 a group at Chalmers University
of Technology [9–16] observed a microwave-induced peak
in the d〈V 〉/dI curve at a bias current I = 2ef , where f is
the microwave frequency. This peak demonstrates that Bloch
oscillations can phase lock with applied microwaves and
suggests, as noted by the Moscow State group, that a nanoscale
junction might be used to make a quantum standard for current,
just as larger junctions are used to make quantum voltage
standards [17,18]. The question that remains is whether the
width of the peak in d〈V 〉/dI can be narrow enough to create a
standard of metrological precision. In attempting to answer this
question, we adopt a model of nanoscale junctions explored
by Geigenmüller and Schön (GS) that explicitly incorporates
the shot noise of quasiparticle (single-electron) tunneling [19].
We begin with an introduction to junction dynamics and derive
the equations of motion of a nanoscale Josephson junction.
We then explain each calculation approach in detail, namely
the Monte Carlo and the ensemble calculations. Using the
advantage of faster computational speed in the ensemble
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approach, our model offers insight for the parameters needed
to obtain current steps of metrological interest. Ultimately, we
show that this model provides a semiquantitative explanation
of the Chalmers experiments and demonstrates the possibility
of creating a metrologically precise current standard if the
errors from quasiparticle tunneling can be reduced.

II. JUNCTION DYNAMICS

The basic circuit considered here, shown in Fig. 1, consists
of a superconducting tunnel junction driven by a current source
I with source conductance Gs = 1/Rs . The junction itself
comprises a single-electron tunneling element of conductance
Gj = 1/Rj , a capacitor Cj , and a Josephson element asso-
ciated with pair tunneling characterized by a critical current
Ic. As a two-terminal device, the junction is entirely defined
by the relation between the current Ij and voltage V at its
terminals. However, given that the tunneling elements are
highly nonlinear and energy can be stored in both the capacitor
and the Josephson element, this relation is generally complex
and depends critically on whether Ej � Ec or Ec � Ej [4,19].

It is necessary to differentiate between the source con-
ductance Gs , which can support a continuous current flow,
and the junction conductance Gj , which represents stochastic
quasiparticle tunneling. The source conductance represents a
Norton equivalent of a series isolation resistor Rs = 1/Gs

that must be much larger than the resistance quantum RQ =
RK/4 = h/4e2 to obtain the quantum effects that lead to Bloch
oscillations [3]. The following analyses also require that the
thermal energy kTj of the junction electrons be much less than
Ej for large-area junctions and less than both Ej and Ec for
nanoscale junctions.

For junctions with Ej � Ec, quantum calculations simplify
to yield the following relations between Ij and V [20,21],

Ij = GjV + Cj

dV

dt
+ Ic sin φ, (1)

dφ

dt
= 2e

h̄
V , (2)
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FIG. 1. Circuit diagram of a Josephson junction driven by a
current source.

with the junction phase φ acting as a classical intermediary.
Although nonlinear, these equations are relatively simple and
valid for frequencies much less than the energy-gap frequency
fg = (�a + �b)/h (where �a and �b are the superconducting
energy gaps of the junction electrodes). They suffice to
describe the dynamics of large-area junctions over a wide
range of conditions.

For junctions with Ec � Ej , the voltage-current relation
cannot be realistically modeled so simply. In this case there is
an interplay between the capacitor and the Josephson element
that must be handled quantum mechanically [22]. To develop
this idea, we consider these two elements as an isolated system.

Classically, the capacitor’s energy is a function of the
charge, Q2/(2Cj ), while that of the Josephson element is a
function of the phase,

∫
IpV dt = ∫

Ej sin φ dφ = −Ej cos φ.
Quantum mechanically, the Hamiltonian of the system is

H = Q2
op

2Cj

− Ej cos φ , (3)

where the charge operator Qop is conjugate to the phase φ

and takes the form Qop = (2e/i)∂/∂φ. The Hamiltonian thus
becomes

H = −4Ec

∂2

∂φ2
− Ej cos φ , (4)

which is an exact analog to the Hamiltonian for a particle
in a sinusoidal potential, which in turn is a one-dimensional
model for conduction electrons in a crystalline solid [23]. Thus,
by solving the eigenvalue problem Hψ = Eψ , we will find
stationary quantum states of our tunnel junction analogous to
the Bloch states of a 1D crystal.

In the present case, the Bloch states take the form

ψQ̃(φ) = PQ̃(φ) eiφQ̃/2e , (5)

where PQ̃(φ) is a periodic function, PQ̃(φ + 2π ) = PQ̃(φ),
and Q̃ is an index of the eigenstate called the quasicharge
analogous to the quasimomentum of electrons in crystals.
By construction, ψQ̃(φ) is a state of definite quasicharge but
indefinite phase. Expanding PQ̃(φ) in a Fourier series allows
numerical evaluation of the eigenstates and the corresponding
eigenenergies E(Q̃).

The calculated eigenenergies in units of Ec depend only on
the ratio εj = Ej/Ec and are shown in Fig. 2(a) for εj = 1.
As seen here, the original energy parabola Q2/(2Cj ) of the
capacitor is split into a series of energy bands with a gap of Ej

between the first and second bands and smaller gaps between
higher bands. The eigenstates ψib (Q̃) and energies Eib (Q̃) are

FIG. 2. Energy (a) and voltage (b) as a function of quasicharge
for a nanoscale junction with εj = 1. Directed lines indicate single-
electron tunneling processes originating at points 1 and 2 and Zener
tunneling originating at points 3 and 4.

specified by a band index ib and the quasicharge Q̃. Because
E is 2e periodic in Q̃, it is possible to restrict attention to the
first Brillouin zone, −e � Q̃ � e, although the extended zone
scheme is often useful.

The band structure of Fig. 2(a) is key to understanding
the dynamics of nanoscale junctions. As long as the external
forcing does not change too rapidly, the Josephson element
and capacitor taken together will be found in an eigenstate
with a definite band index ib, quasicharge Q̃, and energy
Eib (Q̃). Thus, ib and Q̃ are the classical state variables of the
combined Josephson-capacitor circuit element. The voltage of
this element, which sets the voltage V of the entire circuit,
is simply the derivative of E with respect to Q̃ [just as the
voltage of a capacitor is d(Q2/2C)/dQ],

V = Vib (Q̃) = dEib (Q̃)

dQ̃
. (6)

Thus, the voltage is also fixed by the state variables ib and Q̃

and is periodic in Q̃. Examples of the functions Vib (Q̃) are
plotted in Fig. 2(b).

A. Bloch oscillations

Changes in ib and Q̃ derive from three sources: the current
Ij , single-electron tunneling associated with Gj , and a process
known as Zener tunneling. Both tunneling processes change
ib and Q̃ instantaneously and, perhaps surprisingly, do not
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contribute directly to the current flowing through the junction.
We discuss these processes in the following sections.

The effect of Ij is analogous to that of an electric field
acting on an electron in a crystalline solid, which changes the
electron’s quasimomentum without changing the band index.
The equivalent change in the quasicharge for the Josephson
system is simply

dQ̃

dt
= Ij . (7)

Thus, a steady current Ij causes the quasicharge Q̃ to increase
uniformly in time, as might be expected for an ordinary
capacitor. However, considering the implied advance of Q̃

through the energy and voltage bands of Fig. 2 for say ib = 1,
we conclude that both E and V will oscillate regularly with a
period of 2e/(dQ̃/dt) = 2e/Ij . These are the expected Bloch
oscillations.

Equations (6) and (7) define the relation between Ij

and V for nanoscale junctions in the limit of slow motion,
Ij � e/(RKCj ), when single-electron and Zener tunneling
are neglected. These equations can be viewed as the dual of
Eqs. (1) and (2) in that Eq. (6) expresses V as a periodic
function of the internal state variable Q̃ while Eq. (1) expresses
Ij as a periodic function of the internal state variable φ, and
Eq. (7) equates dQ̃/dt to Ij while Eq. (2) relates dφ/dt to
V . That is, the relationships are exactly similar with the roles
of Ij and V reversed. Thus, it makes sense that nanoscale
junctions might lead to quantized currents just as large-area
junctions yield quantized voltages. However, while there are no
known corrections to Eq. (2), single-electron tunneling leads
to sudden shifts in Q̃, not included in Eq. (7), that compromise
the precision of the equivalent current standard.

We might envision a Bloch oscillation in the first band
as beginning with the high-energy state at Q̃ = −e and pro-
ceeding until the applied current Ij > 0 raises the quasicharge
to Q̃ = e, where it reaches another high energy state. This
picture would make sense if the junction were simply a
capacitor, except that V = 0 at both the beginning and end
of the process, and the process will exactly repeat itself as Ij

forces more charge through the junction. At Q̃ = e, we can
choose to say that the system undergoes a Bloch reflection
to the equivalent quasicharge Q̃ = −e, suggesting that pair
tunneling discharges the junction at this point. However, no
special event actually occurs at Q̃ = e, and we could as easily
choose to say that the quasicharge continues to increase beyond
Q̃ = e. Nevertheless, it is clear that pair tunneling occurs with
certainty each time Q̃ increases by 2e. This process is known as
coherent tunneling to distinguish it from the sudden, randomly
timed character of common tunneling events. The certainty of
coherent pair tunneling makes it especially attractive as the
basis for a quantum current standard.

B. Single-electron tunneling

In large-area junctions, the tunneling of a single electron
changes the energy stored on Cj by an amount insignificant
compared to Ej , and single-electron tunneling is simply
represented by a continuous normal current flowing through
Gj . In nanoscale junctions, by contrast, the tunneling of a
single electron changes the state variable Q̃ by e and possibly

the band index ib by ±1, which typically produces a significant,
instantaneous change in the junction’s energy, Eib (Q̃). Thus,
the tunneling of one electron completely disrupts the otherwise
continuous Bloch oscillations.

Single-electron tunneling is a Poisson process with an
instantaneous rate given by [19]

� = Gj�E/e2

exp(�E/kTj ) − 1
, (8)

where �E is the difference in energy between the initial and
final states,

�E = Ei ′b (Q̃′) − Eib (Q̃). (9)

Here the final quasicharge can be taken as either Q̃′ = Q̃ + e

or Q̃ − e as these states differ by 2e and are equivalent. On the
other hand, the final band index i ′b is restricted to being either 1
or 2 if ib = 1 [as indicated for initial state 1 in Fig. 2(a)] or i ′b =
ib ± 1 if ib � 2 [as indicated for initial state 2 in Fig. 2(a)] [19].

Because single-electron tunneling shifts Q̃ by e, it interrupts
the ongoing Bloch oscillation, disrupting its periodicity and
compromising the accuracy of the proposed current standard.
Minimizing the tunneling rate � by lowering the junction
temperature is advantageous in this regard both because it helps
eliminate thermally activated tunneling and because it lowers
Gj by freezing out unpaired electrons. Indeed, theory suggests
that sufficiently low temperatures would virtually eliminate
single-electron tunneling [24]. There may be limits to this
stratagem, however, as we discuss in Sec. VII.

C. Zener tunneling

The final element to be considered in the dynamics of
nanoscale junctions is Zener tunneling, a process in which the
junction state changes abruptly without the transport of charge.
In particular, Zener tunneling occurs when the system jumps
from the energy maximum of one band to the energy minimum
of the next higher band or vice versa as it passes through the
maximum or minimum point. As indicated in Fig. 2(a), this
might result in an upward leap from point 3 to point 4 or a
downward leap from point 4 to point 3.

The probability of Zener tunneling from band ib to band
ib + 1 or vice versa at the point of minimum separation
between the bands is [19]

PZ = exp

[
− πe(�E)2

4h̄Ecib|Ij |
]
, (10)

where �E is the difference in energy between the initial and
final states,

�E = Eib+1(Q̃) − Eib (Q̃), (11)

and Q̃ = e or 0, depending on whether ib is odd or even.
Even though Zener tunneling does not directly interfere

with Bloch oscillations, the higher energy of the upper
bands increases the probability of single-electron tunneling.
Considering the rate of single-electron tunneling from band
2 to band 1 (�E < 0) in the limit of low temperatures, we
have � = −Gj�E/e2, making such events generally more
likely than those within the first band, where |�E| is smaller.
Thus Bloch oscillations will be interrupted less often if the
gap Ej between the first and second bands is as large as
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possible, minimizing PZ and keeping Bloch oscillations within
the lower band. On the other hand, if Ej is much larger than
Ec, the junction will not obey the rules of nanoscale junctions
and Bloch oscillations will disappear. While the optimum
compromise between large and small Ej is unknown, it is
likely to occur for Ej � Ec or εj � 1.

III. MONTE CARLO SIMULATION

The dynamical behavior of a nanoscale junction is specified
by Eqs. (6)–(11). When these are combined with equations for
the current source,

I = I0 + I1 sin(2πf t), (12)

= Ij + GsVib (Q̃), (13)

which includes a dc bias I0 and a microwave bias of amplitude
I1 and frequency f ; we obtain the complete circuit model
to be considered here. Our goal is to calculate the average
voltage 〈V 〉 and its derivative d〈V 〉/dI0 as a function of
I0. However, the random nature of single-electron and Zener
tunneling imply that the differential equation relating V and I

is stochastic, in contrast to the deterministic Eqs. (1) and (2)
for large-area junctions.

The most direct approach to computing the average voltage
in nanoscale junctions [19] is simply to follow the state
(ib,Q̃) of the junction over a long period of time as it is
driven by Ij according to Eq. (7) and experiences sudden
random changes according to the probabilities specified by
Eqs. (8) and (10). Such a Monte Carlo simulation is relatively
easy to program, but an accurate evaluation of 〈V 〉 requires
tracking the system for a large number of drive cycles, and
the evaluation of d〈V 〉/dI0 by taking numerical differences is
problematic. Nonetheless, the Monte Carlo approach provides
valuable insight into the behavior of nanoscale junctions.

Before considering a specific example, it is useful to rewrite
the equations of motion in terms of dimensionless variables
and parameters. If we generically adopt dimensionless vari-
ables for current i = I/(e/RjCj ), voltage v = V/(e/Cj ),
energy ε = E/Ec, quasicharge q = Q̃/e, tunneling rate γ =
�RjCj , and time τ = t/(RjCj ), then the equations of motion
become

v = vib (q) = 1

2

dεib (q)

dq
, (14)

dq

dτ
= ij = i0 + i1 sin(ωτ ) − gsvib (q), (15)

γ = �ε/2

exp(�ε/tj ) − 1
, (16)

PZ = exp

[
− (�ε)2

4αib|ij |
]
, (17)

where it is understood that �ε = εi ′b (q ′) − εib (q) in Eqs. (16)
and (17) is the energy difference between the final and initial
states appropriate to single-electron and Zener tunneling, re-
spectively. The system modeled by Eqs. (14)–(17) is specified
by seven dimensionless parameters:

εj = Ej/Ec, (18)

gs = Gs/Gj , (19)

tj = kBTj/Ec, (20)

α = RK/(π2Rj ), (21)

i0 = I0/(e/RjCj ), (22)

i1 = I1/(e/RjCj ), (23)

ω = 2πf RjCj . (24)

Throughout the remainder of this paper, we explore the
voltage-current characteristics of nanoscale junctions within
this parameter space. Note that even though α in GS [19]
is defined in relation to Rj as given by Eq. (21), in our
model we treat it as a free parameter that controls the Zener
tunneling strength. It is set to zero (α = 0) whenever Zener
tunneling needs to be omitted. Note also that the quasiparticle
conductance Gj depends on the density of quasiparticles and
is highly temperature dependent according to the BCS theory.
Because we are only interested in fixed temperatures, we
will assume that Gj is a nonzero constant, and following
GS, extend this to the limit of zero temperature, where BCS
predicts that Gj = 0. A nonzero Gj at Tj = 0 makes physical
sense when a nonequilibrium quasiparticle density is present
at low temperature, as reported experimentally by several
observers [25–33].

In the current section, we demonstrate that by using the
Monte Carlo technique for a simple case, with tj = α = 0, we
are able to reproduce results from GS Fig. 8 [19]. With these
restrictions, motion is confined to the first energy band, as
there is no thermal energy to allow single-electron tunneling
to higher bands and Zener tunneling is prohibited.

A. dc bias

We begin with the simplest case: the 〈v〉–i0 curve for zero
temperature, no Zener tunneling, and dc bias only. Choosing
εj = 0.2 and gs = 0.02 as the only nonzero parameters, we
obtain the result shown in Fig. 3. This curve is almost identical
to that in Fig. 8 of GS at dc biases above about i0 = 0.05,
but the sharp resonance near zero bias is absent from the GS
calculation. It may well be that GS simply did not investigate
small enough bias currents to discover this resonance.

To understand the nature of the motion represented in this
〈v〉-i0 curve, it is useful to examine the detailed behavior of the
quasicharge as a function of time. This is revealed in Fig. 4,
where we plot Q̃ versus τ for the five bias points indicated by
open circles in Fig. 3. The key to understanding these plots is
the simple form assumed by the single-electron tunneling rate
at zero temperature.

γ =
{|�ε|/2 �ε � 0

0 �ε > 0
(tj = 0) (25)

In this case, tunneling is possible only when the energy ε1(Q̃)
of the initial state is higher than that ε1(Q̃ ± e) of the final
state, and inspection of Fig. 2(a) reveals that this results only
for initial states with quasicharge in the range e/2 < |Q̃| �
e. Conversely, single-electron tunneling is forbidden when
|Q̃| � e/2.

In these calculations, the quasicharge q is updated during a
given time step, say from τ to τ + �τ , using a fixed-step
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FIG. 3. Average voltage as a function of dc bias in the presence
of single-electron tunneling and in the absence of Zener tunneling for
εj = 0.2, tj = 0, α = 0, gs = 0.02, and i1 = 0, computed by Monte
Carlo simulation with an averaging time of 4 × 106RjCj . Parameters
are chosen to match Fig. 8 from GS [19].

fourth-order Runge-Kutta algorithm to integrate Eq. (15).
Simultaneously, we integrate γ to determine the probability
Pe of single-electron tunneling during the interval, according
to

Pe = 1 − exp

[
−

∫ τ+�τ

τ

γ dτ

]
. (26)

We then select a random number r , uniformly distributed on
the interval (0,1), and if r > Pe, we assume that tunneling
did not occur and proceed to the next integration step. But if
Pe � r , we assume that tunneling occurred and add ±1 to q

before continuing.
Consider first the result for i0 = 0.004, shown in Fig. 4(a).

As with all of the curves in Fig. 4, the state of the system
at τ = 0 is assumed to be (ib,Q̃) = (1,0). With time, the
bias current begins to charge the junction capacitance Cj ,
initially raising its voltage V rapidly then ever more slowly
as the current V/Rs is diverted through the source resistance
Rs . As a result, V asymptotically approaches 〈V 〉 = RsI0

and (assuming V � Q̃/Cj for |Q̃| � e/2) the quasicharge
approaches Q̃ = RsCjI0, both with a time constant RsCj .
In terms of dimensionless quantities, the quasicharge q

approaches its approximate asymptote i0/gs = 0.2 with a time
constant of 1/gs = 50. Because q is always less than 0.5,
single-electron tunneling does not occur, and the nanoscale
junction behaves as a simple capacitor. From the asymptotic
relation 〈v〉 = i0/gs , we see that the initial slope of the 〈v〉-i0

curve in Fig. 3 is 1/gs .
When i0 is increased to 0.01 the asymptotic quasicharge

reaches q � i0/gs = 0.5, and higher bias levels are sure to
produce single-electron tunneling. Thus, at i0 = 0.0102, after
the quasicharge exceeds q = 0.5 and ε1(q) > ε1(q − 1), single
electron tunneling becomes possible, and the quasicharge is
likely to jump suddenly from a value slightly greater than 0.5
to a value slightly greater than −0.5, as shown in Fig. 4(b).
When Cj is discharged by such a tunneling event, the bias
current immediately begins charging it again, and the process

FIG. 4. Quasicharge as a function of time at five dc bias points
chosen from the 〈v〉-i0 curve of Fig. 3: (a) i0 = 0.004, (b) i0 = 0.0102,
(c) i0 = 0.02, (d) i0 = 0.08, and (e) i0 = 0.2. In each instance, the
system is initialized in the first band with zero quasicharge (ib,q) =
(1,0). Single-electron tunneling events are shown by narrow vertical
lines with a dot at each end and Bloch reflections by dashed vertical
lines with an open circle at each end.

repeats at irregular intervals that reflect the random, Poisson
character of the tunneling process. Despite the quantum nature
of these oscillations, they are analogous to those of a classical
relaxation oscillator. Finally, with the capacitor repeatedly
discharged in this way, the average voltage drops from its
peak of 〈v〉 � 0.5 at i0 � 0.01 to 〈v〉 = 0.355 at i0 = 0.0102.

With increasing bias above i0 = 0.0102, the capacitor
charges more rapidly and the asymptotic voltage and qua-
sicharge generally increase. However, for εj = 0.2 the voltage
in the first band reaches a maximum of vmax = 0.804 at
q = 0.874 [see Fig. 2(b)]. As a result, for i0 > gsvmax =
0.0161, there is no longer an asymptotic value of v for which
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dq/dτ = i0 − gsv = 0, and q can in principle increase indefi-
nitely. For the case i0 = 0.02 shown in Fig. 4(c), however, the
quasicharge simply oscillates between minimum values in the
range (−0.5,0.5) and maximum values in the range (0.5,1).
These relaxation oscillations are relatively rapid because the
charging rate is high and because the tunneling rate increases
as q approaches 1. (Note the change of time scale in the final
frames of Fig. 4.) In fact, the tunneling rate is high enough that,
while q could increase beyond 1, tunneling is overwhelmingly
likely to occur first.

At yet higher dc bias and faster charging rates, however, q

exceeds 1 on a regular basis. If we choose to restrict q to the
first Brillouin zone (−1 � q � 1), then when q reaches 1, we
immediately reset q to −1, an equivalent point in the energy
band. In this case we say that the quasicharge has undergone
a Bloch reflection and associate the event with coherent pair
tunneling. In the extended zone scheme, on the other hand, q is
allowed to exceed 1, and nothing of special significance occurs
at q = 1. In Fig. 4, we have chosen to restrict q to the first
Brillouin zone, and in frame (d) for i0 = 0.08, we find Bloch
reflections at three points. At these points, when q reaches 1,
it is instantly reset to −1 before integration proceeds, and the
jump is indicated by a dashed vertical line. In two of these
cases, for τ near 80 and 202, the Bloch reflection is closely
followed by single-electron tunneling from q slightly greater
than −1 to q slightly greater than 0. Single-electron tunneling
is allowed here because ε1(q) > ε1(q + 1) for q in the range
(−1, − 0.5).

The average voltage increases between points (c) and (d)
in Fig. 3 because the relaxation oscillations gradually shift
to higher quasicharge as the charging rate increases with i0.
However, 〈v〉 reaches a peak at (d) due to the onset of Bloch
reflections, which force the system to spend more time in
negative charge states. Thus, the rounded peak in average
voltage at (d) is usually referred to as the “Bloch nose.” As
the bias increases above that at (d), Bloch reflection becomes
more frequent, and the average voltage falls as negative charge
states are visited more often. This effect is apparent in Fig. 4(e)
for i0 = 0.2.

B. rf bias

When an rf bias is included in our example system, we
obtain the voltage-current curve shown in Fig. 5 for i1 = 0.4
and ω = π/2. This curve is in good agreement with that for
the same parameter set shown in Fig. 8 of GS, although GS
does not include points at small enough dc bias to reveal the
spike near i0 = 0. In particular, we find the same sharp step at
i0 = 0.25, corresponding to I0 = ef , and the same broad step
at i0 = 0.5, corresponding to I0 = 2ef , that were observed in
GS. These steps reveal the tendency of Bloch oscillations to
phase lock with the applied rf bias and are the basis for the
proposed current standard.

The step at i0 = 0.5 represents synchronized motion in
which one Bloch oscillation occurs during each rf cycle, while
for that at i0 = 0.25 a Bloch oscillation is completed only
after two rf cycles. The former is an example of harmonic
phase lock in which n Bloch oscillations are completed during
m = 1 drive cycles, while the latter is a case of subharmonic
phase lock, in which n oscillations are completed during

FIG. 5. Average voltage as a function of dc bias for the same set
of parameters as Fig. 3 with an RF bias included (εj = 0.2, tj = 0,
α = 0, gs = 0.02, i1 = 0.4, and ω = π/2), computed by Monte Carlo
simulation with an averaging time of 106 rf drive cycles. Arrows
labeled n

m
mark current steps at which m Bloch oscillations are

nominally completed during n drive cycles.

m � 2 drive cycles. In either case, the step nominally occurs at
I0 = (n/m)2ef and defines an approximate quantized current.
However, we are naturally led to ask why the harmonic step
with n/m = 1/1 is so much wider than the subharmonic steps
with n/m = 1/4, 1/2, 2/3, 3/4, and 3/2.

Before attempting to answer this question, we explore the
nature of the motion at each of the five bias points marked by
open circles in Fig. 5. Consider first the case shown in Fig. 6(a)
for i0 = 0.002. Here q is always less than 0.5, so q � v, and
in the sinusoidal steady state we expect

q � v = i0/gs + i1 sin(ωτ + φ)/
√

g2
s + ω2. (27)

Thus, as shown, Q̃ oscillates with an amplitude of 0.255e about
an average value of 0.1e, uninterrupted by single-electron
tunneling.

If Eq. (27) is applied to the case of i0 = 0.013 in Fig. 6(b),
it implies a steady state with an average quasicharge of
〈Q̃〉 = 0.65e, which exceeds the threshold for single-electron
tunneling, and a peak voltage of v = 0.905, which exceeds the
threshold of vmax = 0.804 for Bloch reflection. Thus Q̃ fails to
assume a steady state in Fig. 6(b) and instead displays roughly
sinusoidal behavior interrupted at intervals by single-electron
tunneling and very occasional Bloch reflections [the latter do
not appear in Fig. 6(b)]. At yet higher dc bias, Bloch reflections
become more frequent [cf. Fig. 6(c)] and lead to the Bloch nose
at bias point (c) in Fig. 5.

The final bias points, (d) and (e) in Fig. 5, are centered
on the steps at I0 = ef and I0 = 2ef . As expected for
subharmonic and harmonic phase locking with n/m = 1/2 and
n/m = 1/1, the corresponding quasicharge curves in Fig. 6
reveal significant intervals during which Bloch reflections
occur periodically, with a period of two drive cycles in (d)
and one drive cycle in (e). In both cases, however, these
patterns are interrupted at irregular intervals by single-electron
tunneling. When tunneling occurs for initial quasicharge in
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FIG. 6. Quasicharge as a function of time at five dc bias points
chosen from the 〈v〉-i0 curve of Fig. 5: (a) i0 = 0.002, (b) i0 = 0.013,
(c) i0 = 0.08, (d) i0 = 0.252, and (e) i0 = 0.5. In each instance,
the equation of motion is integrated for at least 200 drive cycles
to eliminate transients before plotting 20 cycles of representative
motion. Single-electron tunneling events are shown by narrow vertical
lines with a dot at each end and Bloch reflections by dashed vertical
lines with an open circle at each end.

the range e/2 < Q̃ < e the time between Bloch reflections
is lengthened, while for initial quasicharge in the range
−e < Q̃ < −e/2 the time between reflections is shortened.
Because the relative proportions of these competing events
and the resulting average voltages change gradually with dc
bias, there is no signature in the 〈v〉-i0 curve that identifies the
exact dc bias at which I0 = ef or 2ef .

A qualitative difference between the steps at (d) and
(e) in Fig. 5 is evident in the slope of the 〈v〉-i0 curve
in the two cases, with d〈v〉/di0 = 50 or d〈V 〉/dI0 = Rs at
(d) and d〈v〉/di0 � 0.8 or d〈V 〉/dI0 � 0.8Rj at (e). This
approximate correspondence between the slopes of the two
steps and the resistances Rs and Rj suggests that the feedback

FIG. 7. Average voltage as a function of dc bias in the absence
of single-electron and Zener tunneling (γ = 0, εj = 0.2, tj = 0,
α = 0, gs = 0.02, i1 = 0.4, and ω = π/2), computed by Monte Carlo
simulation with an averaging time of 105 rf drive cycles. Arrows
labeled n

m
mark current steps at which m Bloch oscillations are

nominally completed during n drive cycles.

mechanism that creates phase lock is distinctly different for
subharmonic and harmonic steps. Further insight into this
possibility results from examining the 〈v〉-i0 curve for the
same parameters as Fig. 5 but with single-electron tunneling
completely suppressed. Results for this case are shown in
Figs. 7 and 8.

As seen in Fig. 7, in the absence of single-electron tunneling
the Bloch nose is eliminated from the voltage-current curve,
and harmonic phase lock at i0 = 0.5 gives rise to the same
sharp step as previously observed for subharmonic steps. The
steady-state motion for n/m = 1/2 and 1/1 is shown in frames

FIG. 8. Quasicharge as a function of time at two dc bias points
chosen from the 〈v〉-i0 curve of Fig. 7: (a) i0 = 0.25 and (b) i0 = 0.5.
In each instance, the equation of motion is integrated for at least
200 drive cycles to eliminate transients before plotting 20 cycles
of steady-state motion. Bloch reflections are represented by dashed
vertical lines with an open circle at each end.
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(a) and (b) of Fig. 8, where we see phase lock uninterrupted
by tunneling. Comparing these plots with frames (d) and (e)
of Fig. 6 reveals what might be a critical difference between
subharmonic and harmonic phase locking in the presence of
tunneling. For n/m = 1/2, we see in Fig. 6(d) that tunneling
shifts q by ±1, but because the drive repeats itself twice
between Bloch reflections, this shift allows the oscillation
pattern to immediately resume the steady-state motion of
Fig. 8(a). In this case, Bloch reflection is advanced or delayed
by tunneling, but tunneling doesn’t upset the pattern of phase
lock. On this subharmonic step, regardless of the presence or
absence of tunneling, lock results from feedback through Rs ,
and the system relaxes to locked motion with a characteristic
time of RsCj = 12.5 drive cycles.

In contrast, for the harmonic step at i0 = 0.5 we find
that single-electron tunneling completely upsets the pattern of
phase lock found in the absence of tunneling. This disruption
becomes evident if we focus on an inflection point in the
q versus τ curve that in the absence of tunneling occurs at
q = 0, as seen in Fig. 8(b). This is the expected location of the
inflection point when phase lock is established by feedback
through the source resistance Rs . Examining q versus τ with
tunneling present, as shown in Fig. 6(e), however, we find that
the inflection point alternates irregularly between q � 0.24
and q � −0.76, as the junction is buffeted by tunneling events.
(Over longer periods of time, the inflection point can be found
at any value of quasicharge in the range −1 < q < 1.) This
erratic behavior results because there is only one drive cycle
between Bloch reflections on the n/m = 1/1 step, so when
tunneling shifts q by ±1, the quasicharge jumps to a value
that would otherwise occur a half drive cycle later. Thus,
rather than jumping a full drive cycle as on the 1/2 step, a
shift in q by ±1 has the effect of jumping a half drive cycle
on the 1/1 step. Such a half-cycle jump puts the system far
from the phase-lock state associated with feedback through
Rs , and because the relaxation time required to regain lock by
this mechanism (12.5 drive cycles) is far longer than the time
between tunneling events, feedback through Rs is not effective
in maintaining lock on the 1/1 step.

These arguments lead to the conclusion that phase lock on
the harmonic step probably results from feedback through the
junction resistance Rj , in spite of the fact that the current
through this element is the shot noise of single-electron
tunneling. That is, much like electronic systems that use
impulsive feedback as a means of control, phase lock on the
1/1 step is apparently maintained by single-electron tunneling.
This conclusion is confirmed by three observations. First, the
rate of single-electron tunneling is a strong function of q, so
tunneling is not entirely random and is capable of providing
feedback. Second, the slope of the 1/1 step is of order Rj [19],
as expected if Rj provides the feedback to create the step.
Third, when the 〈v〉-i0 curve is computed without a source
resistance (gs = 0), the narrow subharmonic steps in Fig. 5 are
eliminated, while the Bloch nose and the broad harmonic step
at I0 = 2ef are retained. As will be seen later, the higher-order
harmonic n/1 steps at I0 = 2nef also have slopes of order
Rj and are also created by the feedback from single-electron
tunneling. Thus, in any system with nonzero single-electron
tunneling, the principal Bloch steps at I0 = 2nef , the epitome
of coherent pair tunneling, ironically owe their existence to

single-electron tunneling, the very process that introduces
errors into the quantization implied by I0 = 2nef .

IV. ENSEMBLE SIMULATION

In a Monte Carlo calculation, the state (ib,q) of a single
junction is tracked over a long period of time, and 〈v〉 is
evaluated as a time average. However, we can also consider an
ensemble of identical systems with random initial conditions
and calculate the steady-state probability density ρib (q) derived
from a Langevin equation. In this case 〈v〉 is computed as
an ensemble average over ib and q and a time average over
one drive cycle. The ensemble approach has the advantage
of computational speed, because averaging over long time
periods is not required, but it is less efficient in cases where
the probability distribution is limited to a narrow range of
quasicharge.

Rather than begin with an equation of motion for ρib (q), we
will instead simply describe how our computer program works
based on Eqs. (14)–(17). This will afford a more definite and
perhaps clearer picture of exactly how the system is modeled.
To begin, we note that while ρib (q) is nominally a continuous
function of q and ρib (q)dq is the probability of finding the
system in band ib with a quasicharge between q and q + dq, a
practical program results when we break the quasicharge into
a finite number of bins and consider only the probabilities of
finding the system in the various bins. The indexing scheme for
the quasicharge bins of one band is shown in Fig. 9. Here, a bin
with index iq is associated with the quasicharge at the center of
the bin according to Q̃(iq) = eq(iq) = e(2iq/nq − 1), where
nq is the number of bins allocated to each band, and we allow
a maximum of nb bands. Our program focuses on computing
the probability Ps(ib,iq) of finding the system in bin iq of band
ib, and these bin and band indices completely define the state
of the system within the resolution of the calculation.

The dynamics of this discrete-quasicharge approximation
to the system is most easily expressed by introducing an index
is ,

is = nq(ib − 1) + iq, (ib � nb, iq � nq) (28)

which combines ib and iq to specify one of the nbnq states.
The probabilities Ps(is) for occupying the states is evolve in
time according to the master equation,

dPs(is)

dτ
=

nbnq∑
i ′s=1

A(is,i
′
s)Ps(i

′
s), (29)

FIG. 9. Quasicharge bin index as a function of quasicharge for a
typical band. The number nq of bins per band is taken to be even, so
the bin with index iq = nq/2 is centered at Q̃ = 0. Bin 0 at Q̃ = −e

is equivalent to bin nq at Q̃ = e and is omitted from the count.
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where the matrix A(is,i ′s) specifies the rate at which probability
in state i ′s is transferred to state is per unit probability in state
i ′s , as determined by Eqs. (15)–(17).

While by far the majority of the (nbnq)2 elements of the
rate matrix A are zero, precisely specifying all of the nonzero
elements is an exercise in conditional statements best left to
a computer program. However, we will examine the general
nature of the terms contributed by the three processes specified
by Eqs. (15)–(17). Before doing so, it is useful to introduce
the notation,

A(ib,iq ; i ′b,i
′
q) = A(nq(ib − 1) + iq,nq(i ′b − 1) + i ′q), (30)

which allows elements of the rate matrix to be identified by
the physically relevant band and quasicharge indices.

Equation (15) tells us that a junction current ij > 0 has
the effect of shifting probability from bin i ′q to the adjacent
bin iq = i ′q + 1 within the same band. More specifically, since
each bin has a width �q = 2/nq , the time �τ required to
shift all of the probability in one bin to an adjacent bin is
�τ = �q/|ij | = 2/nj |ij |, and the rate per unity probability
is 1/�τ = nj |ij |/2. That is,

A(i ′b,i
′
q + 1; i ′b,i

′
q) = nj

2
|ij |, (31)

where

ij = i0 + i1 sin(ωτ ) − gsvi ′b [q(i ′q)]. (32)

Here it is understood that ±nq is added to the final quasicharge
index iq as required to keep it within the range 1 � iq � nq .
Thus for an initial quasicharge i ′q = nq in Eq. (31), the final
quasicharge is iq = 1 rather than nq + 1. An equation similar
to Eq. (31) results for ij < 0, except that probability is shifted
to an adjacent bin of lower rather than higher quasicharge:
iq = i ′q − 1.

The rate of single-electron tunneling given by Eq. (16)
translates directly into elements of the rate matrix that
generally connect a bin i ′q in a given band i ′b to a bin
iq = i ′q ± nq/2 in another band either just above or just below
the given band, ib = i ′b ± 1, although tunneling can also occur
within band 1. The shift in i ′q by ±nq/2 assures that the
quasicharge Q̃ changes by ±e. Single-electron tunneling to
the next higher band is governed by a matrix element of the
form,

A(i ′b + 1,i ′q ± nq/2; i ′b,i
′
q) = �ε/2

exp(�ε/tj ) − 1
, (33)

where the difference in energy �ε between the final and initial
states is

�ε = εi ′b+1[q(i ′q ± nq/2)] − εi ′b [q(i ′q)], (34)

and similar formulas result for other possibilities.
Finally, we need to account for Zener tunneling between

bands, which can occur when the quasicharge passes through
an energy maximum or minimum that brings it close to a
second band, either at Q̃ = 0 or e. Consider, for example, the
possibility of Zener tunneling from band 1 to band 2 at Q̃ = e

with dQ̃/dt = Ij > 0. According to Eq. (17) this will occur

with probability

PZ,1↔2 = exp

[
− (�ε)2

4α|ij |
]
, (35)

where �ε is the energy gap between the first and second bands,

�ε = ε2[q(nq)] − ε1[q(nq)]. (36)

To incorporate this tunneling event into the rate matrix, we
assume that it occurs as probability is shifted by the drive
current ij > 0 from bin i ′q = nq − 1 of band i ′b = 1, with the
probability ending up either in bin iq = nq of band ib = 2
with probability PZ,1↔2 or in bin iq = nq of band ib = 1
with probability 1 − PZ,1↔2. Thus, Zener tunneling can be
included by replacing the matrix element A(1,nj ; 1,nj − 1)
given by Eq. (31) with the pair of matrix elements,

A(1,nq ; 1,nq − 1) = (1 − PZ,1↔2)
nq |ij |

2
, (37)

A(2,nq ; 1,nq − 1) = PZ,1↔2
nq |ij |

2
, (38)

where the current ij is

ij = i0 + i1 sin(ωτ ) − gsv1[q(nq − 1)]. (39)

Matrix elements for other Zener tunneling events occurring
at iq = nq/2, from higher to lower bands, or with negative ij ,
can be constructed in a similar fashion.

All of the matrix elements A(is,i ′s) discussed above define
the positive rate at which probability flows from state i ′s to
another state is . However, in order to conserve probability, we
must deduct this probability flow from the state of origin i ′s .
Thus, the diagonal elements of the rate matrix are given by

A(i ′s ,i
′
s) = −

nbnq∑
is=1
is 	=i ′s

A(is,i
′
s), (40)

and this formula completes our explication of the rate matrix.

A. dc bias

As an example of the ensemble approach to calculating
〈v〉-i0 curves, we turn again to the case considered in Fig. 3
for dc bias only. Without an rf bias, the system is expected
to approach a steady state in which the bin probabilities are
independent of time and dPs(is)/dτ = 0 for all quasicharge
bins. According to Eq. (29), this steady state is defined by

nbnq∑
i ′s=1

A(is,i
′
s)Ps(i

′
s) = 0, (41)

which provides a system of nbnq linear equations for the nbnq

bin probabilities Ps(i ′s). However, conservation of probability,
Eq. (40), implies that any one of these equations is a linear
combination of the other nbnq − 1 equations. To obtain a full
set of nbnq independent equations, we replace one equation of
the above set with the normalization condition,

nbnq∑
i ′s=1

Ps(i
′
s) = 1. (42)

When combined, Eqs. (41) and (42) allow a direct calculation
of the bin probabilities in the case of dc bias only. The average
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FIG. 10. Average voltage as a function of dc bias for εj = 0.2,
tj = 0, α = 0, gs = 0.02, and i1 = 0 (the same set of parameters as
the Monte Carlo calculations in Fig. 3), computed as an ensemble
average over nq = 1000 quasicharge bins. For i0 � 0.015, bin
probabilities were evaluated by allowing the system to relax to a
steady state using Eq. (29), while for i0 > 0.015 probabilities were
obtained directly by solving a system of linear equations, Eqs. (41)
and (42).

voltage can then be evaluated according to

〈v〉 =
nbnq∑
is=1

Ps(is)v(is), (43)

where it is understood that v(is) is the voltage vib (iq) of the
band ib and bin iq corresponding to the state is .

As shown in Fig. 10, the 〈v〉-i0 curve from our ensemble
calculation closely matches that of Fig. 3, calculated by Monte
Carlo methods. Actually, Fig. 10 includes data from two types
of calculation. For i0 > 0.015 a calculation based on Eqs. (41)
and (42) is efficient and accurate, but for i0 < 0.015, where
we find a spike in 〈v〉, this direct method often produces
spurious results. Thus, for low bias, we have instead returned
to Eq. (29) and, beginning with an initially uniform probability
distribution, simply allowed the system to evolve in time until
the distribution reaches a steady state. While this relaxation
approach is less efficient than solving Eqs. (41) and (42), it
converges relatively quickly (usually within a few RjCj times)
to an accurate distribution.

To better understand the nature of ensemble calculations,
we examine the probability density ρ as a function of
quasicharge, plotted in Fig. 11 for five bias points selected from
Fig. 10. These are the same bias points for which quasicharge
is plotted as a function of time in Fig. 4, and it’s not difficult
to predict ρ(Q̃) from Q̃(τ ). At bias point (a), for example, the
steady-state quasicharge is fixed at Q̃ � 0.2e, so we expect the
corresponding ρ(Q̃) to include a delta function at 0.2e. This
expectation is fulfilled in Fig. 11(a), where ρ is off scale at 0.2e,
and the raw data reveal two adjacent bins near 0.2e that include
99% of the probability. Similarly, the quasicharge waveform
in Fig. 4(b) shows that the system lingers near Q̃ = 0.5e but
occasionally dips to roughly −0.5e, so we’re not surprised
to find a peak in ρ near Q̃ = 0.5e and a probability tail that

FIG. 11. Steady-state probability density as a function of qua-
sicharge at five dc bias points selected from the 〈v〉-i0 curve of
Fig. 10: (a) i0 = 0.004, (b) i0 = 0.0102, (c) i0 = 0.02, (d) i0 = 0.08,
and (e) i0 = 0.2. These distributions can be compared directly with the
corresponding Monte Carlo quasicharge versus time plots of Fig. 4.

extends down to about −0.5e, as shown in Fig. 11(b). At yet
higher dc biases, Bloch reflection becomes possible and the
probability density is spread over the full range of quasicharge,
from −e to e, as in Figs. 11(d) and 11(e).

In these ensemble calculations, the number of quasicharge
bins was chosen to be nq = 1000, which allows sufficient
resolution in Q̃ that the delta function in probability near Q̃ =
0.2e in Fig. 11(a) is well resolved. However, in the absence of
such sharp structure, as in Figs. 11(d) and 11(e), fewer bins are
required, and the probability distribution is usually represented
accurately using just 100 bins per band. In later simulations,
we typically use this smaller number of bins.

B. rf bias

While it may seem unlikely, the ensemble approach is also
useful in the presence of an rf bias. In this case, the rate matrix
A is time dependent, and Eq. (41) is no longer applicable,
but the relaxation approach remains viable. This approach
depends on the assumption that the probability density will
relax to a steady-state function with the same periodicity
as the rf drive. This assumption is confirmed by numerical
simulations in which the nbnq coupled probabilities Ps(is) are
calculated from Eq. (29) using a fourth-order Runge-Kutta
algorithm. Because the probabilities typically converge to a
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FIG. 12. Average voltage as a function of dc bias for εj = 0.2,
tj = 0, α = 0, gs = 0.02, i1 = 0.4, and ω = π/2 (the same set of
parameters as the Monte Carlo calculations in Fig. 5), computed as
an ensemble average over nq = 1000 quasicharge bins.

periodic solution within a few rf drive cycles, the relaxation
approach offers a practical method of computing 〈v〉-i0 curves.
In this case, 〈v〉 is an average over the ensemble and over time,

〈v〉 =
nbnq∑
is=1

1

τp

∫ τp

0
Ps(is)v(is)dτ, (44)

where τp = 2π/ω is the period of the rf drive. One precaution
that must be taken in integrating Eq. (29) is choosing a time
step �τ small enough that probability is never driven by ij
beyond the adjacent bin—that is, �τ = 2/(nq |ij |).

A voltage-current curve for an rf-biased junction computed
by the ensemble approach is shown in Fig. 12 for the same
case as evaluated by Monte Carlo simulation in Fig. 5. The
striking difference between these curves is the degree to which
the prominent subharmonic steps in Fig. 5 are suppressed in
Fig. 12. This loss of fine structure in the 〈v〉-i0 curve is typical
of ensemble calculations and probably derives from replacing
the continuous quasicharge variable with discrete quasicharge
bins. On the other hand, there is excellent agreement between
the two calculations with regard to the Bloch nose at i0 � 0.08
and the first harmonic step at i0 = 0.5. Thus, ensemble
calculations offer an efficient alternative to Monte Carlo
simulations if fine structure, such as subharmonic steps, is
not of special interest.

An idea of the inner workings of an ensemble calculation in
the presence of an rf drive is given by plots of the probability
density, shown in Figs. 13 and 14 for the bias points (a)
and (b) identified in Fig. 12. Consider first bias point (a)
centered on the n/m = 1/2 step. The probability density for
this case is plotted in Fig. 13 at five times during one rf
drive cycle, τ/τp = 0, 1/4, 1/2, 3/4, and 1, with ρ(Q̃) being
identical at the beginning and end of the drive cycle. First one
notes that the corresponding Q̃(τ ) curve plotted in Fig. 6(d)
shows regions where the quasicharge repeatedly lingers for
an extended period near both Q̃ = −e/2 and near e/2. This
behavior explains why the probability distribution includes

FIG. 13. Steady-state probability density as a function of qua-
sicharge at five times during the rf drive cycle for bias point (a),
i0 = 0.252, of the 〈v〉–i0 curve in Fig. 12. These distributions can be
compared with the corresponding Monte Carlo quasicharge versus
time plot of Fig. 6(d).

two peaks typically near these values of quasicharge. We can
also see from Fig. 6(d) that single-electron tunneling often
leads to repetitions of the plateau near e/2 but not the plateau
near −e/2, and this explains why the probability peak near
e/2 is larger. However, the distribution for τ = τp/4 violates
these expectations. This anomaly is explained, however, when
we consider the effect of the junction current, which shifts
the entire distribution at a rate proportional to ij . Between
τ = 0 and τp/2, the rf bias adds to the dc bias, and ij reaches
a peak of about i0 + i1 = 0.65 near τ = τp/4. As a result,
both probability peaks are shifted by roughly +e during this
half cycle, with the larger peak turning into the smaller peak
in the process. On the second half cycle, by contrast, the rf
bias is negative, largely canceling the positive dc bias, so the
probability distribution is basically not shifted in quasicharge
between τ = τp/2 and τp. Thus, the changes in ρ(Q̃) that occur
over a drive cycle make sense in terms of the Q̃(τ ) behavior
shown in Fig. 6(d) and the shifts in quasicharge imparted by ij .

The behavior of the probability distribution for bias point
(b) on the n/m = 1/1 step, plotted in Fig. 14, is comparatively
easy to understand. Here we find a single broad peak in ρ(Q̃)
that gradually shifts in quasicharge by 2e over the course of
one drive cycle. Because dq/dτ = ij � i0 + i1 sin(ωτ ), we
again expect this shift to be divided into a larger fraction that
occurs during the first half cycle and a lesser fraction during the
second half cycle, as seen in Fig. 14. In the remainder of this
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FIG. 14. Steady-state probability density as a function of qua-
sicharge at five times during the rf drive cycle for bias point (b),
i0 = 0.5, of the 〈v〉-i0 curve in Fig. 12. These distributions can be
compared with the corresponding Monte Carlo quasicharge versus
time plot of Fig. 6(e).

paper, ensemble simulations based on relaxation to a periodic
probability density become our primary tool for investigating
Bloch steps in the rf-biased junction.

V. PARAMETER SPACE

Within the model considered here, the junction voltage is
a function of the seven parameters listed in Eqs. (18)–(24).
To gain a broader perspective on the nature and range of
Bloch steps, we now examine voltage-current curves for
a range of rf amplitudes and frequencies, i1 and ω, and
normalized Josephson coupling energies εj , while setting the
remaining parameters, gs , tj , and α, to zero. Assuming the
latter parameters are zero allows us to examine harmonic Bloch
steps under ideal conditions. In particular, gs = 0 implies that
the junction is perfectly isolated from its electromagnetic
environment, tj = 0 eliminates thermally activated single-
electron tunneling, and α = 0 eliminates Zener tunneling,
forcing the junction to remain in the first energy band.
However, all of the processes omitted here will be important in
the following section, where we attempt to model experimental
voltage-current curves.

Each of the six frames in Fig. 15 shows a collection
of voltage-current curves corresponding to five different rf
amplitudes. Because we have chosen gs = 0, none of the

curves show subharmonic steps, but harmonic steps at bias
currents I0 = 2nef for n = 1, 2, and 3 are well represented,
with higher-order steps appearing at higher rf amplitudes.
As expected from our earlier example, however, all of these
“constant-current” steps have a finite slope on the order of
Rj or less. This slope is in contrast to the constant-voltage
steps of Josephson voltage standards in which deviations from
the quantized voltage are experimentally undetectable over the
central region of each step. Thus, while Bloch oscillations can
be synchronized to some extent with an external rf bias, for
the parameters considered here the resulting steps would not
be useful as the basis of a precision current standard.

For the purpose of demonstrating the existence of Bloch
oscillations, regardless of their utility as a current standard,
Fig. 15 provides a guide to the selection of suitable parameters.
For example, consider the drive frequency ω = 2πf RjCj . As
Figs. 15(a) and 15(d) suggest, if ω is too small then adjacent
Bloch steps begin to overlap, so it is best to keep the separation
between steps 2ef greater than the step width, which is on the
order of the characteristic voltage e/Cj divided by the slope
Rj . When numerical factors on the order 1 are eliminated, this
condition reduces to ω � 1. On the other hand, Figs. 15(c)
and 15(f) reveal that step amplitudes generally decrease with
increasing frequency, so ω should not be too large. A second
factor also sets an upper limit on ω, namely the condition
Ij � e/RKCj , required to ensure that the system is always
in a quasicharge eigenstate. Given that the current on the nth
harmonic step is Ij = 2nef , this condition reduces to ω �
πRj/(nRK ). Thus, the largest step amplitudes are expected to
result for ω somewhat larger than 1 but not too large.

Figure 15 does not, however, provide significant clues
about what ratio εj = Ej/Ec of Josephson to charging energy
might optimize the amplitude of Bloch steps. The steps for
εj = 0.2 and 1 shown here are not dramatically different.
Instead, the optimum εj is suggested by other constraints.
In particular, our analysis is predicated on the condition
that εj � 1 in order that charge rather than phase be the
dominant quantum variable. While it is not possible to specify
a particular εj beyond which the analysis breaks down, this
parameter clearly should not be very much larger than 1. At
the same time, εj must not be too small if the probability
of Zener tunneling between the first and second band is to
be minimized. At a bias point on the first harmonic step
(Ij = 2ef ) for this case (�ε = εj and ib = 1), the tunneling
probability can be written as PZ = exp[−(π/16)(Ic/ef )εj ].
Thus, unwanted Zener processes can be suppressed only if
εj � (16/π )(ef/Ic). As a result, the optimum εj is usually
on the order of 1 and neither very much smaller nor very
much larger than 1. Given that nonzero values of gs , tj , and
α compromise the existence of Bloch steps and that ω and εj

are near their optimum values in Fig. 15, we conclude that the
steps shown here are typical of the strongest Bloch steps that
can possibly be observed in a nanoscale Josephson junction.

VI. EXPERIMENTAL COMPARISON

Having explored the inner workings of the model of
nanoscale Josephson junctions introduced by GS [19], we now
apply this model to the experimental results of Kuzmin et al.
[16] In particular, we consider the experimental results for
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FIG. 15. Average voltage as a function of dc bias in the case of an ideal current source, in the presence of single-electron tunneling and
in the absence of Zener tunneling, for various values of Josephson coupling energy εj , rf frequency ω, and rf amplitude i1: (εj , ω) = (a) (1,
π/4); (b) (1, π/2); (c) (1, π ); (d) (0.2, π/4); (e) (0.2, π/2); (f) (0.2, π ). All curves derive from ensemble calculations with nq = 100 and
tj = α = gs = 0. Vertical lines indicate the location of the first three harmonic Bloch steps at I0 = 2ef , 4ef , and 6ef .

the junction N1 shown in their Fig. 3 and reproduced
here in Fig. 16. Junction N1 is an Al/AlOx /AlPbAu tunnel
junction of area 0.01 μm2 and is isolated from the surrounding
electromagnetic environment by thin-film Cr resistors that are
0.1 μm by 6 nm in cross section and 10 μm in length. As
shown in Fig. 16, when cooled to a nominal temperature
of 60 mK and driven by 4-GHz microwaves, this junction
revealed strong evidence of Bloch steps at I = 2ef = 1.28 nA
that is especially clear in the dV/dI curves of Fig. 16(b).

The question to be considered now is the extent to which
the GS model might explain the experimental results of
Kuzmin et al. Because the experimental parameters are not
known with certainty, however, we attempt to make only a
semiquantitative comparison between theory and experiment,
and simulation parameters were chosen to be representative
rather than to produce a detailed fit to experiment. As
Kuzmin et al. discuss, one experimental uncertainty is the junc-
tion temperature Tj . While the base temperature of their refrig-
erator is 60 mK, the power dissipated in the isolation resistors
in the presence of dc and rf biases is likely to raise Tj well above
60 mK. In particular, they estimate that the junction tempera-
ture may be as high as 300 mK for a bias current of 1.3 nA. In
the following we assume that Tj is independent of bias, which
in itself precludes the possibility of a detailed fit to experiment.

Parameters of the experiment and simulation are listed in
Table I. On the experimental side, the junction capacitance
Cj was estimated from the junction area, and the energy-gap

voltage Vg , Bloch-nose voltage Vb, and normal-state resistance
Rn were read from the voltage-current characteristic. The
critical current was then estimated from the BCS relation
Ic = πVg/4Rn. Because Bloch steps occur at voltages less
than 1 mV and much less than Vg , the junction resistance Rj

relevant to Bloch oscillation is the subgap resistance. Typically
the subgap resistance is much greater than Rn, but Zener
tunneling in this low-voltage region prevents reading Rj from
the voltage-current characteristic, and this parameter eludes
experimental evaluation.

Finally, we note that the experiment falls within the
“classical” assumption of the GS model in that the applied
current meets the condition Ij � e/(RKCj ) required for the
system to always occupy an eigenstate characterized by a band
index ib and quasicharge Q̃. For the Chalmers experiment, we
have e/(RKCj ) = 12nA, while the applied current does not
exceed 4 nA, so the “classical” limit nominally applies. The
corresponding “quantum” regime has been explored elsewhere
[34–36].

A. Model parameters

The five dimensionless parameters that enter into the
GS model are listed at the bottom of Table I. Because the
experimental Bloch steps show no sign of the sharp structures
associated with a finite source conductance, we have chosen
to set gs = 0. Also, while Kuzmin et al. estimate εj at 0.6, we
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FIG. 16. Experimental voltage-current curves (a) and their derivatives (b) at various rf power levels recorded by Kuzmin et al. for the
nanoscale Josephson junction N1.[16] The junction was nominally cooled to 60 mK and driven by 4 GHz rf power. (Reproduced with the
permission of Elsevier.)

have arbitrarily stepped it down to 0.5. The remaining three
parameters were chosen as follows, based on matching the
experimental dc voltage-current characteristic. The simulated
dc 〈v〉-i0 curve for εj = 0.5 and tj = α = 0 is shown by the
dashed line in Fig. 17. Using the experimental value of Cj , the
Bloch-nose voltage for this curve is Vb = evb/Cj = 74 μV,
or almost twice the experimental value. This voltage can be

adjusted downward by increasing the temperature, and by
trial and error we find that tj = 0.3 reduces Vb to 43 μV,
as indicated by the dotted curve in Fig. 17. Similarly, by
increasing the Zener tunneling parameter α from 0 to 0.05, we
can create a broad minimum in the 〈v〉-i0 characteristic (solid
curve in Fig. 17) that mimics the minimum in the experimental
characteristic of Fig. 16(a). Finally, noting that the first Bloch

TABLE I. The experimental parameters for sample N1 of Kuzmin et al. [16] and the corresponding parameters adopted in our simulation.
Formulas in parentheses to the right of numerical entries indicate the method of evaluation.

Parameter Experiment Simulation

Junction area μm2 0.01
Junction capacitance, Cj fF 0.5 0.5
Charging Energy, Ec = e2/2Cj μeV 160 160
Energy-gap voltage, Vg = (�a + �b)/e μV 450
Normal-state resistance, Rn k� 7
Junction critical current, Ic nA 50 (πVg/4Rn) 39 (2eεjEc/h̄)
Josephson coupling energy, Ej μeV 100 (h̄Ic/2e) 80 (εjEc)
Bloch-nose voltage, Vb μV 40 43 (vbe/Cj )
Subgap junction resistance, Rj k� 100 (ω/2πf Cj )
Source resistance, Rs k� 130 ∞ (Rj/gs)
Drive frequency, f GHz 4 4
Junction temperature, Tj mK 60–300 560 (tjEc/k)
εj = Ej/Ec 0.6 0.5
tj = kTj/Ec 0.03–0.16 0.3
α = RK/π 2Rj 0.05
gs = Rj/Rs 0
ω = 2πRjCjf 2π /5

054505-14



MODELING BLOCH OSCILLATIONS IN NANOSCALE . . . PHYSICAL REVIEW B 96, 054505 (2017)

FIG. 17. Voltage-current curves computed by ensemble simula-
tion for εj = 0.5, gs = 0, and variously with tj = α = 0 (dashed
curve), tj = 0.3 and α = 0 (dotted curve), and tj = 0.3 and α = 0.05
(solid curve). All computations are for nb = 5 and nq = 100.

step occurs experimentally near this voltage minimum, we
choose the dimensionless frequency parameter ω to place the
first step at i0 = 0.4 in Fig. 17, so that ω = πi0 = 2π/5.

The dimensioned parameters implied by our chosen set
of dimensionless parameters are also listed in Table I. Here
we have adopted the experimental values for Cj , Ec, and
f and combined them with the dimensionless parameters
of the model according to the formulas in parentheses to
fill in the remaining dimensioned quantities. In general,
these derived quantities are in reasonable agreement with
experimental values. However, the junction temperature of
560 mK assumed in the simulation is almost twice the
experimentally estimated temperature on the first Bloch step.
Also, the shunt resistor Rs of our Norton equivalent drive
circuit is nominally identical to the series isolation resistance
of the experimental circuit. By choosing gs = 0, we have
made this isolation resistance infinite, but the consequences

should be minimal. We additionally note that, while the Zener
tunneling constant α has been taken as a free parameter here,
it is actually defined as a simple function of Rj . Inverting this
equation to solve for Rj , we find that α = 0.05 corresponds to
Rj = 52 k�, or about half the value indicated in Table I.

One disturbing feature of the simulated dc 〈v〉-i0 char-
acteristic (solid curve in Fig. 17) in comparison with the
corresponding experimental curve of Fig. 16(a) is the relatively
slow initial rise of the simulated curve. This discrepancy
is probably explained by two assumptions that we have
made in applying the GS model. First, by assuming a fixed
temperature, we ignore the fact that near zero bias there is no
significant dissipation in the isolation resistors, so the junction
temperature here will be closer to 60 mK than 560 mK. If this
lower temperature were taken into account, the initial slope
would be closer to that of the steeper dashed curve in Fig. 17 for
tj = 0 than the solid curve for tj = 0.3. Second, by assuming
gs = 0, we have eliminated the possibility of an initial spike
near i0 = 0, like that shown in Fig. 10, which might also
contribute to the rapid initial rise of the experimental curve.
Nevertheless, with the assumptions and parameters chosen for
our GS model, we expect that an rf bias will evoke simulated
Bloch steps similar to those observed experimentally.

B. Simulated Bloch steps

This expectation is largely met by the simulated voltage-
current curves and corresponding derivative curves shown
in Fig. 18 for several microwave drive amplitudes. Frame
(a) shows 〈v〉-i0 curves for both Monte Carlo and ensemble
calculations, indicated by black dots and white lines outlined
in black, respectively. In these curves, the first microwave

FIG. 18. Simulated voltage-current curves (a) and their derivatives (b) for various rf amplitudes. Results are shown for εj = 0.5, tj = 0.3,
α = 0.05, gs = 0, and ω = 2π/5. In (a), black dots are for Monte Carlo simulations with an averaging time of 106 drive cycles and white
lines outlined in black are for ensemble calculations with nb = 5 and nq = 100. Frame (b) shows the result of numerically differentiating the
ensemble curves in (a). Vertical lines mark the expected locations, I0 = 2ef and 4ef , of the first and second Bloch steps.
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induced Bloch step is subtly apparent as a slight increase in
slope near I0 = 2ef or i0 = ω/π = 0.4, the expected location.
Although the Monte Carlo and ensemble results diverge
somewhat at higher dc bias (probably due to the relatively small
number of quasicharge bins used in the ensemble calculations),
they closely agree with regard to the general appearance of
the first step. Moreover, both calculations are in qualitative
agreement with the experimental results shown in Fig. 16(a),
where the first step is also apparent only on close inspection.

On the other hand, the derivative curves, dV/dI and
d〈v〉/di0, shown for the experiment in Fig. 16(b) and for the
ensemble simulation in Fig. 18(b), give dramatic evidence for
Bloch oscillations near the expected dc bias and are in excellent
qualitative agreement with one another. In particular, we note
that the simulated derivative curve for i0 = 0.8 is much like the
three experimental curves at the highest rf power levels. In this
case, experimental and simulated curves show three points of
strong agreement. First, the peak at I = 0, prominent at lower
rf power, is almost entirely suppressed. Second, the peak at
I = 2ef is near its maximum amplitude. Third, the width of the
first peak is roughly �I = 0.4ef for both the experimental and
simulated curves. Similar agreement is found at lower rf power
between the simulated derivative for i1 = 0.4 and the middle
experimental curve (the sixth curve counted either up from “rf
off ” or down from “rf max”). Here the peak at I = 0 and
that at I = 2ef are both well developed, with the amplitude
of the former being two to three times that of the latter. At
yet lower rf amplitudes, however, the simulated derivative
at I = 0 is much less than that observed experimentally. As
discussed previously, this discrepancy may result because the
simulations assume a constant junction temperature, while the
experimental temperature probably falls rapidly as the rf and
dc levels approach zero.

Another point of qualitative agreement between the sim-
ulated and experimental dV/dI curves is a tendency for the
peak associated with the first step to occur at a dc bias that is 3
to 4% below 2ef . This effect is seen consistently in simulations
and also appears in several experimental dV/dI curves.

While we have so far claimed only qualitative agreement
between simulation and experiment, it is important to note that
the scale factors that convert the dimensionless voltage v and
dc bias i0 to real voltages and currents are e/Cj = 0.32 mV
and e/RjCj = 3.2 nA. When these are applied to the simulated
〈v〉-i0 curves of Fig. 18(a), one finds that the ranges of voltage
and current being plotted are comparable to the experimental
curves of Fig. 16(a). Thus, the agreement between simulation
and experiment is in fact semiquantitative. Although closer
quantitative agreement would require treating the dependence
of junction temperature on the power dissipated in the isolation
resistors, there seems little doubt that the GS model imple-
mented here explains the basic features of the experimentally
observed steps and in doing so confirms and strengthens their
interpretation in terms of Bloch oscillations.

C. Zener and thermally assisted tunneling

As a final note on our simulations, we examine in further
detail two processes, Zener tunneling and thermally assisted
single-electron tunneling, that were introduced in Fig. 18 by
nonzero values for α and tj and have not been explored in

FIG. 19. Monte Carlo results for the energy (a) and quasicharge
(b) as a function of time for bias point a in Fig. 18(b), that is for εj =
0.5, tj = 0.3, α = 0.05, gs = 0, i0 = 0.4, i1 = 0.6, and ω = 2π/5.
Solid vertical lines indicate single-electron tunneling, dashed vertical
lines indicate Bloch reflections, and dotted vertical lines indicate
Zener tunneling. Horizontal lines mark the limits of the first three
energy bands in frame (a).

previous cases. These processes allow the system to access
bands above the first energy band and are important to the
overall agreement between the simulated and experimental
voltage-current characteristics.

A brief examination of Zener and thermally activated
tunneling is given in Fig. 19, which plots the time evolution
of the energy and quasicharge generated by Monte Carlo
simulation. The plot displays behavior characteristic of the
bias point on the first Bloch step labeled a in Fig. 18(b). At
this bias point, the ensemble calculation reveals that on average
the junction spends 98.44% of its time in the first energy band,
1.53% in the second band, and 0.03% in the third. During the
ten drive cycles shown in Fig. 19, we see from the energy
plot that the junction leaves the first band only twice: for brief
intervals during the third and tenth drive cycles. As expected
for a bias point on the first Bloch step, however, the junction
spends most of its time experiencing a single Bloch oscillation
during each drive cycle, as in cycles 5 through 7. Here, the dc
and rf biases combine during the first half of the drive cycle to
push the quasicharge to e, where it Bloch reflects to −e, while
during the second half cycle the dc and rf biases largely cancel
and the quasicharge merely oscillates around 0. Occasionally,
however, this process is flipped and the quasicharge oscillates
around ±e during the second half of the cycle, as during drive
cycles 1 and 2.

The event of primary interest in Fig. 19 is the Zener
tunneling during drive cycle 3. In this case, when the combined
dc and rf biases push the quasicharge to e, the junction Zener
tunnels to the second band. The probability of Zener tunneling
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between bands 1 and 2 is PZ = 0.29 when ij is near its
maximum, so tunneling to the second band is not uncommon.
After Zener tunneling, however, the bias current pushes the
junction to the top of the second band and it Zener tunnels for
a second time to the third band. Because the gap between the
second and third bands is small, the tunneling probability is
PZ = 0.94, and tunneling here is likely. The junction remains
in the third band only briefly, however, before single-electron
tunneling returns it to the bottom of the second band, and a
short time later a second single-electron tunneling returns the
junction to the bottom of the first band. This kind of brief
excursion into higher bands is relatively frequent at this bias
point, even though the junction spends most of its time in the
first band.

In contrast, the interband transition that occurs during the
tenth drive cycle is highly unusual. Here, the junction jumps
from the bottom of the first band to the bottom of the second
band by thermally activated single-electron tunneling. Because
the change in energy �ε = 1.32 for this jump is much larger
than the thermal energy tj = 0.3, the tunneling rate is very
small. Nonetheless, such rare events are bound to occur from
time to time.

VII. CONCLUSION

To summarize, we have calculated voltage-current char-
acteristics of nanoscale Josephson junctions whose charging
energy is greater than or comparable to the Josephson energy
using two separate approaches: Monte Carlo and ensemble
calculations. While Monte Carlo calculations follow the
dynamics of the quasicharge state of a single junction in time,
the ensemble approach looks at the distribution of quasicharge
states within an ensemble of junctions as a function of time.
Although the two approaches are equivalent in principle, each
has its own computational advantages, and numerical results
sometimes differ slightly. By including the shot noise of
quasiparticle tunneling and the possibility of Zener tunneling
to higher bands, these calculations demonstrate that the origi-
nally proposed [1–4] Bloch steps of fixed slope are destroyed
by these error processes. Using the ensemble approach, we
are able to create a parameter map of the voltage-current
characteristics and show how the height and the width of the
Bloch steps vary with different junction parameters such as
the ratio of Josephson to charging energy, applied microwave
power and frequency. However, the Monte Carlo approach
allows us to follow the evolution of a junction’s quasicharge
in time under the influence of microwaves and understand
the mechanisms of phase locking. Based on this analysis,
we can explain the harmonic and subharmonic steps that
occur with a finite source resistance. In the end we show that
our calculations semiquantitatively explain the experimental
results of Kuzmin et al. [16].

One of the important conclusions drawn from our calcula-
tions is that, for a fixed subgap conductance Gj , even in the
limiting case of zero temperature and the absence of Zener
tunneling, where the junction state is confined to the lowest
energy band, quasiparticle tunneling can still broaden the
Bloch steps to such an extent that it renders them unusable for a
precise metrological current standard. Our quasicharge versus
time plots clearly show that single-electron tunneling is the
primary source of disruption to the locking behavior required
for Bloch steps. Moreover, as revealed by bias points (d) and (e)
of Fig. 6, single-electron tunneling can be problematic for both
subharmonic and harmonic steps, regardless of how steep they
appear in the voltage-current characteristic. Roughly speaking,
a current standard with a precision of say a part in 106 would
correspond to one quasiparticle tunneling event per 106 drive
cycles. According to the BCS theory, however, the density of
quasiparticles is expected to decay exponentially in the limit of
low temperature, nqp ∝ exp[−(�a + �b)/2kTj )]. In this case
Gj would vanish at typical dilution refrigerator temperatures
(<100 millikelvin), corresponding to single-electron tunneling
errors to levels that might permit metrology.

It must be noted, however, that the question of reducing
quasiparticle densities requires careful device engineering.
While thermal quasiparticles can, in principle, be eliminated
by cooling to dilution refrigerator temperatures, Joule heating
in on-chip bias resistors will always provide a local source of
heat. As Kuzmin et al. [15] originally noted, the series isolation
resistors in their experiment posed a significant problem in
achieving low enough temperatures to exclude the presence
of thermal quasiparticles. Meanwhile there is overwhelming
evidence that a significant density of nonequilibrium quasipar-
ticles is universally present in ultrasmall Josephson junction
devices such as qubits [25–30] and Cooper pair transistors
[31–33], although improvements in filtering and shielding
from stray infrared radiation have improved this situation
considerably. While it is conceivable that nonequilibrium
quasiparticle tunneling rates can be reduced to metrological
levels, the problem of Joule heating and thermal quasipar-
ticle generation will remain in any scheme that seeks to
generate nanoampere-level currents sourced through on-chip
bias resistors. Other experiments [37–39] have attempted to
avoid the use of such resistors by constructing so-called
“superinductances” to create a high-impedance environment
while minimizing power dissipation. In our view, a successful
strategy will, at the outset, identify the need to mitigate the
inevitable problem that quasiparticles pose.
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