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In the presence of an applied magnetic field introducing Zeeman spin splitting, a superconducting (SC)
proximitized one-dimensional (1D) nanowire with spin-orbit coupling can pass through a topological quantum
phase transition developing zero-energy topological Majorana bound states (MBSs) on the wire ends. One of
the promising experimental platforms in this context is a Coulomb-blockaded island, where by measuring the
two-terminal conductance one can in principle investigate the MBS properties. Here, we theoretically study
the tunneling transport of a single electron across the superconducting Coulomb-blockaded nanowire at finite
temperature in order to obtain the generic conductance equation. By considering all possible scenarios where
only MBSs are present at the ends of the nanowire, we compute the nanowire conductance as a function
of the magnetic field, the temperature, and the gate voltage. In the simplest 1D topological SC model, the
oscillations of the conductance peak spacings (OCPSs) arising from the Majorana overlap from the two wire
ends manifest an increasing oscillation amplitude with increasing magnetic field (in disagreement with a recent
experimental observation). We develop a generalized finite-temperature master-equation theory including not
only multiple subbands in the nanowire, but also the possibility of ordinary Andreev bound states in the
nontopological regime. Inclusion of all four effects (temperature, multiple subbands, Andreev bound states, and
MBSs) provides a complete picture of the tunneling transport properties of the Coulomb-blockaded nanowire.
Based on this complete theory, we indeed obtain OCPSs whose amplitudes decrease with increasing magnetic field
in qualitative agreement with recent experimental results, but this happens only for rather high temperatures with
multisubband occupancy and the simultaneous presence of both Andreev bound states and MBSs in the system.
Thus, the experimentally observed OCPSs manifesting decreasing amplitude with increasing magnetic field can
be explained in our theory only if the experimental magnetic field range encompasses both the nontopological
and the topological regimes so that both Andreev bound states and Majorana bound states are contributing to
these oscillations as well as the applicable electron temperature in the nanowire is rather high. A particularly
significant aspect of our theory is that in such a high-temperature Coulomb-blockaded nanowire, the OCPSs
no longer have a one-to-one correspondence with the nanowire quasiparticle energy spectrum as is generic in
the low-temperature unblockaded situation. This implies that the OCPSs cannot be used to conclude about the
low-energy spectrum so that no statement can be made about the so-called “topological protection” based on
such OCPSs. In particular, the length dependence of the oscillation peak in such a situation is nongeneric and
does not directly contain useful information about the Majorana splitting energy, reflecting only the physics of
Andreev bound states in the finite-size nanowires used in the experiment.
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I. INTRODUCTION

The integer quantum Hall effect [1] ushered in the era
of topological systems and phenomena in condensed matter
physics, although the fact that the precise quantization of the
Hall conductance in two dimensions (2D) is indeed a direct
manifestation of topological robustness took several years
to be appreciated. Of course, the 2016 Nobel Prize [2,3] in
physics has made this fact rather universally celebrated. The
classification of topological insulators and superconductors
[4,5] provides guidance to look for topological systems and
materials. The essential signature of the topological phase
is the presence of stable gapless (zero-energy) states on the
boundary of the system with the bulk having a robust energy
gap. In fact, this can be construed as an equivalent definition
of a topological phase for the quantum Hall effect, the bulk
gap corresponds to the cyclotron gap imposed by the external
magnetic field whereas the boundary gapless states are the edge
states confined to the one-dimensional (1D) edge of the 2D
layer. Indeed, the symmetry-based topological classification
scheme [6–8] is restricted to insulators (e.g., 2D quantum

Hall states, 2D quantum spin Hall insulators, 3D topological
insulators) and superconductors simply because these are the
systems with bulk energy gaps separating ground states from
excited states. But, obviously, very special constraints are
necessary to ensure that an insulator or a superconductor would
have gapless or zero-energy boundary states, and this is why
the subject of topological systems has become active only in
recent years because of deep theoretical advances in spite of
insulators and superconductors having been known for more
than 100 years. Insulators and superconductors all have bulk
gaps, but only the ones having robust boundary gapless states
are called topological (whereas those not having such special
boundary states are called nontopological or trivial).

The topological quantum phase transition (TQPT) between
topological and trivial phases is also a subject of great current
interest, and such a transition can only happen through the
vanishing of the bulk gap at the TQPT. Recently, there has
been an enormous interdisciplinary interest in one particular
type of zero-energy boundary states associated with both 1D
and 2D topological superconductor systems. These are the
so-called Majorana (zero-energy) bound states (MBSs) [9,10],
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which form the central theme of this work. In particular,
these MBSs are strange quantum objects obeying anyonic
non-Abelian braiding statistics [11–13], which can be used
for fault-tolerant quantum computation, thus bringing together
physicists, mathematicians, computer scientists, electrical
engineers, and materials scientists in an effort to build such a
quantum computer. Much popular interest has recently focused
on the possibility of Majorana-based topological quantum
computation since Microsoft Corporation has just announced
a large commercial effort to build such a computer. An
MBS, which is its own antiparticle, has zero energy protected
by particle-hole symmetry stemming from superconductivity.
Furthermore, these MBSs can be realized on the ends of 1D
topological superconductors [10] and at point defects of 2D
topological superconductors (SC) [14]. The most promising
experimental platform for the realization of MBSs is SC-
proximitized semiconductor nanowire with strong spin-orbit
coupling [15–17] in an applied magnetic field to create
a Zeeman spin splitting. The precise theoretical prediction
[15,16] is that a spin-orbit-coupled semiconductor nanowire
(e.g., InSb, InAs) with superconducting proximity effect
induced by a nearby regular superconductor (e.g., Nb, Al)
would become a topological superconductor with zero-energy
(i.e., mid-gap) MBSs localized at the wire ends provided
the Zeeman spin splitting induced by the applied magnetic
field is large enough to overcome the induced SC gap. Here,
the applied magnetic field is the tuning parameter inducing
the TQPT with MBSs appearing as localized zero-energy
bound states at the wire ends at high enough magnetic field
values. One technique to experimentally look for MBSs in the
nanowires is to study the tunneling conductance [17,18], which
should manifest a quantized zero-bias peak associated with
the MBS in the topological phase. The recent experimental
observation of such a predicted zero-bias conductance peak
in nanowires above a critical applied magnetic field has been
a milestone to hint at the possible existence of the MBSs in
the nanowire-superconductor hybrid structure [19–25]. These
experimental observations of zero-bias conductance peaks
in nanowires in a finite external magnetic field by multiple
independent laboratories using different semiconductor (InSb
or InAs)-superconductor (NbTiN or Al) combinations have
created a great deal of excitement because of the implication
that the conductance peak is providing strong evidence for the
existence of topological Majorana modes in these nanowires.
But, the non-Abelian nature of these possible MBSs localized
in nanowires still remains to be demonstrated experimentally,
and this area is one of the most active current research areas
in all of physics.

A key development in this subject is the recent experimental
paper by Albrecht et al. [26] reporting the apparent obser-
vation of exponential “topological protection” in Majorana
nanowires, which, if validated and understood, would be
a singular landmark in the field. In particular, the most
straightforward interpretation of the observation of Albrecht
et al. [26] is that the two MBSs localized at the two
ends of the nanowire in their system are sufficiently far
apart so that their wave-function overlap is exponentially
small. This exponential weakness is reflected in the MBS
splitting oscillation showing an exponential decrease with
increasing wire length as predicted theoretically [27–30].

This would imply that each MBS can now be thought of
as an independent topological entity obeying non-Abelian
statistics and hence suitable for use in topological quantum
computation. Unfortunately, however, such a straightforward
interpretation seems inapplicable to the experiment of Ref. [26]
since the magnetic field dependence of the MBS overlap
seems to disagree with the theoretical predictions [29,31]
in spite of the length dependence manifesting the predicted
theoretical exponential behavior. This work is aimed at an
understanding of the Albrecht experiment [26], which because
of its singular importance (i.e., “topological protection”) must
be taken extremely seriously.

The conundrum here is the following. The theoretical
exponential behavior [29], as manifesting in the oscillations
of the conductance peak spacings (OCPSs) as a function
of the applied magnetic field or the wire length, reflects an
e−L/ξ dependence in the overlap between the MBSs localized
at the two wire ends, where L and ξ are, respectively, the
wire length (or more precisely, the separation between the
two MBSs) and the Majorana localization length (or more
precisely, the nanowire superconducting coherence length).
Since the coherence length increases with increasing magnetic
field B [29], the Majorana oscillations in the wire length
and magnetic field are intimately coupled. An observation
of the exponential decrease of oscillations in the wire length
(as reported in Ref. [26]) must therefore automatically come
with an increase in the oscillation amplitude as a function of
magnetic field since L/ξ decreases with increasing magnetic
field at fixed L. Seeing one without the other does not make
any sense from the perspective of the minimal theory [29]. The
experimental situation in Ref. [26] is actually worse since the
oscillation amplitude seems to decrease (instead of increasing)
with increasing magnetic field (while at the same time, the
amplitude decreases with increasing L), which is completely
the opposite of the predicted theoretical behavior. A resolution
of this conundrum in Ref. [26] is obviously of key importance
in the context of the “exponential protection” claim in terms of
wire length. The hope for understanding the puzzling results
reported in Ref. [26] (i.e., apparent exponential decrease in
MBS overlap as a function of wire length along with a
decreasing overlap as a function of increasing magnetic field)
lies in the fact that the experimental system in Ref. [26] is not
consistent with the minimal model of a nanowire coupled to a
SC as considered in most MBS theories, but presents a more
complex situation (discussed below) involving a Coulomb
blockade in the nanowire. Our goal in this work is to generalize
Majorana theories to include Coulomb blockade to see if the
results of Ref. [26] can be explained and understood.

Coulomb blockade at the basic level means that the system
is small enough so that the Coulomb charging energy for
putting electrons into the system is significant in affecting
the experimental behavior. We must therefore incorporate
Coulomb blockade in the Majorana nanowire theory to develop
an appropriate model for the situation studied in Ref. [26].
This new model inspired by Ref. [26] includes a spin-orbit-
coupled proximitized SC nanowire in the presence of non-SC
quantum dots at wire ends under an applied magnetic field.
The study of Coulomb blockade in quantum dots (without
any superconductivity) has a long history [32]. Coulomb
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blockade was first discovered experimentally by Dolan and
Fulton in small metallic tunnel junctions manifesting charging
oscillations associated with the finite Coulomb energy in small
systems [33]. Subsequently, Fulton et al. observed the interplay
of superconductivity and charging energy in small SC tunnel
junctions in 1989 [34]. The periodic Coulomb oscillation of
conductance peaks in semiconductor quantum dots was first
observed also in 1989 [35] and supported by followup exper-
iments [36,37]. The phenomenon was explained by single-
electron tunneling in the presence of Coulomb-blockade
physics [38–40]. The single-electron Coulomb-blockaded
normal tunneling through small dots (with small capacitance)
exhibits 1e periodicity of the conductance peak oscillation as
the gate voltage varies. As the dot becomes superconducting
and the SC gap is greater than the charging energy, 1e

tunneling becomes blocked since single electrons cannot
tunnel through SC gaps. It is, however, possible for small
SC dots to manifest 2e Cooper pair tunneling [41] leading to
2e periodicity in the tunneling conductance oscillation as a
function of gate voltage as observed in Refs. [42,43]. It was
also observed there can be a transition from 2e periodicity
to 1e periodicity by increasing the temperature to suppress
superconductivity [44]. In principle, the possibility exists in
superconducting tunnel junctions at finite temperatures for
both 2e and 1e charge oscillations to occur as a function of
gate voltage since transport could take place through subgap
and above-gap states. On the other hand, Coulomb-blockaded
transport through zero-energy MBSs at the wire ends in a 1D
topological SC should manifest 1e charge oscillations since
nonlocal resonant tunneling of single electrons is allowed
through the MBSs [45–48].

In addition to the experimental work by Albrecht et al.
[26], which motivates our work, there have been a few recent
theoretical papers [45–48] on Coulomb-blockaded Majorana
nanowires, but our work extends the theory to the realistic
situation of finite temperature and multisubband occupancy
along with the inclusion of both ordinary Andreev bound
states and Majorana states in contributing to transport so that
a meaningful comparison to the important results of Ref. [26]
could be carried out. We first briefly discuss the qualitative
expectations for tunneling transport in a Coulomb-blockaded
Majorana nanowire with increasing magnetic field so that
the system evolves from being a nontopological ordinary
(proximitized) SC at low field to being a topological SC at
high fields, and then perhaps becoming a gapless SC at very
high magnetic fields. At low magnetic field, the oscillation
has 2e periodicity since the superconducting gap is larger
than the charging energy. For higher magnetic field, while
still being in the nontopological phase, the superconducting
gap decreases, eventually becoming smaller than the charging
energy, and therefore, each conductance peak starts to split into
two. Eventually, at high enough magnetic field the system goes
through the TQPT, and in the presence of zero-energy MBSs
the conductance peak is expected to exhibit 1e periodicity
since transport is now occurring through resonant tunneling
through both MBSs. The possibility that at very high magnetic
field, the 1e metallic periodicity may arise simply because the
nanowire has developed a zero SC gap cannot be ruled out. In
Ref. [26], modifications to this strictly 1e resonant conduction
due to MBS are claimed to be arising from the presence of

MBS overlap from the two ends, and this modification leads to
a measurement of the Majorana energy splitting, leading to the
topological protection observed in Ref. [26]. Thus, it is crucial
to understand how MBS overlap affects the resonant tunneling
in the topological regime so that the topological protection
claim of Ref. [26] can be validated. This is particularly critical
given that Ref. [26] finds an exponential MBS splitting in the
wire length, but inconsistent results as a function of magnetic
field in the same wire as discussed above and also below.

The major problem in the Majorana interpretation is
the inconsistency in the magnetic field behavior between
the experimental observation and the theoretical prediction
in the 1e periodic region. The oscillation amplitude of the even
and odd conductance peak spacings observed in the experiment
[26] always decreases as the magnetic field increases. At
low enough temperatures, the conductance peak spacing
should reflect the positive and negative energies of the two
superconducting states close to zero energy [48] (i.e., the
conductance should be an approximate map of the underlying
mid-gap energy spectra near zero energy). The spectrum of
a simple 1D SC proximitized semiconductor nanowire [31]
shows the oscillation amplitude of the two energy levels
close to zero energy becoming larger as the magnetic field
increases corresponding to an increasing MBS overlap due
to the SC gap suppression with increasing field. Thus, if the
Coulomb-blockaded nanowire in the experiment possessing
the MBSs is described by the 1D semiconductor model,
the theoretical prediction and the experimental observation
have a serious inconsistency in the oscillation amplitude.
The goal of this paper is to resolve this inconsistency by
considering possible scenarios in the presence or absence
of the MBSs (i.e., by probing both the topological and the
nontopological regimes of the nanowire). Several mechanisms
could possibly lead to this observed damped oscillation with
increasing field, such as finite temperature, small bulk gap,
multisubband contribution, and the presence of Andreev bound
states in the topologically trivial region. To understand the
experimental results, in particular the 1e periodicity region,
which arises presumably from the MBSs localized in the
nanowire, we develop a transport theory for a superconducting
Coluomb-blockaded nanowire in the presence of spin-orbit
coupling and Zeeman splitting including effects of finite
temperature, multisubband occupancy, and Andreev bound
states. Surprisingly, such a generic transport equation has not
been derived in the literature in spite of the fact that Beenakker
developed the nonequilibrium transport theory for a non-SC
metallic Coulomb-blockaded quantum dot 25 years ago [39].
We find that such a transport theory description enables us
to obtain the nonlocal conductance contributions resulting
from both conventional Andreev bound state [46] and topo-
logical MBSs [46–48]. Such contributions lead to qualitative
distinctions between the conductance peak structure and the
low-lying energy spectra even in the tunneling limit. This will
lead us to reevaluate the simple interpretation of Majorana
oscillations measured from Coulomb-blockaded resonances,
allowing an understanding of the experimental results, which
are much more nuanced and subtle than the simple expo-
nential protection in length scenario envisioned in Ref. [26].
Our theory obviously thus has wide-ranging consequences
in the current search for non-Abelian Majorana modes in
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Coulomb-blockaded nanowires in the quest toward building
a topological quantum computer. We emphasize that the
Coulomb blockade may arise simply from the superconductor-
semiconductor hybrid structure being small in size without
there being any explicit quantum dots being present in the
system.

The rest of this paper is organized as follows. In Sec. II, we
derive the generic tunneling transport equation for a supercon-
ducting Coulomb-blockaded nanowire at finite temperature
in the 1e periodicity region with the tunneling leads weakly
coupled to the nanowire. In Sec. III, we describe the nanowire
Hamiltonian along with the description for the leads, which are
relevant for studying the system. In Sec. IV, we numerically
compute the OCPSs at different temperatures by using a
simplified version of the general transport equations. We also
present in Sec. IV our main results in the context of the
experimental findings in Ref. [26], carefully searching for
situations where the OCPSs could have decreasing amplitude
with increasing magnetic field as observed experimentally. By
considering several scenarios leading to the bulk gap shrinking
as the magnetic field increases (as observed in Ref. [26]), we
compare the conductance peak spacings with the experimental
observation. By introducing Andreev bound states in the
nontopological (or trivial) region in the 1D superconducting
nanowire model, we also look for an alternative explanation
for the observed OCPSs in the absence of the MBSs. In the
last part of Sec. IV, we combine all of the aforementioned
physics to find the best scenario that explains the conductance
peak spacing oscillation in the experimental observation. We
consider the length dependence of the conductance peak
spacings in Sec. V, concluding in Sec. VI with a summary
of our results and a discussion of the open questions.

II. TRANSPORT FORMALISM FOR
COULOMB-BLOCKADED SUPERCONDUCTING

NANOWIRES

In this section we develop a superconducting generalization
of the Coulomb-blockaded transport theory originally consid-
ered for metallic islands [39]. Consider the two ends of a SC
quantum dot or nanowire that are weakly coupled with the
left lead with zero voltage and the right lead with a small
applied voltage V . The voltage on the nanowire is described
by ηV with the indeterminate factor η dropping out of our final
equations. We label Ep in ascending order as the energy levels
of the quasiparticle of the nanowire with respect to the BCS
ground state. The possibility of adding hole excitations, which
are electron excitations combined with the loss of a Cooper
pair to the SC (i.e., the Andreev process) is what distinguishes
the SC case from the metallic dot considered by Beenakker
[39]. We define PN ({ni}) to indicate the probability of the
fermion configuration {ni = 0,1} in the nanowire with the total
particle number N . Since moving in and out by the Cooper
pairs does not cost any energy in a SC, N = ∑

i ni + 2Nc,
where Nc is the additional number of the Cooper pairs away
from the charge-neutral point as the gate voltage of the
nanowire is zero. To simplify the problem, we assume that
the charging energy Ec is large enough so that only the two
lowest-energy levels U (N ) and U (N − 1) of the electrostatic

L R

e−

PN−1 → PN

L R

e−

PN−1 ← PN

L RPN−1 → PN

h+ + 2e−

L R

h+ + 2e−

PN−1 ← PN

(a)

(b)

(c)

(d)

Voltage 0 ηV V

FIG. 1. An electron, a hole, or a Cooper pair move to (from) the
nanowire from (to) the left lead. (a) An electron with energy εl

p moves
to the nanowire. (b) An electron moves from the energy level Ep of
the nanowire to the left lead. (c) A hole (+2e Cooper pair) with energy
ε̃l
p moves to the nanowire. (d) A hole (+2e Cooper pair) moves from

the energy level −Ep of the nanowire to the left lead.

energy

U (N ) = Ec(N − ng)2 (2.1)

are involved with the energy levels of the other electron
numbers being too high to be included, where ng is pro-
portional to the gate voltage of the nanowire. As the gate
voltage is zero (ng = 0), at the charge neutral point N = 0 the
electrostatic energy reaches its minimum. More energy levels
are straightforward to include theoretically, but the results be-
come nontransparent and complicated with no new qualitative
insight. We further assume that one-electron transfer process at
the left and right junctions are incoherent and independent (the
conductance measured in Ref. [26], which is less than e2/h,
indicates the process is incoherent) and the tunneling rates
�l,r

p and �l,r
p are much less than temperature (�l,r

p ,�l,r
p � T ),

where labels �l,r
p and �l,r

p indicate the tunneling rates of the
left (l) and right (r) for quasiparticle with energy Ep and
quasihole with energy −Ep, respectively (see Sec. III A). The
current flowing from the left lead to the nanowire is given by
(see Fig. 1 for the actual tunneling processes)

I = −e
∑

p

∑
{ni }

{
�l

p

[
PN−1({ni})δnp,0f

(
εl
p

)
−PN ({ni})δnp,1

[
1−f

(
εl
p

)]] + �l
p

[
PN − 1({ni})

× δnp,1f
(
ε̃l
p

) − PN ({ni})δnp,0
[
1−f

(
ε̃l
p

)]]}
, (2.2)

where εl
p = Ep + �U + ηeV , ε̃l

p = −Ep + �U + ηeV ,
the Fermi-Dirac distribution f (ε) = 1/(1 + eβε), and the
difference between the electrostatic energies with the different
particle numbers �U = U (N ) − U (N − 1). The first term
describes that an electron with energy εl

p at the left lead
moves to the energy level Ep of the nanowire and its
electrostatic energy is changed to U (N ) from U (N − 1)
[see Fig. 1(a)]; the second term describes that an electron
in the energy level Ep of the nanowire moves to the
energy level εl

p at the left lead and the electrostatic energy
of the nanowire changes to U (N − 1) from U (N ) [see
Fig. 1(b)]. Since the nanowire is superconducting, the last
two terms, which are not included in Beenakker’s paper [39],
represent the movement of a hole. The third term represents
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the hole (+2e Cooper pair) with energy ε̃l
p moving from the

left lead to the energy level −Ep of the SC nanowire [see
Fig. 1(c)]; likewise, the fourth term represents the hole (+2e

Cooper pair) moving from the energy level −Ep of the SC
nanowire to the energy level ε̃l

p of the left lead [see Fig. 1(d)].

Since the nanowire is in a stationary state, the probability
of the electron configuration should be time independent. That
is, since the flow in and out of the two leads is equal, the sta-
tionary equations for particle number N and N − 1 are given
by

0 = ∂

∂t
PN ({ni})

= −
∑

p

PN ({ni})δnp,1
{
�l

p

[
1 − f

(
εl
p

)] + �r
p

[
1 − f

(
εr
p

)]} −
∑

p

PN ({ni})δnp,0
{
�l

p

[
1 − f

(
ε̃l
p

)] + �r
p

[
1 − f

(
ε̃r
p

)]}

+
∑

p

PN−1(np = 0)δnp,1
{
�l

pf
(
εl
p

) + �r
pf

(
εr
p

)} +
∑

p

PN−1(np = 1)δnp,0
{
�l

pf
(
ε̃l
p

) + �r
pf

(
ε̃r
p

)}
, (2.3)

0 = ∂

∂t
PN−1({ni})

= −
∑

p

PN−1({ni})δnp,0
{
�l

pf
(
εl
p

) + �r
pf

(
εr
p

)} −
∑

p

PN−1({ni})δnp,1
{
�l

pf
(
ε̃l
p

) + �r
pf

(
ε̃r
p

)}

+
∑

p

PN (np = 1)δnp,0
{
�l

p

[
1 − f

(
εl
p

)] + �r
p

[
1 − f

(
εr
p

)]} +
∑

p

PN (np = 0)δnp,1
{
�l

p

[
1 − f

(
ε̃l
p

)] + �r
p

[
1 − f

(
ε̃r
p

)]}
,

(2.4)

where εr
p = Ep + �U − (1 − η)eV , and ε̃r

p = −Ep + �U − (1 − η)eV . Signs “+/−” in the front of the summations indicate
an electron moving in and out in the nanowire, respectively. At the applied voltage V = 0, PN ({ni}) reaches equilibrium described
by detailed balance as

P
eq
N (np = 1)eβεp = P

eq
N−1(np = 0), P

eq
N (np = 0)eβε̃p = P

eq
N−1(np = 1), (2.5)

where εp = Ep + �U and ε̃p = −Ep + �U , since in the equilibrium the probability distribution is described by the Gibbs
distribution

P
eq
N ({ni}) = Z−1 exp

[
−β

(∑
i

Eini + U (N )

)]
, (2.6)

where Z is the partition function. We note that in the presence of Cooper pairs the total electron number N is not always
∑

i ni .
When a small applied voltage V is turned on, the probability distribution in the nanowire can be expanded to the linear order
around equilibrium

PN ({ni}) = P
eq
N ({ni})[1 + βeV �N ({ni})], (2.7)

where �N ({ni}) is an unknown functional to be obtained by solving the transport master equations to be described below.
By using the two equations above, we expand the current I (2.2) to the linear order of V :

dI

dV
= − βe2

∑
p

∑
{ni }

{
δnp,0P

eq
N−1({ni})f (εp)�l

p[�N−1({ni}) − ηf (−εp)] − δnp,1P
eq
N ({ni})�l

p[�N ({ni})[1 − f (εp)]

+ ηf (εp)f (−εp)] + δnp,1P
eq
N−1({ni})f (ε̃p)�l

p[�N−1({ni}) − ηf (−ε̃p)]

− δnp,0P
eq
N ({ni})�l

p[�N ({ni})[1 − f (ε̃p)] + ηf (ε̃p)f (−ε̃p)]
}
. (2.8)

Again using the identity of the Fermi-Dirac distribution 1 − f (ε) = f (ε)eβε and Eq.(2.5), we have

dI

dV
= βe2

∑
p

∑
{ni }

{
δnp,0P

eq
N−1({ni})f (εp)�l

p[�N (np = 1,{ni �=p}) − �N−1(np = 0,{ni �=p}) + η]

+ δnp,1P
eq
N−1({ni})f (ε̃p)�l

p[�N (np = 0,{ni �=p}) − �N−1(np = 1,{ni �=p}) + η]
}
. (2.9)
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To solve for the conductance dI/dV , we can keep the linear terms in V in the stationary equations [Eqs. (2.3) and (2.4)] by
using Eq. (2.7):

0 =
∑

p

P
eq
N−1(np = 0,{ni �=p})f (εp)

(
�l

p + �r
p

)(
�N (np = 1,{ni �=p}) − �N−1(np = 0,{ni �=p}) + η − �r

p

�l
p + �r

p

)
δnp,1

+
∑

p

P
eq
N−1(np = 1,{ni �=p})f (εp)

(
�l

p + �r
p

)(
�N (np = 0,{ni �=p}) − �N−1(np = 1,{ni �=p}) + η − �r

p

�l
p + �r

p

)
δnp,0,

(2.10)

0 =
∑

p

P
eq
N−1(np = 0,{ni �=p})f (εp)

(
�l

p + �r
p

)(
�N (np = 1,{ni �=p}) − �N−1(np = 0,{ni �=p}) + η − �r

p

�l
p + �r

p

)
δnp,0

+
∑

p

P
eq
N−1(np = 1,{ni �=p})f (εp)

(
�l

p + �r
p

)(
�N (np = 0,{ni �=p}) − �N−1(np = 1,{ni �=p}) + η − �r

p

�l
p + �r

p

)
δnp,1.

(2.11)

If the nanowire has nmax energy levels, then a set of 2nmax stationary equations determine �N and �N−1. One of the stationary
equations is redundant due to the charge conservation

∂

∂t

⎛
⎝∑

{ni }
PN {ni} +

∑
{ni }

PN−1{ni}
⎞
⎠ = 0. (2.12)

Although the total number of the �N and �N−1 is 2nmax , one of �N ’s can be set to zero with no loss of generality and η can be
neglected. There are then 2nmax − 1 variables to be determined, where nmax is the number of nanowire energy levels participating
in the transport process. For an arbitrary nmax, it is difficult to analytically solve for dI/dV except perhaps under some special
conditions. Later, in computing the conductance of the superconducting nanowire, we will numerically solve Eqs. (2.10) and
(2.11) for generic cases (e.g., the presence of Andreev bound states) and use the analytical solution for special cases, which are
discussed in the next subsection.

The physical parameters affecting the conductance are finite temperature T , all of the energy levels Ep’s less than and close
to temperature, the charging energy Ec, and the tunneling rates �l,r

p ,�l,r
p . In the next section, we consider the realistic 1D SC

proximitized semiconductor model and use its physical parameters to compute the Coulomb-blockaded conductance.

A. Analytic solution for fixed tunneling ratio

Obtaining the analytic expression for the current (2.9) for an arbitrary number of energy levels p is complicated. In the special
situation when the tunneling ratios are fixed {�l

p/�r
p = �l

p/�r
p = const} for all energy level p, the stationary current conditions

[Eqs. (2.3) and (2.4)] can be analytically solved, and the expression for the current can be explicitly written. If the two ends of
the nanowire are almost identical and localized states are absent, then {�l

p = �r
p, �l

p = �r
p} fulfills this special condition. First,

we assume that these stationary equations still hold as the summation over p is removed (later, we will go back to check if this
assumption is valid):

PN (np = 1)
[
�l

p

[
1 − f

(
εl
p

)] + �r
p

[
1 − f

(
εr
p

)]] = PN−1(np = 0)
[
�l

pf
(
εl
p

) + �r
pf

(
εr
p

)]
, (2.13)

PN (np = 0)
[
�l

p

[
1 − f

(
ε̃l
p

)] + �r
p

[
1 − f

(
ε̃r
p

)]] = PN−1(np = 1)
[
�l

pf
(
ε̃l
p

) + �r
pf

(
ε̃r
p

)]
. (2.14)

We expand the lead voltage V to the linear order by using Eq. (2.7):

βeP
eq
N (np = 1)

{
�N (np = 1,{ni �=p})(�l

p + �r
p

)
[1 − f (εp)] + f (εp)f (−εp)

[
η�l

p − (1 − η)�r
p

]}
= βeP

eq
N−1(np = 0)

{
�N−1(np = 0,{ni �=p})(�l

p + �r
p

)
f (εp) − f (εp)f (−εp)

[
η�l

p − (1 − η)�r
p

]}
, (2.15)

βeP
eq
N (np = 0)

{
�N (np = 0,{ni �=p})(�l

p + �r
p

)
[1 − f (ε̃p)] + f (ε̃p)f (−ε̃p)

[
η�l

p − (1 − η)�r
p

]}
= βeP

eq
N−1(np = 1)

{
�N−1(np = 1,{ni �=p})(�l

p + �r
p

)
f (ε̃p) − f (ε̃p)f (−ε̃p)

[
η�l

p − (1 − η)�r
p

]}
. (2.16)
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After the simplification,

0 = �N (np = 1,{ni �=p}) − �N−1(np = 0,{ni �=p}) + η − �r
p

�l
p + �r

p

, (2.17)

0 = �N (np = 0,{ni �=p}) − �N−1(np = 1,{ni �=p}) + η − �r
p

�l
p + �r

p

, (2.18)

we use the condition {�l
p/�r

p = �l
p/�r

p = const} and let α ≡ �r
p

�l
p+�r

p
= �r

p

�l
p+�r

p
. Equations (2.17) and (2.18) have the relevant

solutions; hence, dropping
∑

p in Eqs. (2.3) and (2.4) is legitimate. Again, using the identity 1 − f (ε) = f (ε)eβε and Eq. (2.5),
we obtain the expression for the tunneling conductance from Eq. (2.9):

dI

dV
= βe2

∑
p

∑
{ni }

{
δnp,0P

eq
N−1({ni})f (εp)

�l
p�r

p

�l
p + �r

p

+ δnp,1P
eq
N−1({ni})f (ε̃p)

�l
p�r

p

�l
p + �r

p

}

= βαe2
∑

p

∑
{ni }

{
δnp,0P

eq
N−1({ni})f (εp)�l

p + δnp,1P
eq
N−1({ni})f (ε̃p)�l

p

}
. (2.19)

Since the fermion parity is the only conserved quantity and the
particle number is not conserved, the physics is not altered by
the transformation N → N + 2 and ng → ng + 2 in Eq. (2.1);
hence, only even and odd N ’s lead to distinct conductances,
which can be explicitly written for numerical calculations.
When N is even, the conductance in the explicit form is given
by

dI

dV
= e2α

kT

∑
p[Aodd(εp) + Beven(ε̃p)]

Fevene−β�U + Fodd
, (2.20)

where

Aeven/odd(εp) = f (εp)Feven/odd(Ep)�l
p,

Beven/odd(εp) = f (ε̃p)e−βEpFeven/odd(Ep)�l
p,

Feven/odd =
∑

∑
i ni=even/odd

e−β
∑

i niEi ,

Feven/odd(Ep) =
∑

∑
i �=p ni=even/odd

e−β
∑

i niEi .

Likewise, when N is odd, the conductance is given by

dI

dV
= e2α

kT

∑
p[Aeven(εp) + Bodd(ε̃p)]

Feven + Fodde−β�U
. (2.21)

We further consider the low-temperature limit T � |Ei>1|
(still T � �l,r

p , �l,r
p ). The conductance can then be written

in the simple form, which is consistent with [48]. For even N ,
the low-temperature conductance can be simply written as

dI

dV
= e2

kT

�l
1�

r
1

�l
1 + �r

1

1

4 cosh2(βε̃1)
. (2.22)

When N − 1 is even and N odd, we have the following low-
temperature limit:

dI

dV
= e2

kT

�l
1�

r
1

�l
1 + �r

1

1

4 cosh2(βε1)
. (2.23)

The conductance reaches the maximum as ε̃1 = 0 or ε1 = 0,
and the broadening of the conductance peak is proportional to
T . Hence, at low temperatures the conductance peaks for even
and odd N are located at ng(Ne) = Ne − 1/2 − E1/2Ec and

ng(No) = No − 1/2 + E1/2Ec, respectively, where Ne (No)
indicates even (odd) N . The key quantities studied in the
experiment [26] are the even and odd 1e oscillation peak
spacings

So = ng(No + 1) − ng(No) = 1 − E1/Ec, (2.24)

Se = ng(Ne + 1) − ng(Ne) = 1 + E1/Ec, (2.25)

which are the differences between the two closest peaks (see
Fig. 2). Except for odd and even N , the spacings should be
independent of N . In the experiment, the multiple conductance
peaks are measured as the gate voltage of the nanowire varies
in a wide region. Since the peaks might fluctuate for different
N , the even and odd peak spacings are averaged over multiple
N ’s to suppress nonuniversal effects. All information about the
underlying physics is extracted from these conductance peak
spacings in Ref. [26].

ng(0)

ng(1)

ng(2)

ng(3)

0.5

0.5

1.0

1.5

2.0

2.5

+E1/2Ec

−E1/2Ec

Se

So

Vz

ng

FIG. 2. The conductance peaks as a function of Zeeman splitting
Vz and the particle number N . The red (blue) line represents the
conductance peak for even (odd) N . The main physical quantities
we study in the following are the conductance peak spacings (Se and
So), which are given by the difference of the two closest conductance
peaks.
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B. Analytic solution for two-level systems (tunneling from localized states)

Now, we consider only two energy levels in the nanowire when N is even. This may apply at very low temperatures where
only the lowest two energy levels near zero energy are operational in transport processes. The total number of the occupied
quasiparticle n1 + n2 is 0 or 2. The four stationary equations can be explicitly written as follows:

Eq. (2.10): ∂PN (1,1)/∂t = 0:

0 = P
eq
N−1(0,1)f (ε1)�1

[
�N (1,1) − �N−1(0,1) + η − γ r

1

] + P
eq
N−1(1,0)f (ε2)�2

[
�N (1,1) − �N−1(1,0) + η − γ r

2

]
; (2.26)

Eq. (2.10): ∂PN (0,0)/∂t = 0:

0 = P
eq
N−1(1,0)f (ε̃1)�1

[
�N (0,0) − �N−1(1,0) + η − λr

1

] + P
eq
N−1(0,1)f (ε̃2)�2

[
�N (0,0) − �N−1(0,1) + η − λr

2

]
; (2.27)

Eq. (2.11): ∂PN−1(0,1)/∂t = 0:

0 = P
eq
N−1(0,1)f (ε1)�1

[
�N (1,1) − �N−1(0,1) + η − γ r

1

] + P
eq
N−1(0,1)f (ε̃2)�2

[
�N (0,0) − �N−1(0,1) + η − λr

2

]
; (2.28)

Eq. (2.11): ∂PN−1(1,0)/∂t = 0:

0 = P
eq
N−1(1,0)f (ε̃1)�1

[
�N (0,0) − �N−1(1,0) + η − λr

1

] + P
eq
N−1(1,0)f (ε2)�2

[
�N (1,1) − �N−1(1,0) + η − γ r

2

]
, (2.29)

where �i = �l
i + �r

i and �i = �l
i + �r

i . By solving three of these four stationary equations, we obtain the explicit expression
for the conductance

dI

dV
= βe2

{
P

eq
N−1(0,1)f (ε1)

�l
1�

r
1

�1
+ P

eq
N−1(1,0)f (ε2)

�l
2�

r
2

�2
+ P

eq
N−1(1,0)f (ε̃1)

�l
1�

r
1

�1
+ P

eq
N−1(0,1)f (ε̃2)

�l
2�

r
2

�2

− (
γ l

1 − γ l
2 + λl

1 − λl
2

)(
γ r

1 − γ r
2 + λr

1 − λr
2

)( 1

P
eq
N−1(0,1)f (ε1)�1

+ 1

P
eq
N−1(1,0)f (ε2)�2

+ 1

P
eq
N−1(1,0)f (ε̃1)�1

+ 1

P
eq
N−1(0,1)f (ε̃2)�2

)−1}
, (2.30)

where γ
l,r
i = �

l,r
i /�i and λi = �l

i + �r
i . Similarly, when N − 1 is even and N is odd, the expression for the conductance is

given by

dI

dV
= βe2

{
P

eq
N−1(0,0)f (ε1)

�l
1�

r
1

�1
+ P

eq
N−1(0,0)f (ε2)

�l
2�

r
2

�2
+ P

eq
N−1(1,1)f (ε̃1)

�l
1�

r
1

�1
+ P

eq
N−1(1,1)f (ε̃2)

�l
2�

r
2

�2

− (
γ l

1 − γ l
2 + λl

1 − λl
2

)(
γ r

1 − γ r
2 + λr

1 − λr
2

)( 1

P
eq
N−1(0,0)f (ε1)�1

+ 1

P
eq
N−1(0,0)f (ε2)�2

+ 1

P
eq
N−1(1,1)f (ε̃1)�1

+ 1

P
eq
N−1(1,1)f (ε̃2)�2

)−1}
. (2.31)

As shown in the next section, the tunneling rates �l
p, �r

p, �l
p, and �r

p depend on the wave functions of the quasiparticles and
quasiholes on the ends of the nanowire. Since the tunneling ratios are the same constant (�l

p/�r
p = �l

p/�r
p = const) in our

approximation, the last terms vanish; the conductance equations are reduced to Eq. (2.19). Because the MBSs are located on the
two ends, the conductance peaks stem from the first two terms of Eqs. (2.30) and (2.31).

Consider two MBSs, which possess the hybridization energy E1 due to wave-function overlap, located on the left and the
middle of the nanowire and assume that the first excited state with energy E2 is delocalized. Since �r

1,�
r
1 ∼ 0 in the absence of

the Majorana on the right end, the first and second terms vanish in dI/dV . The tunneling ratios are different constants so that the
last term survives. However, an electron still can propagate through the MBSs in the presence of the last term of the conductance
equations. The physical meaning of the last term mixing with the two-energy-level rates is that after encountering the MBS near
the left lead, an electron moves out to the right lead through the extended states in the nanowire.

These transport equations can capture 1e tunneling of the conventional (i.e., nontopological) Andreev bound states. Consider
two Andreev bound states localized on the two ends separately and the other energy levels much higher than the temperature;
the localization leads to �r

1 = �r
1 = �l

2 = �l
2 = 0. The conductance does not vanish in this limit and is given by

dI

dV
= 4βe2

(
1

P
eq
N−1(0,1)f (ε1)�1

+ 1

P
eq
N−1(1,0)f (ε2)�2

+ 1

P
eq
N−1(1,0)f (ε̃1)�1

+ 1

P
eq
N−1(0,1)f (ε̃2)�2

)−1

. (2.32)

This result is consistent with the observation in an earlier work [46] that the so-called “teleportation” phenomenon typically
associated with MBSs in the Coulomb-blockade regime [47] can also occur for nontopological Andreev bound states [46].
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To see the clear meaning of Eq. (2.32) we consider a special
case that the system preserves reflection symmetry and the
particle and hole tunneling rates are identical. Hence, the
notations can be simplified to E ≡ E1 = E2, � ≡ �1 = �2 =
�1 = �2. The conductance in Eq. (2.32) can be rewritten as

dI

dV
= 8βe2�[2 + eβε + eβε̃]−1[2 + e−βε + e−βε̃]−1,

where ε = E + �U and ε̃ = −E + �U . As �U = 0, the
conductance reaches to the maximum with the value

dI

dV
= 8βe2�[2 + eβE + e−βE]−2.

The location of the peak is independent of the energy of the
two states. Furthermore, the conductance peak corresponds to
ng = N + 1

2 . We note that this case is one of the extreme limits.
It does not imply the conductance peak is always independent
of the energy of the states.

III. TUNNELING AND NANOWIRE HAMILTONIANS

The energy levels Ep and the tunneling rates �l
p, �r

p, �l
p,

and �r
p are the necessary microscopic input parameters in

order to perform the conductance calculations for the SC
proximitized semiconductor nanowire. We assume that the
superconducting order parameter � in the semiconductor
nanowire is proximity induced through contact with a regular
metallic superconductor and study the BdG Hamiltonian of
the 1D model described by reasonable physical parameters.
We note that the energy scales of our results depend on our
assumptions about these physical parameters, in particular
the SC gap, the Coulomb-blockade energy, the nanowire
effective mass and g factor, the chemical potential, the spin-
orbit coupling, various hopping amplitudes, and the actual
confinement potential in the nanowire. Most, if not all, of these
parameters are unknown for the real experimental systems.
Therefore, one should not attach special significance to our
absolute numbers, particularly the precise temperature scales
defining our high- and low-temperature regimes.

A. Tunneling rate

The tunneling rates �l
p, �r

p, �l
p, and �r

p are related to the
wave function with energy Ep near the leads. We first write
the BdG Hamiltonian of the superconducting nanowire in real
space

Ĥnano = C†
(

Ho i�1 ⊗ σy

−i�∗1 ⊗ σy −H ∗
o

)
C, (3.1)

where the annihilation operator including all of the lattice sites
is written as C = (. . . ,cx↑,cx↓,c

†
x↑,c

†
x↓, . . .)T . By diagonaliz-

ing Hnano, the Hamiltonian can be rewritten in the diagonal
form

Ĥnano =
∑

p

(Epa†
pap − Epapa†

p), Ep � 0. (3.2)

The quasiparticle and quasihole for the energy level p are
given by

a†
p =

∑
x,α=↑,↓

(up,xαc†xα + vp,xαcxα), (3.3)

ap =
∑

x,α=↑,↓
(v∗

p,xαc†xα + u∗
p,xαcxα). (3.4)

The normalization leads to
∑

x,α(|up,xα|2 + |vp,xα|2) = 1. The
electron creation and annihilation operators are written in
terms of quasiparticles and holes

c
†
iα =

∑
p

(u∗
p,xαa†

p + vp,xαap), (3.5)

ciα =
∑

p

(v∗
p,xαa†

p + up,xαap). (3.6)

Now, we determine the tunneling rates �l
p, �r

p, �l
p, and �r

p

by assuming kT , �E � �, �, where �E is the energy-level
separation. According to Fermi’s golden rule, the tunneling
rates are proportional to

|〈f |Ht |i〉|2, (3.7)

where |f 〉 and |i〉 are the initial and final states, respectively,
and Ht is the tunneling part of the Hamiltonian. First, consider
the tunneling between the left lead and the superconducting
nanowire; the tunneling Hamiltonian can be written as

Hl
t =

∑
p,α

tp
(
L†

εp
c1,α + c

†
1,αLεp

)
, (3.8)

where c1,α,c
†
1,α are the annihilation and creation operators

located at the left end of the nanowire. As the electron moves
from the left lead to the energy level p in the nanowire, the
initial and final states are given by

|i〉p = L†
εp

|OL〉|BCS〉, |f 〉p = a†
p|OL〉|BCS〉, (3.9)

where |OL〉 and |BCS〉 are the normalized wave function in the
left lead and the superconducting nanowire, respectively, and
L†

εp
is the electron creation operator with energy εp. Hence,

〈f |Ht |i〉p
= tp

∑
α

〈BCS|〈OL|ap

(
L†

εp
c1,α + c

†
1,αLεp

)
L†

εp
|OL〉|BCS〉

= tp〈BCS|〈OL|ap

(∑
α

u∗
p,1αa†

p

)
|OL〉|BCS〉

= tp
∑

α

up,1α. (3.10)

We can obtain the tunneling rate

�l
p = t ′2p |〈f |Ht |i〉p|2 = t ′2p

∣∣∣∣∣
∑

α

up,1α

∣∣∣∣∣
2

, (3.11)

where t ′p absorbs all of the constants from Fermi’s golden rule.
Similarly, for an electron moving from the nanowire to the left
end the tunneling rate is identical. On the other hand, for a
hole movement, by following a similar derivation, we have the
tunneling rate

�l
p = w′2

p

∣∣∣∣∣
∑

α

vp,1α

∣∣∣∣∣
2

. (3.12)
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We assume the undetermined tunneling constants t ′p = w′
p = 1

(�l,r
p ,�l,r

p � T still holds) for convenience leading to

�l
p =

∣∣∣∣∣
∑

α

up,1α

∣∣∣∣∣
2

, �r
p =

∣∣∣∣∣
∑

α

up,Lα

∣∣∣∣∣
2

,

�l
p =

∣∣∣∣∣
∑

α

vp,1α

∣∣∣∣∣
2

, �r
p =

∣∣∣∣∣
∑

α

vp,Lα

∣∣∣∣∣
2

, (3.13)

where L is the length of the nanowire. (We intentionally do
not provide the unit of �l

p and �l
p since the details of the

experimental setups are unknown and nonuniversal. Our focus
is on the OCPS, which is universal and is not necessarily
determined by the exact value of the conductance.)

B. Hamiltonian for 1D superconducting nanowire

The 1D SC proximitized semiconductor nanowire with
spin-orbit coupling in the presence of a field-induced Zeeman
spin splitting [15,16] can be described in momentum space as

HBdG(k) = [2t(1 − cos ka) − μ]τzσ0 + �τyσy + Vzτzσx

+Vyτ0σy + 2α sin kaτzσy. (3.14)

Using the open boundary condition, the Hamiltonian can
be written in the following form suitable for numerical
calculations:

ĤBdG =
∑

x

{C†
x[(2t − μ)τzσ0 + �τyσy + Vzτzσx

+Vyτ0σy]Cx + [C†
x + a(−tτzσ0

+αiτzσy)Cx + H.c.]}, (3.15)

where Ci = (c↑i ,c↓i ,c
†
↑i ,c

†
↓i). In the following calculations

(unless specified otherwise), our choice of the physical param-
eters is based on [49] with slight differences: hopping strength
t = 6 meV, spin-orbit coupling α = 1.2 meV, superconduct-
ing order parameter � = 0.9 meV, the chemical potential
μ = 0.2 meV, and the Zeeman splitting Vz = 1.2B meV,
Vy = 0, where B is the magnetic field in unit of Tesla [21].
We consider the number of lattice sites to be L = 80 (we
vary L later in presenting our results) in the unit of the lattice
constant a = 10 nm so the length of the nanowire is 0.8 μm
and the wire spectrum is shown in Fig. 3. These parameters are
representative for the experimental system used in Ref. [26],
and changing these parameters to other reasonable values for
currently used semiconductor-superconductor hybrid systems
does not change any of our qualitative conclusions. We
have made no attempt to obtain quantitative agreement with
experiments since our goal here is to understand the findings
of Ref. [26] qualitatively, in particular to see if the intrinsic
inconsistency between the length and field dependence of the
quoted oscillation amplitude in Ref. [26] can be explained by
some mechanism. There are sufficient numbers of unknown
parameters (e.g., the chemical potential and the nanowire
confinement potential) in the problem (even in the clean
limit without invoking any disorder) rendering quantitative
comparisons meaningless.

By performing exact diagonalization of the Hamiltonian,
the eigenenergies of the nanowire are given by ±εi , where

Vz (meV)
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0 2 4 6 8
2
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FIG. 3. The superconducting nanowire spectrum for t = 6 meV,
� = 0.9 meV, α = 1.2 meV, μ = 0.2 meV, Vy = 0 meV, L = 80.
The TQPT point is located at Vz =

√
�2 + μ2 = 0.922 meV. After

the TQPT point, the oscillation of Majorana hybridization energy
grows as the magnetic field increases.

i is a positive integer and εi is positive due to particle-hole
symmetry in the BdG Hamiltonian. The relation between the
quasiparticle and the quasihole can be described by

a
†
±εi

= a∓εi
. (3.16)

Since varying the magnetic field through the nanowire is an
adiabatic process, the fermion parity of the BCS wave function
is conserved. In the absence of the magnetic field, we start with
the BCS ground state obeying

aεi
|BCS〉 = 0, (3.17)

and define the energy levels as Ep = εp for all p for the
transport calculation. As the magnetic field increases, the
lowest positive energy of the quasiparticle ε1 reaches zero at
the TQPT. Due to the Majorana wave-function overlap in the
finite wire, the quasiparticle a1, which is the hybridization of
the two MBSs, adiabatically evolves to become a quasiparticle
with negative energy −ε1. After this energy level crossing at
zero energy, the BCS ground state evolves to the first excited
state obeying

aεi>1 |BCSe〉 = 0, a†
ε1

|BCSe〉 = 0. (3.18)

Due to the parity fermionic conversion, we still use this
state as the basis state (not the ground state) to compute the
conductance; the energy levels have to be redefined E1 = −ε1,
Ep = εp for all p > 1. As the magnetic field keeps increasing,
after the next zero-energy crossing, the BCS state goes back
to the original definition in Eq. (3.17) until the third level
crossing and so on. In the following conductance calculation,
the basis BCS states are determined by the level crossings
as the magnetic field varies. We carry out our numerical
calculations following the above prescription and present our
results in the next section.

IV. NUMERICAL RESULTS FOR CONDUCTANCE

We numerically compute the magnetic-field-dependent
conductance of the superconducting nanowire (3.15) hosting
MBSs on the ends after passing through the TQPT. The
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nanowire described by the Hamiltonian (3.15) accidentally
preserves reflection symmetry and all of the eigenstates are
extended, except for the two localized Majoranas at the ends;
hence, the tunneling rates on the left and right are equal (�r

i =
�l

i , �r
i = �l

i for all the energy levels). Due to the Majorana hy-
bridization in the finite length nanowire, the tunneling ratio of
the hybridized states should be �r

1 = �l
1, �r

1 = �l
1. With these

fixed tunneling ratios, the conductance can be simply com-
puted by using Eqs. (2.20) and (2.21). The energy spectrum and
the wave function on the ends can be obtained by solving the
eigenvalue problem of the Hamiltonian (3.15). For computing
the conductance, we still need to know one more physical
quantity, which is the magnitude of the electrostatic energy dif-
ference between the total numbers N − 1 and N arising from
Coulomb-blockade physics:

�U = U (N ) − U (N − 1)

= Ec(1 − 2ng) + Ec(2N + 1). (4.1)

When Ec is less than the nanowire gap (<� = 0.9 meV),
the 2e periodicity of the conductance peak, arising from pure
Andreev process in the SC wire, dominates. Here, our focus
is only on the 1e periodicity region since we are interested in
the MBS physics; therefore, we choose Ec = 2 meV greater
than the superconducting nanowire gap. (We do not discuss
the 2e-periodic physics [48] in this work, focusing entirely
on the large charging energy Ec > � regime since this is
presumably not connected with MBSs.) Furthermore, the gate
voltage (Vg) of the nanowire is an experimentally controllable
physical parameter, which is proportional to ng since ng =
CVg/e, where C is the capacitance of the nanowire. In the
following, the conductance of the nanowire will be computed
in wide regions of normalized gate voltage (ng) and Zeeman
splitting (Vz) from the magnetic field (B). Furthermore, the
energy levels much higher than temperature can be neglected
since they do not participate in the transport process. We keep
the 10 lowest energy levels for the conductance calculations
carried out in the current work although it should be feasible
to add a few more levels in the numerical work if there is
good reason to do so. We believe that 10 levels should suffice
for qualitative conclusions as long as the temperature is not
too high (which would kill the superconductivity any way).
We emphasize that at very low temperatures, the theoretical
results for OCPSs disagree qualitatively with the experimental
results of Ref. [26] in terms of the magnetic field dependence
as described already in the Introduction (Sec. I) of this paper.

A. Finite temperature

We numerically compute the conductance of the supercon-
ducting nanowire at three different temperatures T = 0.1, 0.5,
and 1.0 meV as the magnetic field increases. We emphasize
that these absolute temperature scales are somewhat arbitrary
being totally dependent on the input parameters of our theory
(the corresponding parameters for the actual wires in Ref. [26]
are not known), and the three cases should be qualitatively
considered as the low, high, and very high temperatures,
respectively. The low temperature in this paper means the
temperature is much smaller than the second lowest-energy
state and still T � �l,r

p ,�l,r
p , while the high temperature

means at least more than two energy levels are close to

or smaller than the temperature scale. (Note that all of our
chosen temperatures are on the high side since otherwise
the experimental results simply cannot be understood as
arising from Majorana physics at all; obviously, if all the
energy scales are much lower than our input parameter values,
then the same physics could emerge at lower temperatures;
we discuss later in this paper the relevance of the energy
scale for the experimental nanowires; our choice of model
parameters dictate these particular temperature scales given
here, which are indeed higher than the quoted temperatures
in Ref. [26] perhaps because the experimental induced gap
is lower than our theoretical value.) Figure 4 shows the
calculated nanowire conductance for different Vz and ng . The
conductance peaks [no

g(N ), ne
g(N )] for even and odd N ’s can

be clearly seen at the low temperature as shown in Figs. 4(a)
and 4(d), respectively. At the low temperature, keeping just
the lowest-energy level is enough to compute the conductance
in the topological region (after the bulk gap closes) and
OCPSs depend on the the hybridization energy of the MBSs.
Thus, at the lowest temperature, the oscillation amplitude as
a function of Zeeman splitting is indeed a reflection of the
low-lying MBS energy spectrum, thus always manifesting
an oscillatory amplitude increasing with increasing magnetic
field in contradiction to the experimental finding in Ref. [26].
Since at higher temperature the conductance peaks, which
are thermally broadened, are difficult to visualize, we present
in Fig. 5 the even and odd conductance peak spacings Se =
ne

g(N + 1) − no
g(N ) and So = no

g(N + 1) − ne
g(N ) [see the

special case in Eqs. (2.24) and (2.25)]. At the low temperature,
as expected and as shown in Fig. 5(a), the conductance can
be described by Eqs. (2.22) and (2.23). The spacings should
be identical to the two energy levels close to zero energy in
Fig. 3. The important feature of these two energy levels is
that after the bulk gap closes, the OCPS amplitude becomes
larger as the magnetic field increases due to the Majorana
hybridization. This is the same as in the simpler theory [29]
without Coulomb blockade and in disagreement with the
experimental data in Ref. [26]. Although high temperature
suppresses the OCPS due to thermal damping, the amplitude
of the OCPS still increases as the magnetic field increases in
agreement with the low-temperature results even if the actual
increase is quantitatively damped by temperature. Therefore,
the observed amplitude deceasing with increasing magnetic
field in Ref. [26] cannot be explained by temperature effects
(and the associated multilevel occupancy) alone; some other
element of physics is still missing in the theory.

To understand this thermal damping effect of the OCPS,
we can consider the limit as the temperature is extremely high.
Although the conductance peaks are broadened, the system
becomes an effective non-SC metallic Coulomb blockade;
the conductance peaks exhibit 1e periodicity. Hence, the
conductance peak spacings are fixed as Vz increases. In this
limit, the OCPS completely vanishes. In the other limit, at
low temperature the conductance peak is reflected by the
lowest energy of state in the nanowire. Then, the OCPS due to
the Majorana hybridization is expected. Therefore, these two
limits show that high temperature suppresses the MBS-induced
OPCS without changing its qualitative behavior.

In the next two subsections we consider two possible
physical effects, shrinking bulk gap with increasing field and
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FIG. 4. The conductance (arbitrary unit) at three different temperatures [T = 0.1 (a,d), 0.5 (b,e), 1.0 (c,f) meV] as ng and Vz vary. We shift
the main conductance peak at 0.5 by defining n′

g = ng − N + 0.5. The top three subfigures are for odd N and the bottom three subfigures are
for even N . High temperature broadens the conductance peak.
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FIG. 5. The even Se (black) and odd So (orange) conductance peak spacings at difference temperatures (a)–(c) and at the same temperature
(T = 0.5 meV) with different parameters (e), (g). (a)–(c) Show the spacings at three different temperatures (T = 0.1, 0.5, and 1 meV).
Although high temperature dramatically squeezes the OCPSs, the oscillation amplitude increases. (d) The energy spectrum of the nanowire
as the spin-orbital coupling α is adjusted to 0.5 meV to shrink the bulk gap. (e) Even when the bulk gap is smaller, the oscillation amplitude
still increases. (f) As the order parameter has exponential decay � = �oe

−Vz/5, the bulk gap also shrinks. (g) The oscillation becomes larger,
except for the last pocket, as the magnetic field increases.

054504-12



CONDUCTANCE OF A SUPERCONDUCTING COULOMB- . . . PHYSICAL REVIEW B 96, 054504 (2017)

(d)

FIG. 6. The energy spectra and the even Se (black) and odd So (orange) conductance peak spacings for different directions of the magnetic
field or in the presence of the bulk gap closing subbands. (a)–(c) The bulk gap region becomes smaller as the direction of the magnetic field
moves toward to the spin-orbital direction. (d) We introduce the subbands, by including the additional Hamiltonian (3.15) with μ = 5 meV,
has gap closing after the TQPT. (e)–(g) At T = 0.5 meV the peak spacings, which are independent of the magnetic field direction, have larger
oscillation in the higher field. (h) At the low temperature (T = 0.1 meV), the peak spacings are roughly identical to the energy levels close to
zero energy. (i) At high temperature (T = 0.3 meV), the last few oscillation packets become smaller as the magnetic field increases.

contributions from ordinary Andreev bound states in the trivial
regime, to see if we can qualitatively reproduce the puzzling
results of Ref. [26]. We note that the orbital effect [50],
stemming from parallel magnetic field through the nanowire
with a finite cross-sectional diameter, does not explain the
decreasing amplitude of the OCPS since the Majorana splitting
energy still increases as the magnetic field increases.

B. Shrinking bulk gap

Although the conductance behavior from the standard
1D Majorana Hamiltonian (3.15) is not consistent with the
experimental observation [26], we might suspect that the
conductance peak might be affected not only by the Majorana
hybridization, but also by the size of the bulk SC gap. The
reason is that, when the bulk gap collapses, both Se and So

should be unity without any oscillation similar to an effective
Coulomb-blockaded normal quantum dot with 1e periodicity.
We mention that indeed in Ref. [26] there is experimental
evidence supporting the collapse of the bulk gap near where
the oscillations are suppressed with increasing field. There
are several ways or mechanisms for the bulk gap to shrink
with increasing magnetic field, the most obvious one being
that the gap of the parent SC producing the proximity effect
itself shrinks with increasing magnetic field. Some possible
mechanisms could be as follows: (a) reduce the strength of
the spin-orbit coupling (α), (b) reduce the strength of the
superconductor order parameter (�) as the magnetic field
increases, (c) change the direction of the magnetic field,
(d) introduce subbands having bulk gap closing after the TQPT
point. Since at low temperature the conductance peak spacings
are almost identical to the two levels close to zero energy,
we only need to compute the conductance spacing at high
temperature (T = 0.5 meV unless specified) in the following.
Clearly, at low temperatures, the gap closing does not affect
the results of the last subsection.

(i) (α). The spin-orbit coupling α is adjusted to 0.5 from
1.2 meV. As shown in Fig. 5(f), the bulk gap near Vz = 8 meV
is around 0.25 meV compared with 0.4 meV in Fig. 3 with

α = 1.2 meV. At low temperature, the OCPS amplitude still
increases as the magnetic field increases based on the spectrum
[Fig. 5(d)]. Thus, at any temperature, the oscillation amplitude
still increases at higher magnetic field in spite of decreasing
bulk SC gap.

(ii) (�). Keeping the strong spin-orbit coupling α =
1.2 meV, we change the superconducting order parameter
exhibiting arbitrarily exponential decay � = �oe

−Vz/5 meV,
where �o = 0.9 meV. (There is no particular significance to
this particular form for the bulk gap except that it captures its
decay with increasing field in a quantitative manner.) Similarly,
as shown in Fig. 5(g), the oscillation amplitude still increases
as the magnetic field increases, although the last peak (near
the bulk gap) becomes smaller. Although real � might exhibit
a different decay behavior as the magnetic field grows, the
qualitative trend of increasing amplitude of the OCPS with
increasing magnetic field should remain unchanged.

(iii) Direction of the magnetic field. To keep the bulk gap
open after the TQPT, the direction of the magnetic field has to
be perpendicular to the direction (ŷ) of the spin-orbit coupling.
On the contrary, when the magnetic field is parallel to the
direction of the spin-orbit coupling, the bulk nanowire is
gapless after the TQPT point. We define an angle θ between
the direction of the magnetic field in the yz plane and the z

direction, which is perpendicular to the spin-orbital direction.
That is, Vz = V cos θ and Vy = V sin θ .

For θ = 0, the direction of the spin-orbit coupling is
perpendicular to the magnetic field, and the bulk spectrum
(Fig. 3) is gapped hosting stable MBSs. Now, we slightly
tilt the direction of the magnetic field. For θ = π/8, after
the transition point, the bulk gap is open until Vz ∼ 3 meV
as shown in Fig. 6(c). The MBSs hybridize and are no longer
zero-energy modes in the high magnetic field region. When the
angle θ increases, the gap region becomes smaller. At θ = π/2,
the nanowire is completely gapless after the transition point as
shown in Fig. 6(a).

Now, we can consider the peak spacings at higher tem-
perature (T = 0.5 meV) in this tilted magnetic field situation.
As shown in Figs. 6(e)–6(g), the peak spacings exhibit very
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similar oscillations as the θ = 0 case. It is quite surprising
that even without the MBSs, the peak spacing can manifest
oscillations [Fig. 6(e)], which are almost identical to the
nanowire possessing MBSs. Therefore, even if this oscillation
of the peak spacings is observed in experiment, it is difficult
to definitely conclude the existence of MBSs.

(iv) Subbands. To have the bulk subband gap closing as
the magnetic field increases, we consider two copies of the
nanowire Hamiltonians (3.15). The chemical potential μ in one
of the Hamiltonians is adjusted to 5 meV so that the bulk gap
starts to decrease in the zero field and close near Vz = 5 meV
[49]. This model is obviously not able to describe the spectrum
beyond Vz = 5 meV. In reality, after the subband gap closes,
the density of states should be large at zero energy. Hence,
the OCPS is suppressed since Se = So = 1 in normal quantum
dots.

To see a larger OCPS, the length of the nanowire is reduced
to L = 40 lattice sites from L = 80. With the remaining
parameters unchanged, the energy spectrum is shown in
Fig. 6(d). While the oscillation of the Majorana hybridiza-
tion energy becomes larger, the bulk gap of the subbands
becomes smaller. Consider the peak spacings at two different
temperatures T = 0.1 and 0.3 meV. At the lower temperature
(T = 0.1 meV), the spacings are almost identical to the two
energy levels close to the zero energy (i.e., the OCPS is a
map of the energy spectrum). Although the last oscillation is
smaller, the oscillation magnitude is similar to the case without
the subbands. At the higher temperature (T = 0.3 meV), the
subbands close to zero energy squeeze the OCPSs and the
oscillation amplitude decreases, but the conductance is no
longer a map of the energy spectrum. Figure 6(i) shows that for
Vz = 3 meV, where the subbands come down at energy level
0.3 meV, the oscillation amplitude starts to become smaller
as the magnetic field increases. Although this scenario seems
to be partially consistent with the experimental observation,
the experimental oscillation amplitude never increases with
magnetic field, which disagrees with Fig. 6(i). In Fig. 6(c),
the second and third oscillations are still larger than the
previous ones; thus, these 1D models cannot completely
explain the oscillation observed in the experiment [26] in
spite of our incorporating many mechanisms affecting the SC
gap. We need something more (i.e., an additional mechanism
beyond just gap collapse, finite temperature, and multisubband
occupancy) to make theory and experiment consistent. We
include Andreev bound-state contribution to the conductance
in the next subsection as this new mechanism.

C. Contribution of end Andreev bound states

The results obtained in the previous section for the ideal
topological Coulomb-blockaded nanowire with MBSs at the
end of the nanowire do not appear to produce conductance
peak spacings in agreement with the experimental observation
[26]. Therefore, motivated by the experimental geometry and
the conductance results, we consider a case where there are
Andreev states at the wire end. Such Andreev bound states
are generated by ensuring that the superconductivity vanishes
near the ends of the nanowire as shown in Fig. 7(a). This is a
reasonable (perhaps even necessary) consideration since in the
experiment [26] the ends of the nanowire, which do not touch

the parent superconductor, do not possess proximity-induced
superconductivity in all likelihood [see Fig. 7(a) for the
experimental schematic]. That is, between the leads and the
superconducting nanowire there are small normal metallic
regions, which could induce Andreev bound states in the
system. There could also be unintentional (and therefore
unknown) effective quantum dots inside the nanowire leading
to Andreev bound states in the system. Low-energy Andreev
bound states are difficult to distinguish from a split pair of
MBSs, which have essentially the same energy spectrum; in
fact, one central concern in the Majorana nanowire field is
how to distinguish the effects of MBS from those of regular
nontopological subgap low-energy Andreev bound states.
However, weakly split MBSs are, in principle, distinguishable
from Andreev bound states via the localization properties of
their wave functions. Suppose a low-energy Andreev bound
state is represented by a creation operator a†

ε1
. Such an Andreev

state can be thought of as a pair of weakly coupled MBSs
if there exists a phase θ such that (eiθaε1 + e−iθ a†

ε1
)/

√
2 is

localized at one end and (eiθaε1 − e−iθ a†
ε1

)/
√

2 is localized at
the other end. In Fig. 8(b), after the TQPT (Vz ∼ 0.92 meV),
the lowest-energy state satisfies this Majorana criterion. On the
other hand, before the transition point the low-energy states,
which fail this MBS criterion, are the Andreev bound states in
Figs. 8(b) and 8(c). Hence, in this scenario the Andreev bound
states and MBSs do not coexist at the same magnetic field
since MBSs appear after the bulk gap closes. Thus, we are
considering Andreev states and Majorana states on an equal
footing because the experiment is carried out by sweeping
the magnetic field, and since experimentally the topological
transition point (i.e., the critical field at TQPT) is not known,
the possibility that the low-field (high-field) behavior in the
peak spacings arises from Andreev (Majorana) bound states
cannot be ruled out. This is the possibility we are investigating
in this section. Of course, the criterion of localization is one
of degree and, therefore, this does not precisely define a
transition unless the system size goes to infinity where the
MBSs can be infinitely far apart. However, for the clean
system we consider the critical value of the Zeeman field at the
TQPT in agreement with the analytical result Vz ∼

√
�2 + μ2

[51]. Andreev (Majorana) states exist for magnetic field below
(above) this critical field. One should think of the transition as
a crossover in a finite system, and we need to take into account
the possibility that the experimentally observed oscillations
arise from a combination of Andreev and Majorana physics as
the magnetic field is increased through the critical field near
the first peak oscillation.

The localization of the Andreev bound states leads to
different tunneling ratios (�l

p/�r
p, �l

p/�r
p) for different

energy levels. This means that we must do considerable
additional work in order to include the Andreev states in our
theory at low magnetic field values below the TQPT. The
conductance cannot be simply calculated using Eqs. (2.20) and
(2.21); we have to directly solve the master equations (2.10)
and (2.11) for the numerical values of �N ’s and �N+1’s and
use the conductance equation (2.9) to obtain the conductance.
Since this new calculation including Andreev states is much
more involved and is computationally much more demanding
than the MBS calculations just using Eqs. (2.20) and (2.21),
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FIG. 7. The energy spectra and the even Se (black) and odd So (orange) conductance peak spacings for the nanowire having the
superconducting order parameter vanish near the ends of the nanowire as schematically illustrated in (a). The red regions in (a) defining
the quantum dots (and leading to Andreev bound states) are 3 and 4 sites, respectively, on the right and the left whereas the green region
defining the wire is much longer. (b), (c) The energy spectra describe the L = 60 nanowire with different spin-orbital couplings α = 0.1 and
1.2 meV, respectively. The energy levels of the Andreev bound states are closest to zero energy before the TQPT. (d) At T = 0.5 meV the
presence of the Andreev bound states leads to the random oscillation. (e) At T = 0.5 meV the Majoranas stabilize the oscillation but the
oscillation becomes larger in higher magnetic field.

we consider only 9 energy levels, instead of 10. To set up the
nanowire hosting Andreev bound states for the simulation,
we let � = 0 on the first four left and first three right
lattice sites. The reason to choose the different numbers of
the left and right lattice sites is to avoid any accidental energy
level degeneracy, which leads to the incorrect and nongeneric
conductance results from master-equation numerical code.

First, we assume that only Andreev bound states are
present in the nanowire and MBSs are absent by adjusting
the spin-orbit coupling to a low value α = 0.1 meV. The
spectrum [Fig. 7(b)] shows that it is hard to distinguish the
MBSs and the bulk states. By comparing with Fig. 3 without
Andreev bound states and examining the wave functions of
the low-energy states, the energy levels of the Andreev bound
states are the states closest to zero energy in Figs. 7(b) and 7(c)
before the bulk gap closing and these localized states become
extended after the bulk gap closing point. Unfortunately, the
random oscillation of the peak spacings in Fig. 7(d) appears
different from results reported in the experiment. Therefore,
only Andreev bound states without any MBS do not appear to
explain the experimental results in Ref. [26], although it gives a

clue that the presence of Andreev bound states may indeed lead
to a situation where peak spacings could sometime reflect a de-
creasing oscillatory amplitude with increasing magnetic field
as observed experimentally. A word of caution is, however, in
order here. If chosen appropriately over different samples, it
is certainly possible that some of these random Andreev peak
spacings could lead to the observed experimental behavior
except that other samples would manifest a different behavior.
We cannot therefore decisively rule out the possibility that
the physics described in Ref. [26] arises from Andreev bound
states. We believe that a recent paper [52] gives a clue as
to why the Andreev bound states appear to produce random
oscillatory behavior in our calculated OCPS results. It is
shown [52] that the Andreev bound states could actually
come very close to zero energy accidentally and stay there
for finite regimes of magnetic field (“zero-sticking property”)
because of the presence of SO coupling and Zeeman splitting.
Such accidental “zero sticking” of Andreev bound states is
nonuniversal as a function of the magnetic field and depends
on all the parameters of the system. The corresponding OCPS
arising from such zero sticking of Andreev bound states would
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FIG. 8. The nanowire illustrated in Fig. 7(a) with L = 40 and α = 1.2 meV hosts Andreev bound states in the trivial region and MBSs in
the topological region and includes the additional Hamiltonian (3.15) with μ = 5 meV. (a) Shows the energy spectrum of the nanowire. (b), (c)
Show the density of the first and second lowest-energy states [

∑
α(|u1,xα|2 + |v1,xα|2) and

∑
α(|u2,xα|2 + |v2,xα|2), respectively]; the Andreev

bound states are separately localized on the two ends of the nanowire before the TQPT point (Vz = 0.92 meV). The first lowest-energy state is
localized near x = L (L = 40); (c) the second lowest-energy state is localized near x = 1 and its discontinuity of the wave-function distribution
near Vz ∼ 0.1 meV stems from the second- and third-level crossings. The reason that the energy of the Andeev bound state near x = 1 is
higher than the one near x = L is that we have chose, � = 0 region near x = 1 is smaller than near x = L. (d), (e) Show the conductance peak
spacings at T = 0.3 and 0.2 meV, respectively. The subbands play a final role to suppress the oscillation in the high magnetic field. Now, the
oscillation amplitude is monotonically decreasing as the function of the magnetic field. (f) Shows that at the low temperature (T = 0.02 meV)
the oscillation is almost identical to the energy level closest to zero energy, although near the TQPT the presence of the Andreev bound states
slightly affects the oscillation.

not manifest any systematic magnetic field dependence and
would appear random in a sample-to-sample measurement.
We believe that this zero-sticking property of Andreev bound
states is responsible for the OCPS behavior in Fig. 7(d), which
may very well be what is being observed in Ref. [26].

Now, we introduce MBSs in the nanowire by tuning
the spin-orbit coupling back to α = 1.2 meV. Figure 7(b)
shows the energy of the MBSs to be close to zero and the
Majoranas are protected by the large bulk gap. The Andreev
bound states are the lowest-energy states before the TQPT
point. For Vz less than 3 meV, as shown in Fig. 7(e), the

peak spacings are similar to the experimental observation
since the oscillation becomes smaller as the magnetic field
increases. However, in the high magnetic field region the peak
spacings are affected by the Majorana hybridization, and the
oscillation becomes larger. Of course, the magnetic field at
which this change occurs is nonuniversal, and it is possible
that Ref. [26] probes only the low-field regime where the
Andreev states dominate leading to suppressed oscillations,
but then at much higher field eventually oscillations with
increasing amplitude as appropriate for MBSs should return.
Furthermore, comparing Figs. 7(c) and 7(e), we find the
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FIG. 9. The conductance (arbitrary unit) of the nanowire with the parameters identical to Fig. 8 at T = 0.2 meV for odd N and even N ,
respectively. After the first bulk gap closing, the conductance is greater than before the closing.

crossing of the conductance peak spacings (Vz ∼ 0.6 meV)
to occur before the bulk closing point (Vz ∼ 0.92 meV). This
example shows that the conductance peak spacings cannot be
simply described by the lowest-energy level [Eqs. (2.24) and
(2.25)]. The localized states play a subtle role changing the
conductance and the possibility that the Andreev bound states
are playing a role cannot be ruled out.

Finally, we add the following ingredient to the physics
of the nanowire keeping the Andreev states in the analysis:
the bulk gap closing subbands. Since at higher temperature
the subbands lead to smaller oscillations at higher magnetic
field as shown in Fig. 6(i), inclusion of all the ingredients
(the higher temperature, the Majoranas in high magnetic field,
the Andreev bound states in low magnetic field, and the gap
closing subbands) leads to a decreasing oscillation amplitude
with increasing magnetic field except perhaps at very high
magnetic field (which may be outside the experimental regime)
as shown in Figs. 8(d) and 8(e). These peak spacings are
qualitatively similar to the experimental finding in Ref. [26].
Thus, higher temperature and the presence of the closing
subband gap as well as the MBSs in the topological region
and the Andreev bound states in the trivial region (all of these
mechanisms taken together) are currently our best explanation
for the experimental observations. Although we do not find a
situation where MBSs without Andreev bound states produce
results in agreement with experiment, the reverse is not, strictly
speaking, true: just Andreev bound states without MBSs give
random peak spacings, which, in some situations, may mimic
decreasing oscillations with increasing field in a narrow field
region.

We note that Figs. 7 and 8 show that the same physics
applies for long (L = 60; Fig. 7) and short (L = 40; Fig. 8)
wires with the inclusion of Andreev bound states in the
calculation always producing decreasing oscillations with
increasing magnetic field as observed experimentally. Our
findings are therefore generic.

The conductance including all effects at T = 0.2 meV is
shown in Fig. 9. The conductance before the TQPT point is
much smaller than the one after the TQPT. This result is in
agreement with the experiment [26] and has been explained in
Ref. [48].

The discontinuity appears in the conductance plot in
Fig. 9(a) near Vz = 3.6 meV. The conductance discontinuity

occurs when the two lowest-energy levels are degenerate
E1 = E2 as shown in the spectrum plot Fig. 8(a). That is,
the qausiparticles a†

ε1
and a†

ε2
exchange so that the BCS ground

state in the odd parity |BCSo〉 = a†
ε1
|BCSe〉 changes sharply

as Vz passes through the degenerate points; this sharp change
leads to the conductance discontinuity. In reality, since a†

ε1
and

a†
ε2

usually weakly couple, E1 and E2 are close but are never
identical. The change of the |BCSo〉 is smoothed out and then
the conductance discontinuity should not be expected.

To suppress the oscillation as the magnetic field increases
(purely in the high-field topological regime where Andreev
states cannot play any role), we estimate the lower bound
of the temperature to be around 0.2 meV, which corresponds
roughly to one fifth of the SC gap (for the specific parameters
used in our study) in Fig. 8(e) since in high magnetic field
the oscillation grows at T = 0.1 meV as shown in Fig. 6(h).
We emphasize that the Andreev bound states can only explain
the decrease in the oscillation amplitude in the low-field region
(near the first oscillation), and once the MBS oscillations set in,
the theory predicts unequivocally that the oscillation amplitude
must increase with increasing magnetic field, which is not seen
experimentally. We therefore need a mechanism to suppress
the oscillations at higher field, and we use temperature as this
damping mechanism.

One may wonder what happens at much lower temperature
in the presence of both Andreev and Majorana bound states
as the magnetic field sweeps through the TQPT. We show our
calculated low-temperature results for this general situation in
Fig. 8(f) to be compared with the high-temperature results
shown in Fig. 8(e). As shown in Fig. 8(f), although near
the TQPT the presence of the Andreev bound states does
slightly change the oscillation at the low temperature, the
oscillation amplitude always grows with increasing magnetic
field in contrast to the experimental results of Ref. [26].
This is, in fact, expected since at low enough temperatures,
the conductance should be a direct map of the low-energy
spectrum, and the MBS splitting always increases with in-
creasing magnetic field. Thus, even in the presence of Andreev
(and Majorana) bound states, the OCPS amplitude increases
with increasing magnetic field at low temperatures. The
damped oscillation should not be apparent in the experiment
unless the electron temperature is pretty high. Of course, as
mentioned earlier, what this “pretty high” temperature scale
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FIG. 10. The OCPS for the conductance master equations including different numbers of the energy levels for L = 30 at T = 0.2 meV.
The remaining parameters are identical to Fig 8. Since the OCPSs including few different energy levels are completely distinct, the multiband
physics does affect the OCPS dramatically. The mechanism of the Coulomb-blockaded nanowire therefore becomes complicated at higher
temperatures where multiband effects are important. The OCPSs including 7, 8, 9 energy levels, which are identical, lead to the correct
estimation of the conductance for the input parameters used in our theory.

is in absolute units must depend crucially on the experimental
parameters which are unknown. All we can claim is that
experiments should see distinct behaviors at low and high
temperatures with the high-temperature result manifesting
decreasing oscillation amplitude with increasing magnetic
field.

A serious note of caution is in order about the absolute
temperatures used in our simulations, which are much higher
than the quoted temperature (T = 50 ∼ 100 mK) in Ref. [26].
We emphasize that our temperature scale is determined entirely
by the parameters used in our model. For example, if we use an
increased effective mass (i.e., a lower nanowire hopping matrix
element), the energy scale goes down, and such an adjustment
can induce arbitrary lowering of the temperature in our model.
Another (perhaps even more important) point is that the precise
chemical potential is not known in the experiment. If the Fermi
level is somehow near the bottom of the 1D subbands in the
nanowire (not an unlikely scenario given the large density
of states near the 1D subband bottom), again the effective
energy scale is suppressed lowering the temperatures used
in our simulations. Similarly, if the typical subband energy
spacing in the nanowire is small (our confinement model for
the nanowire corresponds to a hard-wall infinite square well
confinement), that will again make our effective temperatures
much smaller. Since these energy scales in the experimental
nanowires are unknown, not much significance should be
attached to our absolute energy scales. In addition, we assume
that the nanowire possesses a hard gap [53,54] after the TQPT
point. In reality, the experimental gap is very soft after the
TQPT where a zero-bias peak emerges, and therefore some

(unknown) low-energy states are present in the gap. (These
low-energy subgap states producing the soft gap most probably
arise from disorder in the underlying parent superconductor
due to the strong superconductor-semiconductor coupling as
discussed in Refs. [55–57], an effect beyond the scope of
this work.) Therefore, even if the temperature is low, these
low-energy states in the soft gap might be able to suppress the
oscillation spacings by acting like effective Andreev states as
considered in our theory. Since the nature of these low-energy
states is unknown, they cannot be included in the theory, but
it is quite possible that these low-energy fermionic subgap
states at high magnetic field act similar to the low magnetic
field Andreev subgap states included in our theory, leading to
suppressed oscillations with increasing magnetic field even at
low temperatures. Since our current conductance numerical
program can compute at most 10 energy levels, the numerical
result in the paper is only for the hard gap. We leave the soft gap
simulation, which must include many more energy levels as
well as a physical model for the subgap states causing the soft
gap, for future work. But, other than suppressing the energy
scale at which oscillation amplitude dampens thermally (i.e.,
by providing many available low-energy states already at low
temperatures), such low-energy states should not change any
of our results qualitatively. More experimental and theoretical
work will be necessary to decisively settle the question of
which subgap states may actually be contributing to the finite-
temperature conductance causing the increasing oscillation
with increasing field. What we have accomplished is to show
that a mechanism combining finite temperature and additional
subgap states provides a possible explanation for the observed

054504-18



CONDUCTANCE OF A SUPERCONDUCTING COULOMB- . . . PHYSICAL REVIEW B 96, 054504 (2017)

oscillation amplitude decreasing with increasing magnetic
field.

Finally, we show our calculated numerical results in Fig. 10
as a function of different number of energy levels included in
the theory in order to establish that the nine-level calculation is
adequate to obtain convergent results for the parameters used in
our theory in the high-temperature regime. We emphasize that
the necessary number of levels is obviously a nonuniversal
quantity depending crucially on the input parameters (and
temperature) used in our simulation, but the point we make
is that multilevel effects must play an important role in
understanding the observations in Ref. [26]. It is possible
(actually likely) that the renormalization by the superconductor
makes the higher nanowire energy levels almost degenerate
[58], leading to a participation by several energy levels even
at much lower temperatures. As discussed already, “low”
and “high” temperatures in our calculation are nonuniversal
quantities (in absolute terms) as they depend crucially on the
unknown microscopic details of the hybrid semiconductor-
superconductor structures. The numbers used in our theory
are for demonstrative purposes only.

V. LENGTH DEPENDENCE

So far, all our results and discussions focused entirely
on the magnetic field dependence of 1e-tunneling OCPSs in
the Coulomb-blockaded nanowire experiment of Ref. [26],
leaving out all considerations of the length dependence. This is
appropriate since the measurements are always carried out on
a wire of fixed length (L) as a function of an applied magnetic
field. The experiment is not done as a function of length
keeping all other system parameters (e.g., magnetic field,
chemical potential, superconducting gap) fixed. Thus, any
conclusion about an estimated length dependence of splitting is
subject to criticism since the other relevant system parameters
certainly vary along with the wire length. In fact, in Ref. [26],
the length dependence is extracted from the measurement of
peak splitting in five different wires with each splitting in
each wire measured at different magnetic fields. In fact, not
only the magnitude, but even the direction of the magnetic
field, is different in some of the wires used to obtain the
length dependence. It is expected that these wires of different
lengths have different chemical potentials, confinement
potentials, superconducting gaps, Coulomb energies, and
disorder as well since these are not controllable parameters in
the experiment. What was kept common is that the splitting
measurement was always done at the first oscillation maxima
of the peak spacing, which was often the only oscillation
presenting a measurable amplitude since the oscillation
amplitude typically decayed rapidly with increasing magnetic
field (which is the main point of our theoretical analyses).
Some additional limitations of the experiment are that the
measured splitting is around 1 K, which is much larger than
even the parent SC gap in Al at that magnetic field, for two
of the shorter wires (<0.5 μm), and the measured splitting
is around ∼10 mK for the longest wire (L ∼ 1.6 μm), which
is almost an order of magnitude lower than the experimental
temperature, leaving only two (or even three) data points in the
experiment where the measured spacings can be reasonably
construed to be meaningful for extracting an exponential

20 40 60 80 100 120 140
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Length  (L)

Δng

FIG. 11. The first oscillation maxima of the conductance peak
spacing (|So − Se|/2) for different lengths of the nanowires for our
high-temperature case at T = 0.2 meV. The remaining parameters
are identical to Fig. 8. The maximum oscillatory amplitude has a
rapid oscillatory decrease with increasing length for shorter wires
and a very slow increase with increasing length for longer wires.
This complex length dependence arises from Andreev physics in our
theory.

dependence. These two splittings are both ∼100 mK for two
wires of L ∼ 1 μm. (Here, by assuming the low-temperature
limit, the maximum oscillatory amplitude in the unit of eV is
identical to the energy splitting. We refer the readers to Fig. 2
in Ref. [26] for the details.) Whether a decisive exp(−L)
behavior can be meaningfully extracted on the basis of two
data points of nearby L values remains unclear. In addition,
the fact that the experimental L dependence in Ref. [26] is
extracted by using different samples of different lengths at
different magnetic fields (which are sometimes oriented in
different directions) casts some doubt in the accuracy of the
exponential dependence conclusion reached in Ref. [26].
Obviously, many more results are necessary for compellingly
establishing an exponential dependence of the splitting in
wire length. Nevertheless, the question arises about our
theoretical L dependence, specifically for those results in our
simulations (including both Andreev and Majorana bound
states) which approximately mimic the experimental magnetic
field dependence in the OCPSs (i.e., oscillations decreasing
with increasing magnetic field).

Although we do not expect any well-defined generic length
dependence in our simulated peak spacings since the results
include effects of both Andreev and Majorana states as well as
finite temperature and multilevel contributions, we show our
calculated length dependence in Fig. 11 for the peak spacings
obtained operationally in the same way as in Ref. [26]. We
simply plot the amplitude of the first peak spacing oscillation
as a function of L in Fig. 11 making sure that for each value
of L, the corresponding magnetic field dependence manifests
qualitatively similar behavior as observed in Ref. [26] (i.e., am-
plitude deceasing with increasing field). We keep all other pa-
rameters fixed except for the spin splitting, which must change
since wires of different lengths manifest the first oscillations
at different magnetic field values (precisely as happens in the
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FIG. 12. (a) OCPSs for different lengths of the nanowire at higher temperature T = 0.2 meV. The remaining parameters are identical to
Fig. 8. The first oscillation maxima of the conductance peak spacing are obtained from this figure. For small L, the first oscillation peak is very
close to TQPT. As L increases, the peak of the first oscillation moves toward smaller magnetic field. (b) Probability density spatial distribution
of the lowest (blue) and second lowest (green) energy states, which are Andreev bound states, for different lengths of the wire at the magnetic
field corresponding to the first oscillation peak. Since for small L the corresponding magnetic field is close to TQPT, the sizes of the low-energy
states are almost extended in the whole wire. The overlap of the states vanishes at L = 60, which is the characteristic length of the first splitting
defining the crossover point (i.e., the minimum) in Fig. 11.

experiment also). As can be seen in Fig. 11, the theoretically
extracted L dependence is nonmonotonic: it shows a strong
decrease with increasing length for shorter wires and then a
very slow increase with increasing length for longer wires. We
have no precise explanation for the nonmonotonic length de-
pendence in Fig. 11 except that this is what we get from the sim-
ulations (and the behavior is most certainly nonuniversal here
as there is no reason to expect a universal behavior). Obviously,
the decrease in the oscillation for shorter wires, mimicking the
findings of Ref. [26], is not a manifestation of the exponential
exp(−L/ξ ) behavior of Majorana splitting, since such a
behavior should be more prominent for L � ξ , i.e., for longer
wires. In fact, our estimated ξ values for our results are around
100 (10) for high magnetic field (TQPT) values, and since the
first oscillation always occurs just below the TQPT in our sim-
ulations, it is unclear that the L dependence can have much to
do with MBS properties. It is possible, but by no means certain,
that the experimentally observed L dependence in Ref. [26]
is related to the L dependence in our Fig. 11 for smaller
values of L, but we emphasize that this short-length behavior
has nothing whatsoever to do with topological protection as
should be obvious from the larger-L behavior in Fig. 11. While
we cannot comment on the significance of the experimentally
observed length dependence in Ref. [26], our theoretical length
dependence in Fig. 11 is likely to be nongeneric, arising from
the complex interplay between finite temperature and Andreev
bound states and not much significance should be attached to
our theoretical L dependence in Fig. 11.

To understand our calculated L dependence in Fig. 11
better, we show in Fig. 12 two sets of numerical results [in
Figs. 12(a) and 12(b), respectively] for the theoretical energy
splittings and low-lying Andreev bound-state wave functions
(actually, the squared amplitude, i.e., the probability density)
for different values of the wire length L (keeping the quantum
dot size always 3 and 4 � L). The basic picture that emerges
is that for small L, the first oscillation peak is always close to

the TQPT point, and the Andreev bound state is very extended
at this low magnetic field, covering much of the wire, whereas
at higher values of L, the first oscillation is associated with
Andreev states which are mostly localized near the wire ends.
Thus, the physics of the first oscillation is different for small
and large values of L with the crossover occurring at some
nonuniversal characteristic L value (∼60 in Fig. 11 for our
parameters) which is determined by the system parameters
including the size of the quantum dot regimes [see Fig. 7(a)].
Typically, this characteristic L value defines the approximate
crossover for the Andreev bound states being mostly extended
over the wire (small L) to being mostly localized near the wire
ends (large L). Thus, the decrease in the energy splitting with
increasing L in our Fig. 11 has nothing to do with Majorana
protection. It arises from the overlap of the Andreev bound
states at the two ends rather than the Majorana bound states at
the two ends. At this stage, our results, therefore, disagree with
an exponential protection conclusion for the nanowire OCPS.

VI. CONCLUSION

Our focus in this work is on the transport properties
of the superconducting Coulomb-blockaded nanowire in the
weak tunneling situation with small applied voltage between
the two leads. The generic transport equations in the 1e

periodicity Coulomb-blockaded superconducting region are
derived including Coulomb blockade and superconductivity
on an equal footing. These transport master equations capture
various physical effects, such as multiband tunneling, finite
temperature, tunneling from localized Andreev states, and
possible gap closing. The goal is to qualitatively understand in
depth the recent experimental report of topological protection
in Coulomb-blockaded nanowires [26], which is warranted
since the direct interpretation of the experiment in terms of
the existence of Majorana zero modes shows inconsistency
with the theoretical expectation that in a given wire the Ma-
jorana oscillations must increase in amplitude with increasing
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magnetic field (because the SC gap decreases with increasing
magnetic field leading to an increasing coherence length).
We obtain analytical solutions to our equations to calculate
the low-temperature conductance arising from the resonant
tunneling through MBSs in several simple situations. These
low-temperature Majorana conductance results cannot explain
the experimental observation [26] of decreasing oscillation
amplitude with increasing magnetic field. In the presence
of Andreev bound states (at low fields) and/or at higher
temperatures where many levels contribute to transport, we
solve our master equations numerically, and find that the
presence of both finite temperature and Andreev bound states
are essential in obtaining results which are in qualitative
agreement with experiment. We also find that eventually
with increasing field, the oscillation amplitude must always
increase, but it is possible that the experiment would not work
in this high-field region because of the complete collapse of the
SC gap. We do not find any way to explain the experimental
behavior in the low-temperature regime, but we emphasize
that the temperature scale in the problem is nonuniversal and
is affected by numerous unknown system parameters (effective
mass, hopping amplitude, SC gap, chemical potential, SO
coupling, confinement, soft gap, subgap states, etc.). We
cannot rule out the possibility that Ref. [26] indeed observes
our “high-temperature” behavior reflecting the anomalous
decrease in the oscillation amplitude with increasing field
because of the combined contributions from Andreev states
and Majorana states.

When the temperature is less than or close to the lowest-
energy level of the superconducting nanowire and the next
excited energy level is much higher, the OCPSs (as studied
experimentally in Ref. [26] and theoretically in Ref. [48])
is proportional to the lowest-energy level. Therefore, for
the simplest Majorana nanowire model [31], the OCPS
always grows as the magnetic field increases and the thermal
broadening of the conductance peak is proportional to T .
To explain the damped oscillation (i.e., decreasing with
increasing field) observed in the puzzling experiment, we
consider several physical mechanisms. Unfortunately, higher
temperature, small spin-orbit coupling, and changing of the
magnetic field direction always lead to growing oscillations
with increasing magnetic field in conflict with the experimental
report in Ref. [26]. We further introduce the SC gap closing of
the subbands after the TQPT point in order to see if gap closing
could explain the anomalous behavior. At high temperature
in high magnetic field (away from the TQPT point), the
oscillation becomes smaller in the presence of gap closing
(and in qualitative agreement with experiment); however, the
oscillation still grows with increasing magnetic field right after
the TQPT point in the low-field region. Finally, when we
introduce Andreev bound states in the trivial region, the theory
becomes much more complicated and the conductance has to
be computed by numerically solving the master equations. The
calculation time grows exponentially with the number of the
included energy levels in the theory. Although the oscillation
is suppressed near the first transition point, only the presence
of the Andreev bound states by itself does not lead to the
consistency of the oscillation behavior with the experiment.
In particular, the oscillations in the trivial phase arising purely
from Andreev bound states (and no Majorana states at any

magnetic field) appear to have random amplitudes, although
some samples in some limited regimes of magnetic field (for
fine-tuned gate voltage values) may very well manifest OCPSs
in qualitative agreement with the results in Ref. [26], but
this agreement is nongeneric because of the random nature
of the theoretical results. Including the high temperature,
the Majorana bound states (in the topological regime), the
subband gap closing, and the Andreev bound states (in the
trivial regime), we find that the OCPS amplitude always
decreases as the magnetic field increases. Obviously in this
scenario, which is in excellent qualitative agreement with the
experimental data presented in Ref. [26], the first oscillations
in peak spacing as a function of magnetic field are taking
the system from the trivial phase (with Andreev states) to
the topological phase (with Majorana states), and as such,
no concept of topological protection applies to these first
oscillations. Therefore, the Majorana scenario at high-field
values along with Andreev states at lower magnetic fields
can explain the recent puzzling experimental results. We
emphasize, however, that in this scenario no significance can
be attached to the length dependence of the peak size of the
first oscillation since the first oscillation happens below TQPT
and is dominated by Andreev, and not Majorana, physics.
Although our theoretical length dependence for the peak size
of this first oscillation mimics the experimental finding for
shorter wire lengths, this behavior is not directly connected
with the Majorana splitting. We in fact establish through
direct numerical simulations that the decreasing splitting with
increasing length (in the shorter wire regime) arises entirely
from the physics of Andreev bound states which tend to be
more extended through the wire for shorter wires leading to
this decrease. For longer wires, where the Andreev states from
the two ends are localized and no longer overlap with each
other, we find the splitting to be essentially independent of
length (actually increasing slowly with increasing length).

Our work shows that it is difficult to understand the
important findings in Ref. [26] by invoking only Majorana
bound states in the nanowire. At the minimum, one also
needs finite temperature and Andreev bound states playing
crucial roles. These additional mechanisms together can not
only explain the puzzling observed decrease in the OCPS
amplitude with increasing magnetic field, but also implies that
the concept of an exponential protection in length may not
apply to the situation since the system is transitioning from the
trivial to the topological phase in its oscillatory regime. The
only way we see to experimentally establish the topological
protection is to use wires of variable length (imposed, for
example, by applying suitable gate voltages) and then study
oscillations as a function of length at a fixed magnetic field.
These oscillations at a fixed field (in the topological regime)
should eventually fall off exponentially as the length increases,
signifying topological protection [29].

Our work showing that the first oscillation may arise from
the physics of Andreev bound states makes the situation very
complex with the conclusion that great care is necessary to
establish the purely isolated Majorana topological protection
regime experimentally. If our interpretation of Ref. [26] is qual-
itatively correct (i.e., both Andreev and Majorana bound states
contributing to OCPSs), then there is an immediate significant
(and highly encouraging) implication. Since the interpretation
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most likely (but not absolutely certainly) requires the presence
of both Andreev and Majorana bound states in the system, it
is clear that going to higher magnetic field should confine the
physics entirely to MBSs since the Andreev bound states are
operational only near the low magnetic field part involving the
first oscillation. This means that the higher magnetic field
regime of these nanowires, if accessible, should enable a
study of only MBS without any complications arising from
Andreev bound states. Unfortunately, this may not be possible
in hybrid core-shell epitaxial structures where Al is used as
the superconductor since the Al SC gap collapses precisely
around where MBS physics becomes operational. But, the
data of Ref. [26] may be indicating that the true topological
Majorana nanowire regime may very well be very close to the
parameter values used in Ref. [26] except that one needs to
somehow suppress the soft gap behavior so that the SC gap
persists to somewhat higher magnetic field. We believe that
at magnetic field values higher than that used in Ref. [26],
Majorana physics will indeed manifest itself if the SC gap can
be kept finite in this high-field MBS regime.

Before concluding, we make two salient comments. First,
our conclusion regarding the key role that Andreev bound
states may be playing in the experimental results of Ref. [26]

is completely consistent with the recent work by Liu et al.
[52], who show that Andreev bound states have an interesting
generic zero-sticking tendency in Majorana nanowires, thus
necessarily conflating the physics of Majorana bound states
and Andreev bound states. More work is therefore necessary
in understanding the role of Andreev bound states vis a vis
Majorana properties in nanowire experiments. Second, our
results, albeit including many effects, are still obtained within
the minimal Majorana nanowire model, and we have no way
of ruling out a more complicated model going beyond the
minimal model providing a more compelling explanation for
the data of Ref. [26] although the interpretation provided
in Ref. [26] also uses a minimal model leaving out all the
complications (e.g., Andreev bound states, finite temperature,
several energy levels, gap collapse, etc.) considered in our
work.
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